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April 10, 2017





Abstract

The theory of derivators enhances and simplifies the theory of triangulated categories.
In this work a notion of fibered (multi)derivator is developed, which similarly enhances
fibrations of (monoidal) triangulated categories. We present a theory of cohomological as
well as homological descent in this language. The main motivation is a (co)descent theory
for six-functor-formalisms. We develop the theory of (op)fibrations of 2-multicategories
and use it to define abstract six-functor-formalisms. We also give axioms for Wirthmüller
and Grothendieck formalisms (where either f ! = f∗ or f! = f∗) or intermediate for-
malisms where we have e.g. a natural morphism f! → f∗. We observe that a fibered
multiderivator (in particular, a closed monoidal derivator) can be interpreted itself as
a six-functor-formalism on diagrams (small categories). Finally a theory of a derivator
version of six-functor-formalisms is developed, using an extension of the notion of fibered
multiderivator. Using the language of (op)fibrations of 2-multicategories this has (like
a usual fibered multiderivator) a very neat definition. This definition not only encodes
all compatibilities among the six functors but also their interplay with homotopy Kan
extensions. One could say: a nine-functor-formalism. Finally, it is shown that every
fibered multiderivator (for example encoding any kind of derived four-functor formalism
(f∗, f∗,⊗,HOM) occurring in nature) satisfying base-change and projection formula
formally gives rise to such a derivator six-functor-formalism in which “f! = f∗”, i.e. a
derivator Grothendieck context.
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1 Introduction

1.1 Preamble

Grothendieck, Verdier, and Deligne in the 60’s observed that classical duality theorems
like Poincaré, or Serre duality for the (co)homology of manifolds and algebraic vari-
eties can be most elegantly expressed, and vastly generalized, by a formalism of the six
functors. This makes essential use of derived categories. The latter are, however, not
sufficient for the purpose of descent. The notion of descent is ubiquitous in mathematics.
An object satisfies descent whenever its nature is determined by local conditions. The
easiest example is the “glueing” of functions which are locally defined. The (co)homology
of a space can be glued as well from the (co)homology of local pieces of the space; this is
essential to define equivariant (co)homology and for equivariant duality theorems, and
more generally to extend six-functor-formalisms to stacks, which is very important in
applications. Recently six-functor-formalisms have been constructed in many more con-
texts, including D-modules and motives. The problem with (co)homological descent is
that the “glueing data” has a higher-categorical nature. In contrast, classical descent
theory can be expressed nicely by the theory of monadic descent (Bénabou-Roubaud
Theorem [BR70]). In this work we develop the theory of fibered derivators based
on the idea of derivator due to Grothendieck and Heller, which solves the problem of
(higher-categorical, or (co)homological) descent in a way closely related to the classical
theory of cohomological descent (due to Deligne [SGA72b]). However, it is, in contrast,
completely self-dual, making it very suitable for the descent of six-functor-formalisms.
(There is also an infinity categorical version of the theory of monadic descent due to
Lurie [Lur09].) The main achievements in this work are:

1. A precise definition of abstract six-functor-formalisms using the theory of (op)-
fibrations of 2-multicategories (developed in this work as well). Results and con-
structions regarding the six functors were previously restricted to specific settings
because no abstract definition was available.

2. Development of a theory of fibered multiderivators which enriches “collections
of monoidal derived categories” in such a way that (co)descent can be formulated.

3. Main theorems of (co)homological descent which give easy criteria under which
a fibered derivator satisfies (co)descent.

4. Development of a theory of derivator six-functor-formalisms, also using the
theory of (op)fibrations of 2-multicategories.

5. The construction of fibered multiderivators and derivator six-functor-formalisms
from bifibrations of model categories.

1.2 The six functors

A formalism of the “six functors” lies at the core of many different theories in mathe-
matics, as for example the theory of Abelian sheaves on topological spaces, etale, l-adic,
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or coherent sheaves on schemes, D-modules, representations of (pro-)finite groups, mo-
tives, and many more. Given a base category of “spaces” S, for instance, the category of
schemes, topological spaces, analytic manifolds, etc. such a formalism roughly consists
of a collection of (derived) categories DS of “sheaves”, one for each “base space” S in S,
and the following six types of functors between those categories:

f∗ f∗ for each f in Mor(S)

f! f ! for each f in Mor(S)

⊗ HOM in each fiber DS

The functors on the left hand side are left adjoints of the functors on the right hand side.
The functor f! is “the dual of f∗” and is called push-forward with proper support,
because in the topological setting (Abelian sheaves over topological spaces) this is what
it is derived from. Its right adjoint f ! is called the exceptional pull-back. These
functors come along with a bunch of compatibilities between them.

1.2.1. More precisely, part of the datum of the six functors are the following natural
isomorphisms in the “left adjoints” column:

isomorphisms isomorphisms
between left adjoints between right adjoints

(∗,∗) (fg)∗ ∼Ð→ g∗f∗ (fg)∗
∼Ð→ f∗g∗

(!, !) (fg)!
∼Ð→ f!g! (fg)! ∼Ð→ g!f !

(!,∗) g∗f!
∼Ð→ F!G

∗ G∗F
! ∼Ð→ f !g∗

(⊗,∗) f∗(− ⊗ −) ∼Ð→ f∗ − ⊗f∗− f∗HOM(f∗−,−) ∼Ð→HOM(−, f∗−)
(⊗, !) f!(− ⊗ f∗−)

∼Ð→ (f!−) ⊗ − f∗HOM(−, f !−) ∼Ð→HOM(f!−,−)
f !HOM(−,−) ∼Ð→HOM(f∗−, f !−)

(⊗,⊗) (− ⊗ −) ⊗ − ∼Ð→ −⊗ (− ⊗ −) HOM(−⊗ −,−) ∼Ð→HOM(−,HOM(−,−))

Here f, g,F,G are morphisms in S, which in the (!,∗)-row, are related by a Cartesian
diagram:

⋅ G //

F

��

⋅
f

��⋅ g
// ⋅

In the right hand side column the corresponding adjoint natural transformations have
been inserted. In each case the left hand side natural isomorphism uniquely deter-
mines the right hand side one and vice versa. (In the (⊗, !)-case there are two versions
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of the commutation between the right adjoints; in this case any of the three isomor-
phisms determines the other two). The (!,∗)-isomorphism (between left adjoints) is
called base change, the (⊗, !)-isomorphism is called the projection formula, and
the (∗,⊗)-isomorphism is usually part of the definition of a monoidal functor. The
(⊗,⊗)-isomorphism is the associativity of the tensor product and part of the definition of
a monoidal category. The (∗,∗)-isomorphism, and the (!, !)-isomorphism, express that
the corresponding functors arrange as a pseudo-functor with values in categories.
Furthermore part of the datum are isomorphisms

f∗
∼Ð→ f !

for all isomorphisms f1. Of course, there have to be compatibilities among those natural
isomorphisms. Some of them are listed in figures 1–4. Instead of trying to give a complete
list of them (or even only a generating list from which all of them would follow) we
proceed in a more abstract way (like in the ideas of fibered category or multicategory)
and get a precise definition of a six-functor-formalism without having to specify any
of these compatibilities explicitly. The natural isomorphisms of 1.2.1 will be derived
from a composition law in a 2-multicategory and all compatibilities will be just a
consequence of the associativity of this composition law.
The six functors are the right framework to study duality theorems like Serre duality,
Poincaré duality, various (Tate) dualities for the (co)homology of groups, etc.

Example 1.2.2 (Serre duality). Let k be a field. If S is the category of k-varieties,
we have a six-functor-formalism in which DS is the derived category of (quasi-)coherent
sheaves2 on S. Let π ∶ S → spec(k) be a proper and smooth k-scheme of dimension n.
Consider a locally free sheaf E on S and consider the following isomorphism (one of the
two adjoints of the projection formula):

π∗HOM(E , π!k) ∼Ð→HOM(π!E , k)

In this case, we have π!E = π∗E because π is proper, and π!k = Ωn
S[n]. Taking i-th

homology of complexes we arrive at

H i+n(S,E∨ ⊗Ωn
S) ≅H−i(S,E)∗.

This is the classical formula of Serre duality.

Example 1.2.3 (Poincaré duality). Let k be a field. If S is a category of nice topological
spaces, we have a six-functor-formalism in which DS is the derived category of sheaves
of k-vector spaces on S. Let X be an n-dimensional topological manifold. Consider a
local system E of k-vector spaces on X and consider the isomorphism (again one of the
two adjoints of the projection formula):

π∗HOM(E , π!k) ∼Ð→HOM(π!E , k)
1There are more general formalisms, which we call proper or etale six-functor-formalisms where there

is a morphism f∗ → f ! or a morphism f! → f∗ for certain morphisms f (cf. Section 6.2)
2Neglecting here for a moment the fact that f! exists in general only after passing to pro-coherent

sheaves.
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We have π!k = Lor[n], where Lor is the orientation sheaf of X over k. Taking i-th
homology of complexes we arrive at

H i+n(X,E∨ ⊗Lor) ≅H−i
c (X,E)∗.

This is the classical formula of Poincaré duality.

Example 1.2.4 (Group (co)homology). The six functor formalism of Example 1.2.3
extends to stacks. Let G be a group and consider the classifying stack [⋅/G] and the
projection π ∶ [⋅/G] → ⋅. Note: Abelian sheaves on [⋅/G] = G-representations in Abelian
groups. The extension of the six-functor-formalism encodes duality theorems like Tate
duality. In this case π∗ yields group cohomology and π! yields group homology. If G is
finite, we also have a natural morphism π! → π∗ whose cone (homotopy cokernel) is Tate
cohomology.

1.3 History

Recently there has been increasing interest in six-functor-formalisms in various contexts.
To indicate some of these developments, we mention some related works without any
aim whatsoever towards completeness:

1960’s Grothendieck, Verdier, Deligne schemes coherent sheaves
[Ver77, SGA72a, SGA72b, SGA73] top. spaces Abelian sheaves

schemes etale sheaves
1980’s Bernstein char 0 varieties D-modules
⋮

2001 Voevodsky abstract theory
2003 Fausk, Hu, May [FHM03] abstract theory
2006 Ayoub [Ayo07a, Ayo07b] schemes motives
2008 Lazlo, Olsson [LO08a, LO08b] (classical) stacks etale and `-adic sheaves
2009 Cisinski, Deglise [CD09] schemes motives
2009 Lipman, Hashimoto [LH09] schemes coherent sheaves

diag. of schemes coherent sheaves
2012 Zheng, Liu [LZ12] (higher) stacks etale sheaves

(∞-categorical methods)
2013 Zheng [Zhe10] DM stacks constructible sheaves
2015 Schnürer [Sch15] top. spaces sheaves of vector spaces

(dg-categorical methods)
2016 Gaitsgory, Rozenblyum [GR16] derived schemes coherent sheaves

and stacks (∞-categorical methods)
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((E ⊗ F ) ⊗G) ⊗H

(E ⊗ (F ⊗G)) ⊗H (E ⊗ F ) ⊗ (G⊗H)

E ⊗ ((F ⊗G)) ⊗H) E ⊗ (F ⊗ (G⊗H))

Figure 1: Pentagon axiom (compatibility of (⊗,⊗) iso’s).

(f∗A⊗ f∗B) ⊗ f∗C f∗(A⊗B) ⊗ f∗C f∗((A⊗B) ⊗C)

f∗A⊗ (f∗B ⊗ f∗C) f∗A⊗ f∗(B ⊗C) f∗(A⊗ (B ⊗C))

Figure 2: Definition of monoidal functor (compatibility between (∗,⊗) and (⊗,⊗) iso’s).

(g!(A⊗ g∗B)) ⊗C g!((A⊗ g∗B) ⊗ g∗C)

((g!A) ⊗B) ⊗C g!(A⊗ (g∗B ⊗ g∗C))

(g!A) ⊗ (B ⊗C) g!(A⊗ g∗(B ⊗C))

Figure 3: Example of compatibility between (!,⊗) and (∗,⊗) and (⊗,⊗) iso’s.

G!F
∗(A⊗ g∗B) f∗g!(A⊗ g∗B)

G!((F ∗A) ⊗ F ∗g∗B) f∗(g!A⊗B)

G!((F ∗A) ⊗G∗f∗B) (f∗g!A) ⊗ f∗B

(G!F
∗A) ⊗ f∗B

Figure 4: Example of compatibility between (!,∗) and (∗,⊗) and (!,⊗) and (∗,∗) iso’s.

10



1.4 (Co)homological descent

Our main motivation for defining a derivator enhancement of six-functor-formalisms has
been the question of (co)homological descent. For instance, given an abstact six-functor-
formalism, we would like to be able to extend it to stacks w.r.t. to a given Grothendieck
topology on the base category S.
More precisely, consider a space S ∈ S and a hypercover S● of S, i.e. a simplicial object
S● ∈ Fun(∆op,S)

S● ∶= ⋯ ////
//// S2

// //// S1
//// S0

with a map p ∶ S● → S which is, in a certain sense, locally trivial. For example S● could
be associated with a Čech cover U → S, that is, the simplicial object

Si ∶= U ×S ⋯×S U
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i + 1-times

with the obvious maps. Let π be the projection to the final object of S (assumed here
to exist).

1.4.1 (Cohomological descent). We would like to say that the six-functor-formalism
satisfies cohomological descent whenever, given an object E over S, we have an iso-
morphism of the form

π∗E ≅ Tot∏ ( ⋯ π2,∗p
∗
2Eoo π1,∗p

∗
1Eoo π0,∗p

∗
0Eoo ) (1)

for each (finite) hypercover as above. The complex appearing in brackets is the complex
associated with the cosimplicial object ∆i ↦ πi,∗p

∗
i E where the morphisms are given by

the various units. Note that this question is not really well defined because, when working
with derived categories, Tot∏ does not make sense at all, and if we work with complexes
(on-the-nose, not up to quasi-isomorphism) instead, a coherent simplicial diagram of
complexes can not be constructed because the πi,∗, and the p∗i are only derived functors.
Usually the reader is used to the situation where the Si have trivial cohomology and
accordingly the πi,∗ come from an exact functor between Abelian categories. So working

with complexes on-the-nose and taking Tot∏ of those, the right hand side becomes well-
defined. Then the question is made precise if we understand on the left hand side the
derived π∗. The task in general is therefore

1. to give a meaning to the right hand side of (1) in the derived setting (when the
πi,∗ are just derived functors),

2. to find criteria under which (1) is an isomorphism (preferably for every finite
hypercover at least).

The formalism of derivators is very suitable to adress these problems. The total complex
appearing in (1) is just the homotopy limit over the cosimplicial object ∆i ↦ πi,∗p

∗
i E .

Hence, pursuing the idea of derivators, we have to find means of constructing this dia-
gram in a coherent way (i.e. as an object in the value of the associated derivator at ∆)
and not only as a diagram in the derived category.
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1.4.2 (Homological descent). Dually, given an object E over S, we might ask whether
we have a identity of the form

π!E ≅ Tot⊕ ( ⋯ // π2,!p
!
2E // π1,!p

!
1E // π0,!p

!
0E ) (2)

The complex is associated with the simplicial object ∆i ↦ π2,!p
!
2E where the morphisms

are given by the various counits. Now the question makes even less sense because p!
2

is, in most cases, only constructed as a morphism in the derived category. Again, the
question of homological descent amounts

1. to give meaning to the right hand side of (2) in the derived setting (when the πi,!
and p!

i are classically just functors between derived categories) and

2. to find criteria under which (2) is an isomorphism (preferably for every finite
hypercover at least).

1.4.3. As an easy topological example for homological descent (in which we can give
meaning to the question) consider a real C∞-manifold X of dimension n (in general
non-compact) and the constant sheaf R on it. Let {Ui}i be a finite Cech cover. We can
compute π!R as the the total complex of

Ep,q ∶= ⊕
i1,...,ip

Hc(Ui1 ∩⋯ ∩Uip ,Eq)

where Eq is the sheaf of C∞-differential forms of degree q. Here a section with compact
support on a smaller open set is mapped to a section with compact support on a larger
open set. If the Ui1 ∩⋯ ∩ Uip are sufficiently nice, Hvert

p,q is zero unless q = n, hence π!R
is represented by the complex

⋯ → ⊕
i1,i2

Hn
c (Ui1 ∩Ui2 ,R) →⊕

i

Hn
c (Ui,R).

This example works because we have representations of the πi,!R for which a coherent
double complex can be constructed.

1.4.4. More generally, if S● is any simplicial object in S, for example the presentation
of a stack (or even a higher stack), can we define a functor π∗ by

Tot∏ ( ⋯ π2,∗E2
oo π1,∗E1

oo π0,∗E0
oo )

where the Ei are objects over Si and we are given (quasi-)isomorphisms S(δ)∗Ei → Ej
for all δ ∶ ∆j →∆i in a compatible way? We call the collection {Ei}i together with these
quasi-isomorphisms a coCartesian object over Sop

● .
And can we define a functor π! by

Tot⊕ ( ⋯ // π2,!E2
// π1,!E1

// π0,!E0 )
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where the Ei are objects over Si and we are given (quasi-)isomorphisms Ei → S(δ)!Ej for
all δ ∶ ∆j → ∆i in a compatible way? We call the collection {Ei}i together with these
quasi-isomorphisms a Cartesian object over S●.
In both cases the same coherence problem as in 1.4.1–1.4.2 arises. Without a suitable
enhancement of the situation the “definitions” above do not make sense. Assuming
that this can be solved by a derivator enhancement, the main question, which will be
addressed in Section 1.8, then becomes:

“Given a morphism between simplicial objects S● → T●, when are the two cor-
responding categories of Cartesian (resp. coCartesian) objects equivalent?”

This question concerns only the two functors f∗, f∗ or the two functors f!, f
! at a time.

Another, more involved question related to a full four-functor-formalism is:

“When are the categories of Cartesian objects over S● and coCartesian ob-
jects over Sop

● equivalent?”

It will be addressed in Section 1.13.

Remark 1.4.5. From the point of view of ∞-categories, the questions of 1.4.1 (resp.
1.4.2) on the one hand and of 1.4.4 on the other hand are related as follows. In this world
a bifibration D → Sop can be given equivalently as a functor F ∶ Sop →∞−CAT such that
the functors in the image are right adjoints. Given S ∈ S, a resolution π ∶ U● → S, and
an object E ∈ F (S), the first question of cohomological descent asks whether the natural
map

E ≅ lim
∆
πi,∗π

∗
i E ,

is an isomorphism (or maybe whether it becomes an isomorphism after applying a further
push-forward to a suitable base), where lim is the (homotopy) limit of the diagram ∆→
F (S) given by ∆i ↦ πi,∗π

∗
i E.

The second question of cohomological descent asks whether the functor F itself satisfies
a similar property. If we consider it, neglecting non-invertible morphisms, as a functor
F ∶ Sop →∞−GRP to ∞-groupoids the question becomes whether the natural map

F (S) ≅ lim
∆
F (Ui),

is an isomorphism, where lim is the (homotopy) limit of the diagram F ○ U● ∶ ∆ →
∞ − GRP. From this point of view it is already clear that the property of the second
question is stronger and implies the first. Both questions cannot be formulated within
the realm of classical derivators. Although those nicely encode the occurring homotopy
limit functors, there is no way to obtain the diagrams in the argument starting from,
say, any kind of pseudo-functor Sop → DER to the 2-category of derivators. However,
the language of fibered derivators proposed in this work constitutes a nice solution, albeit
the similarity between the two questions becomes slightly obscured.
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1.5 The precise definition of six-functor-formalisms

Before proceeding, let us go back to the question of making precise what an abstract
six-functor-formalism is. Whenever we are given a compatible bunch of functors like,
for example, a tensor product, or a collection of pull-back morphisms, there is a general
procedure: There is always a “better structure” in which the compatibility between
functors gets encoded in a composition law and its associativity.

Example 1.5.1. The first example is the one of a collection of pull-back functors (i.e.
a pseudo-functor with values in categories):

collection of functors and compatibilities better structure

f∗

(gf)∗ ∼Ð→ g∗f∗

(fgh)∗ (gh)∗f∗

h∗(fg)∗ h∗g∗f∗

opfibered category
C → Sop

Hom(f∗A,B) = Homf(A,B)

Here we use the notation Homf(A,B) to denote the preimage of f under the opfibration
C → Sop.

Example 1.5.2. The second example is a tensor product (i.e. a monoidal category):

collection of functors and compatibilities better structure

⊗

(− ⊗ −) ⊗ − ∼Ð→ −⊗ (− ⊗ −)
(− ⊗ −) ⊗ (− ⊗ −) ((− ⊗ −) ⊗ −) ⊗ −

− ⊗ (− ⊗ (− ⊗ −)) (− ⊗ (− ⊗ −)) ⊗ −

− ⊗ ((− ⊗ −) ⊗ −)

representable
multicategory

C

Hom((A1 ⊗ (A2 ⊗ (⋯))),B) = Hom(A1, . . . ,An;B)

Example 1.5.3. The third example is a combination of the first two (i.e. a monoidal
categegory together with a monoidal pseudo-functor [LH09, (3.6.7) b)]):

14



collection of functors and compatibilities better structure

f∗,⊗
⋯

f∗(− ⊗ −) ∼Ð→ (f∗−) ⊗ (f∗−)
⋯

opfibered multicategory
C → Sop

Hom((f∗1A1 ⊗ (f∗2A2 ⊗ (⋯))),B) = Homf(A1, . . . ,An;B)

Here Sop is turned into a multicategory in the following way: A multimorphism f ∈
Hom(S1, . . . , Sn;T ) is a collection of morphims fi ∶ T → Si for each i. This multicategory
is representable (i.e. opfibered over ⋅, see below), i.e. it is a monoidal category with the
monoidal product being given by ×.

Example 1.5.4.

collection of functors and compatibilities better structure

g∗, f!,⊗

with all 6 “compatibility” isomorphisms as in 1.2.1
plus the adjunction of f! and f∗ for isomorphisms

⋯
opfibered 2-multicategory3

C → Scor

Hom(f!(g∗1A1 ⊗ (g∗2A2 ⊗ (⋯))),B) = Homξ(A1, . . . ,An;B)

Here Scor is the following 2-multicategory: Its objects are the objects of S and a 1-
morphism ξ ∈ Hom(S1, . . . , Sn;T ) is a multicorrespondence

A
g1

tt
gn~~

f

��
S1 ⋯ Sn ; T

(3)

The composition of 1-morphisms is given by forming fiber products (here depicted for
two 1-ary 1-morphisms, cf. Definition 3.1.1 for the general case):

A ×Y B

{{ ##
A

~~ ##

B

{{ ��
X Y Z

3more precisely, a 1-opfibration and 2-bifibration of 2-multicategories with 1-categorical fibers
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The 2-morphisms are the isomorphisms of such multicorrespondences. This multicate-
gory is representable (i.e. opfibered over ⋅), closed (i.e. fibered over ⋅), every object is
self-dual, with tensor product and internal hom both given by × and having as unit the
final object.

1.5.5. We now proceed to give the precise definition of an (op)fibered multicategory.
In the sequel we will also need the definition of 2-multicategories and their fibrations
(as was already needed for the definition of Scor above). We refer to Sections 2.2 and
2.4 for the definitions. Here, for the sake of simplicity, we will neglect the 2-categorical
aspect. The reader should keep in mind that a multicategory abstracts the properties
of multilinear maps, and indeed every monoidal category gives rise to a multicategory
setting

Hom(A1, . . . ,An;B) ∶= Hom((A1 ⊗ (A2 ⊗ (⋯))),B). (4)

Definition 1.5.6. A multicategory D consists of

• a class of objects Ob(D);

• for all n ∈ Z≥0, and for all objects X1, . . . ,Xn, Y in Ob(D), a class

Hom(X1, . . . ,Xn;Y );

• a composition, i.e. for all objects X1, . . . ,Xn, Y1, . . . , Ym, Z in Ob(D) and for all
i ∈ {1, . . . ,m} a map:

Hom(X1, . . . ,Xn;Yi) ×Hom(Y1, . . . , Ym;Z) → Hom(Y1, . . . ,X1, . . . ,Xn, . . . , Ym;Z)
f, g ↦ g ○i f ;

• for all X ∈ Ob(D) an identity idX ∈ Hom(X;X);

satisfying strict associativity and identity laws. The composition w.r.t. independent
slots is commutative, i.e. for 1 ≤ i < j ≤ m if f ∈ Hom(X1, . . . ,Xn;Yi) and f ′ ∈
Hom(X ′

1, . . . ,X
′
k;Yj) and g ∈ Hom(Y1, . . . , Ym;Z) we have

(g ○i f) ○j+n−1 f
′ = (g ○j f ′) ○i f.

A symmetric (braided) multicategory is given by an action of the symmetric (braid)
groups, i.e. isomorphisms

α ∶ Hom(X1, . . . ,Xn;Y ) → Hom(Xα(1), . . . ,Xα(n);Y )

for α ∈ Sn (symmetric group), resp. α ∈ Bn (braid group), forming an action which is
strictly compatible with composition in the obvious way (in the braided case: substitution
of strings).

In some references the composition is defined in a seemingly more general way; in the
presence of identities these descriptions are, however, equivalent.
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1.5.7. We leave the obvious definition of a functor between multicategories to the reader.
Similarly there is a definition of a opmulticategory, in which we have classes

Hom(X;Y1, . . . , Yn)

and similar data. If D is a multicategory Dop is an opmulticategory in a natural way.
The trivial category is considered to be a multicategory setting all Hom({⋅}, . . . ,{⋅};{⋅})
to be the 1 element set. It is the final object in the category of multicategories.

To clarify the precise relation between multicategories and monoidal categories we have
to define Cartesian and coCartesian morphisms. It turns out that we can actually
give a definition which is a common generalization of coCartesian morphisms in usual
opfibered categories (cf. Section 2.1) and those morphisms expressing the existence of a
tensor product:

Definition 1.5.8 (cf. the more general Definitions 2.4.3–2.4.5). Consider a functor of
multicategories p ∶ D → S.

• A morphism
ξ ∈ HomD(E1, . . . ,En;F)

in D is called coCartesian w.r.t. p, if for all i, for all F1, . . . ,Fm,G with Fi = F ,
and for all f ∈ Hom(p(F1), . . . , p(Fm);p(G)) the map

Homf(F1, . . . ,Fm;G) → Homf○p(ξ)(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)
α ↦ α ○ ξ

is bijective.

• A morphism
ξ ∈ HomD(E1, . . . ,En;F)

in D is called Cartesian w.r.t. p at the i-th slot, if for all G1, . . . ,Gm, and for all
f ∈ Hom(p(G1), . . . , p(Gm);p(Ei)) the map

Homf(G1, . . . ,Gm;Ei) → Homp(ξ)○f(E1, . . . ,Ei−1,G1, . . . ,Gm,Ei+1, . . . ,En;F).

α ↦ ξ ○ α
is bijective.

• The functor p ∶ D → S is called an opfibered multicategory if for every g ∈
HomS(S1, . . . , Sn;T ), and for all objects E1, . . . ,En with p(Ei) = Si there is some
object F over T and some coCartesian morphism ξ ∈ HomD(E1, . . . ,En;F) with
p(ξ) = g.

• The functor p ∶ D → S is called a fibered multicategory if for every 1 ≤ j ≤ n,

for all g ∈ HomS(S1, . . . , Sn;T ), and for all objects E1,
ĵ. . .,En with p(Ei) = Si, and

F over T there is some object Ej over Sj and some Cartesian morphism w.r.t. the
j-th slot ξ ∈ HomD(E1, . . . ,En;F) with p(ξ) = g.
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• The functor p ∶ D → S is called a bifibered multicategory if it is both fibered
and opfibered.

It turns out that the composition of Cartesian morphisms is Cartesian (and similarly for
coCartesian morphisms)4.
The following Lemma follows from Corollary 2.4.17 and Proposition 2.4.25 (which deals
with a 2-categorical generalization of 2.).

Lemma 1.5.9. 1. An opfibered multicategory p ∶ D → {⋅} is a monoidal category
in a natural way. Conversely any monoidal category gives rise to an opfibered
multicategory p ∶ D → {⋅} via (4). A multicategory D is a closed category if and
only if it is fibered over {⋅}. In particular, the fibers of an (op)fibered multicategory
p ∶ D → S are always closed/monoidal in the following sense: Given any functor of
multicategories5 s ∶ {⋅} → S, the category Ds of objects over s is closed/monoidal.

2. Given (op)fibered multicategories p ∶ C → D and q ∶ D → S also the composition
q ○ p is an (op)fibered multicategory. In particular, if we have an opfibered mul-
ticategory p ∶ D → S and if S → {⋅} is opfibered (i.e. S is monoidal) then also
D → {⋅} is opfibered (i.e. D is monoidal). The same holds dually. A morphism
α is (co)Cartesian for q ○ p if and only if α is (co)Cartesian for q and q(α) is
(co)Cartesian for p.

In the case of an opfibration p ∶ D → {⋅}, the tensor product E ⊗ F is reobtained as the
target of a coCartesian morphism in Hom(E ,F ;E ⊗ F) which exists for any E , F by
definition. Similarly, the unit 1 is just the target of a coCartesian morphism in Hom(; 1)
which exists by definition (the existence is also required for the empty set of objects).
The second part of the Lemma encapsulates the distinction between internal and external
tensor product in a four- (or six-) functor-formalism, see Section 6.1.

Example 1.5.10. Let S be a usual category. If S has coproducts then it may be turned
into a symmetric multicategory setting

Hom(S1, . . . , Sn;T ) ∶= Hom(S1;T ) ×⋯ ×Hom(Sn;T ).

Let p ∶ D → S be an opfibered (usual) category. Any object S induces a canonical functor
of multicategories s ∶ {⋅} → S with image S hence the fibers of an opfibered multicategory
p ∶ D → S are monoidal and the datum p is equivalent to giving a pseudo-functor such that
the push-forwards f● are monoidal functors and such that the compatibility morphisms
between them are morphisms of monoidal functors. This is called a covariant monoidal
pseudo-functor in e.g. [LH09, (3.6.7)].

4As with fibered categories there are weaker notions of Cartesian which still uniquely determine a
Cartesian morphism (up to isomorphism) from given objects over a given multimorphism, however, do
not imply that they are stable under composition. Similarly for coCartesian morphisms.

5This specifies also morphisms in Hom(S, . . . , S
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

n

;S), for all n, compatible with composition.
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Example 1.5.11. Similarly, if S has products, Sop may be turned into a symmetric
multicategory (or S into a symmetric opmulticategory) setting

Hom(S1, . . . , Sn;T ) ∶= Hom(T ;S1) ×⋯ ×Hom(T ;Sn).

Let p ∶ D → Sop be a opfibered (usual) category. Then an opfibered multicategory structure
on p is equivalent to giving a monoidal structure on the fibers such that the pull-backs
f∗ (along morphisms in S) are monoidal functors and such that the compatibility mor-
phisms between them are morphisms of monoidal functors. This is called a contravariant
monoidal pseudo-functor in e.g. [LH09, (3.6.7)].

The notion of multicategory has an easy 2-categorical analogue (a multicategory en-
riched in usual categories) which will be defined precisely in Section 2.2. The notion
of (op)fibration generalizes as well, although one has to distinguish two notions of
(op)fibrations regarding 1- and 2-morphisms (cf. Section 2.4). We arrive at the sought-for
precise definition of a six-functor-formalism:

Definition 1.5.12 (cf. Definition 3.1.4). Let S be a category with fiber products, and let
Scor be the symmetric 2-multicategory defined in 1.5.4. A (symmetric) six-functor-
formalism on S is a 1-bifibered and 2-bifibered (symmetric) 2-multicategory with 1-
categorical fibers

D → Scor.

While a 1-opfibration and 2-fibration of 2-multicategories with 1-categorical fibers over
Scor is also essentially the same as a pseudo-functor (cf. Proposition 2.4.16)

Scor → CAT

where CAT is equipped with the 2-multicategory structure in which 1-multimorphisms
are functors of several variables, the latter description has two disadvantages. Firstly,
it only describes three of the six functor types (the left adjoints) and it is not so easy
to make a similar definition encoding the right adjoints (among other problems, in the
unsymmetric case, there are several internal Hom functors ...) Secondly, it involves
choices and compatibilities again, although the definition of a pseudo-functor between 2-
multicategories (cf. Definition 2.2.3) is already much more manageable than 1.2.1 and its
unclear list of compatibilities. We prefer, however, to use the language of (op)fibrations
in any case.

1.5.13. We have a morphism of opfibered (over {⋅}) 2-multicategories Sop → Scor where
Sop is equipped with the multicategory structure as in 1.5.11. However there is no
reasonable morphism of opfibered multicategories S → Scor (There is no compatibility
involving only ⊗ and !). From a six-functor-formalism, we get the operations g∗, g∗ as
the pullback and the push-forward along the correspondence

X
g

��
Y ; X
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We get f ! and f! as the pullback and the pushforward along the correspondence

X
f

��
X ; Y

We get E ⊗F for objects E ,F above S as the target of any coCartesian morphism

⊗ ∈ HomξS(E ,F ;E ⊗F)

over the multicorrespondence

ξS =
⎛
⎜⎜⎜
⎝

S

S S ; S

⎞
⎟⎟⎟
⎠

Alternatively, we could define

E ⊗F ∶= ∆∗(E ⊠ F).

Here ∆∗ is the pushforward along the correspondence

⎛
⎜⎜⎜
⎝

S
∆

||
S × S ; S

⎞
⎟⎟⎟
⎠

induced by the canonical multicorrespondence ξS ∈ Hom(S,S;S), and ⊠ is the absolute
monoidal product which exists because the composition D → S → {⋅} is opfibered as
well, i.e. D is monoidal.

1.5.14. It is easy to derive from the definition of bifibered multicategory over Scor that
the absolute monoidal product E⊠F can be reconstructed from the fiber-wise product as
pr∗1 E⊗pr∗2 F on S×T , whereas the absolute HOM(E ,F) is given by HOM(pr∗1 E ,pr!

2F)
on S×T . In particular the absolute duality DE ∶= HOM(E ,1) is given by HOM(E , π!1)
where π ∶ S → ⋅ is the final morphism.

Proposition 1.5.15 (cf. Proposition 3.2.3). Given a six-functor-formalism on S

D → Scor

for the six operations as extracted in 1.5.13 there exist naturally all compatibility iso-
mophisms listed in 1.2.1.

The important point is, that also all compatibilities between these isomorphisms can be
derived, like e.g. those in figures 1–4, cf. 3.2.5 for an example. Each of these compat-
ibilities corresponds to an associativity relation in Scor. If we generalize the definition
of Scor and allow more morphisms of multicorrespondences as 2-morphisms, we easily
axiomatize a morphism f! → f∗ that often accompanies a six-functor-formalism, and its
properties (cf. Section 6.2).
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1.6 Fibered derivators

The notion of triangulated category developed by Grothendieck and Verdier in the 1960’s,
as successful as it has been, is not sufficient for many purposes, for both practical reasons
(certain natural constructions cannot be performed) as well as for theoretical reasons (the
axioms are rather involved and lack conceptual clarity). Grothendieck much later [Gro91]
and Heller independently, with the notion of derivator, proposed a marvelously simple
remedy to both deficiencies. The basic observation is that all problems mentioned above
are based on the following fact: Consider a category C and a class of morphismsW (quasi-
isomorphisms, weak equivalences, etc.) which one would like to become isomorphisms.
Then homotopy limits and colimits w.r.t. (C,W) cannot be reconstructed once passed
to the localization (or homotopy category) C[W−1], for example a derived category,
or the homotopy category of a model category. Examples of homotopy (co)limits are
the cone and the total complex of a complex of complexes. While the existence of the
cone is rescued in a triangulated category in a brute-force way (but it is not functorial
anymore), the total complex is totally lost in a derived category. Furthermore, very
basic and intuitive properties of homotopy limits and colimits, and more general Kan
extensions, not only determine the additional structure (triangles, shift functors) on a
triangulated category but also imply all of its rather involved axioms. This idea has
been successfully worked out by Cisinski, Groth, Grothendieck, Heller, Maltsiniotis, and
others. We refer to the introductory article [Gro13] for an overview.
One purpose of this work is to propose a notion of fibered (multi)derivator which en-
hances the notion of a fibration of (monoidal) triangulated categories in the same way as
the notion of usual derivator enhances the notion of triangulated category. We emphasize
that this new context is very well suited to reformulate (and reprove the theorems of)
the classical theory of cohomological descent and to establish a completely dual theory
of homological descent which should be satisfied by the f!, f

!-functors.

1.6.1. As we have seen, the questions of homological and cohomological descent cannot
be treated in a satisfactory way by considering a “classical” six-functor-formalism D →
Scor whose fibers are derived categories (of sheaves, D-modules, motives, etc.). This does
not allow to consider operations between coherent diagrams in D over arbitrary diagrams
in S or even over diagrams of correspondences i.e. diagrams in Scor. Enhancing only the
fibers as derivators, is obviously also not sufficient. There are two approaches to correct
this:

1. To enlarge the domain of a derivator to “diagrams in S” (or here even to “diagrams
in Scor”). This road has been taken for example in the work of Ayoub, Cisinski
and Deglise [Ayo07a, Ayo07b, CD09] under the name algebraic derivator.

2. To consider fibered (multi)derivators, which are morphisms of pre-(multi)derivators,
satisfying some axioms.

In view of the philosophy that it should be preferred to consider a compact structure
like (op)fibered multicategories instead of a bunch of functors and compatibilities, we
follow the second approach.
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The first approach has also the disadvantage that one has to choose between two types of
categories of diagrams in S, the 2-categories Dia(S) and Diaop(S). A fibered derivator
according to the second approach gives rise to pseudo-functors from both types, but
the definition is itself completely self-dual (in the non-multi case at least). The two
approaches will be (partly) conciliated later (cf. Section 1.7) observing that a (left)
fibered multiderivator can be seen as a pseudo-functor Diacor(S) → MCAT , i.e. as a
kind of Wirthmüller context, and we have (contravariant) embeddings of both Dia(S)
and Diaop(S) into Diacor(S).

Let Dia be a category of diagrams (a full subcategory of the category of small categories
satisfying some closure properties).

Definition 1.6.2 (cf. Definition 4.2.1). A pre-derivator of domain Dia is a contravari-
ant (strict) 2-functor

D ∶ Dia1−op → CAT
into the 2-“category”6 of categories.
A pre-multiderivator of domain Dia is a contravariant (strict) 2-functor

D ∶ Dia1−op →MCAT

into the 2-“category” of multicategories. A morphism of pre-derivators is a natural
transformation.
For a morphism α ∶ I → J in Dia the corresponding functor D(α)

D(J) → D(I)

will be denoted by α∗.
We call a pre-multiderivator symmetric (resp. braided), if the images are symmetric
(resp. braided), and the morphisms α∗ are compatible with the actions of the symmetric
(resp. braid groups).

Definition 1.6.3 (cf. Definition 4.3.5). We consider the following axioms on a pre-
(multi)derivator D:

(Der1) For I, J in Dia, the natural functor D(I∐J) → D(I) × D(J) is an equivalence.
Moreover, D(∅) is not empty.

(Der2) For I in Dia the ‘underlying diagram’ functor

dia ∶ D(I) → Fun(I,D(⋅))

is conservative.

In addition, we consider the following axioms for a morphism of pre-(multi)derivators
p ∶ D→ S (here only the left versions of the axioms are listed; they all have corresponding
dual right versions):

6where we put “category” into quotation marks to indicate that is has classes replaced with 2-classes
(or, if you prefer, is constructed w.r.t. a larger universe).
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(FDer0 left) For each I in Dia the morphism p specializes to an opfibered (multi)category and
any functor α ∶ I → J induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of opfibered (multi)categories, i.e. the top horizontal functor maps coCartesian
morphisms to coCartesian morphisms.

(FDer3 left) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers

D(J)S → D(I)α∗S

has a left-adjoint αS! .

(FDer4 left) For each functor α ∶ I → J in Dia, and for any object j ∈ J and the 2-cell7

I ×/J j
ι //

αj

��
⇙µ

I

α

��
{j} � � j // J

the induced natural transformation of functors αj !(S(µ))●ι∗ → j∗α! is an isomor-
phism w.r.t. all bases S ∈ S(J).

(FDer5 left) (if S is strong, only needed for the multiderivator case). For any Grothendieck
opfibration α ∶ I → J in Dia, and for any morphism ξ ∈ Hom(S1, . . . , Sn;T ) in S(⋅)
for some n ≥ 1, the natural transformations of functors

α!(α∗ξ)●(α∗−,⋯, α∗−, − , α∗−,⋯, α∗−) ≅ ξ●(−,⋯,−, α!− ,−,⋯,−)

are isomorphisms.

In axiom (FDer4 left), which makes only sense in the presence of (FDer0 left) and (FDer3
left), (S(µ))● is an arbitrary choice of push-forward along S(µ). Similarly, in (FDer5
left) ξ● is a functor defined by choosing a coCartesian arrow, which makes only sense in
the presence of (FDer0 left).

Question 1.6.4. It seems natural to allow also multicategories, in particular operads, as
domain for a fibered multiderivator. The author however did not succeed yet in writing
down a neat generalization of (FDer3–4) which would encompass (FDer5).

7The diagram I ×/J j is the 2-pullback of the diagram
⎛

⎜

⎝

I

��
{j} // J

⎞

⎟

⎠

and is also called the slice or

comma category.
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Definition 1.6.5 (cf. Definition 4.3.6). A morphism of pre-(multi)derivators p ∶ D → S
is called a left fibered (multi)derivator, if axioms (Der1–2) hold for D and S and
(FDer0–5 left) hold for p. Similarly it is called a right fibered (multi)derivator with
domain Dia, if instead the corresponding dual axioms (FDer0–5 right) hold. It is called
fibered if it is both left and right fibered.

1.6.6. Let S ∈ S(⋅) be an object, and consider a (left, resp. right) fibered (multi)derivator
p ∶ D→ S. The association

I ↦ D(I)p∗S ,

where p ∶ I → ⋅ is the projection, defines a (left, resp. right) derivator in the usual sense
which we call the fiber of p over S. In the multi-setting, the fiber is monoidal in the
sense of [Gro12, Definition 2.4], if S extends to a section {⋅} → S(⋅) of multicategories.
The axioms (FDer6–7) below involve only these fibers.
More generally, if S ∈ S(J) we may consider the association

I ↦ D(I × J)p∗S ,

where p ∶ I × J → J is the projection. This defines again a (left, resp. right) derivator in
the usual sense which we call the fiber of p over S.

Definition 1.6.7. Let p ∶ D → S be a (left and right) fibered derivator. We call D
pointed (relative to p) if the following axiom holds:

(FDer6) For any S ∈ S(⋅), the category D(⋅)S has a zero object.

Definition 1.6.8. Let p ∶ D→ S be a (left and right) fibered derivator. We call D stable
(relative to p) if the fibers of p are strong8 and the following axiom holds:

(FDer7) For any S ∈ S(⋅), an object in the category D(◻)p∗S is homotopy Cartesian if and
only if it is homotopy coCartesian.

1.6.9. Recall from [Gro13] that axiom (FDer7) implies that the fibers of a stable fibered
derivator are triangulated categories in a natural way. Since the push-forward, and the
(relative and absolute) tensor product commute with homotopy colimits (FDer5 left, cf.
also 1.6.10 below) they induce, in particular, triangulated functors between the fibers.

1.6.10. Let D → S be a left fibered derivator. Let α ∶ I → J be a functor, and let
f ∶ S → T be a morphism in S(J). Axiom (FDer0 left) implies that we have a canonical
isomorphism

(α∗(f))●α∗ → α∗f●

determined by the choice of push-forward functors. We get an associated exchange
morphism

α!(α∗(f))● → f●α!. (5)

8See [Gro13, Definition 1.13]
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If S is strong, axiom (FDer4 left) implies that this is an isomorphism (cf. Proposi-
tion 4.3.26). In other words f● commutes with homotopy left Kan extensions (in par-
ticular with homotopy colimits). This also follows from (FDer0 left) and (FDer0 right)
because these imply that f● is a left adjoint. In particular (FDer5 left) follows from
(FDer4 left) if we are considering plain fibered derivators (not multiderivators). Also in
the multi-case, (FDer5 left) follows from (FDer0 left) and (FDer0 right) together.

Analogously to (op)fibrations of multicategories we have the following (cf. Section 4.4):

Proposition 1.6.11 (cf. Proposition 4.4.1). Let

E
p1 // D

p2 // S

be two left (resp. right) fibered (multi)derivators. Then also the composition p2○p1 ∶ E→ S
is a left (resp. right) fibered (multi)derivator.

The canonical source for fibered multiderivators, at least if the base S is associated with
a usual multicategory S, is the following:

Theorem 1.6.12. Suppose we are given a bifibered multicategory D → S and a collection
of model category structures

(DS ,FibS ,CofS ,WS) (6)

on each DS such that for every morphism f ∈ Hom(S1, . . . , Sn;T ) the “push-forward”

X1, . . . ,Xn ↦ f●(X1, . . . ,Xn)

is a left Quillen functor in n-variables.
Consider the disjoint union W of the WS and for each diagram I the class WI of mor-
phisms in Fun(I,D) which are point-wise in W.
Then the association9

D ∶ I ↦ Fun(I,D)[W−1
I ]

is a fibered multiderivator over S whose fibers are just the associated derivators (monoidal
if a section {⋅} → S of multicategories is given) of the model categories (6). It is pointed
(resp. stable) if the model categories (6) are pointed (resp. stable).

We prove this Theorem in Section 4.7, cf. especially Theorem 4.7.5, with the restriction
to directed diagrams for the left case and with the restriction to inverse diagrams for the
right case. There are methods due to Cisinski [Cis03, Théorème 6.11] to extend such a
construction to Dia = Cat. This will be written down in a forthcoming article for the
fibered case.
The fact that it is reasonable to just invert the union of the WS to get the fibered
category associated with the derived push-forwards and pull-backs the author learned
from Deligne [SGA73, Exposé XVII, §2]10.

9The localization D[W
−1

] is defined for multicategories in a similar manner as for categories (only
1-ary morphisms become inverted).

10which starts with the words: “Le rédacteur insiste pour que le lecteur s’abstinne de lire ce §”.
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1.6.13. Every fibered derivator D→ S does indeed give rise to two pseudo-functors

D ∶ Dia(S)1−op → CAT (7)

(I,F ) ↦ D(I)F

and

D ∶ Diaop(S)1−op → CAT (8)

(I,F ) ↦ D(I)F

where Dia(S) is the 2-category of pairs (I,F ), with I ∈ Dia, and F ∈ S(I), and in which a
morphism (I,F ) → (J,G) is given by a functor α ∶ I → J , and a morphism f ∶ F → α∗G.
The pullback D(α, f), denoted also by (α, f)∗, is given by f●α∗. The 2-morphisms are
defined in the obvious way. The 2-category Diaop(S) has the same objects but with
1-morphisms containing f ∶ α∗G → F . The pullback (α, f)∗ here is given by f●α

∗. We
have Diaop(S) = Dia(Sop)2−op. Both functors (7) and (8) can be incorporated into a
single one in a nice way, see Section 1.7.
All of the following has a corresponding dual version, which we will not state explicitly.

1.6.14. For the rest of this section, we assume for simplicity that S is a category with
fibered products and S is its associated pre-derivator. Then there is a notion of comma
object D1×/D2

D3 in Dia(S) which satisfies a universal property in the 2-category Dia(S)
similar to the one which the usual comma category satisfies in Dia.

Definition 1.6.15 (cf. Definition 4.5.3). Let p ∶ D → S be a left fibered derivator satis-
fying also (FDer0 right). We say that a morphism f ∶ U →X in S is D-local if

(Dloc1 left) The morphism f satisfies base change: for any diagram Q ∈ D(◻) with underlying
diagram

A
F̃ //

G̃
��

B

g̃
��

C
f̃

// D

such that p(Q) in S(◻) is Cartesian, the following holds true: If F̃ and f̃ are
Cartesian, and g̃ is coCartesian then also G̃ is coCartesian.11

11In other words, if

U ×X Y
F //

G

��

Y

g

��
U

f
// X

is the diagram p(Q) then the exchange morphism

G●F
●
→ f●g●

is an isomorphism.
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(Dloc2 left) The morphism of derivators (cf. Lemma 4.3.14)

f● ∶ DX → DU

commutes with homotopy colimits as well.

Similarly a morphism f in S(I) is called local if it is object-wise local.
The associated pseudo-functor (7) satisfies the following:

Proposition 1.6.16 (cf. Proposition 4.6.9). Let D → S be a left fibered derivator with
existing pull-backs (i.e. (FDer0 right) holds true as well). Then the associated pseudo-
functor (7) satisfies the following properties:

1. For a morphism of diagrams (α, f) ∶D1 →D2 the corresponding pullback

(α, f)∗ ∶ D(D2) → D(D1)

has a left-adjoint (α, f)!.

2. For a slice diagram

D1 ×/D3
D2

p1 //

⇙αp2

��

D1

β1

��
D2

β2

// D3

the corresponding exchange morphism

p2!p
∗
1 → β∗2β1!

is an isomorphism in D(D2) provided β2 is D-local (in particular, if the underlying
morphism f2 of β2 is an isomorphism — in which case we say that β2 is of pure
diagram type).

Note that 1. follows immediately from (FDer4 left) and (FDer0 left/right): If D1 =
(I1, F1) and D2 = (I2, F2) then for α ∶ I1 → I2 and f ∶ F1 → α∗F2 a left adjoint (α, f)! is
obviously given by α!f●.

1.7 Fibered multiderivators as (special) six-functor-formalisms

A fibered multiderivator, or more simply a monoidal derivator, specifies, in addition to
the pull-back and Kan extension functors, a monoidal structure on the categories D(I)
which satisfies some additional axioms as for example (part of FDer0 left)

α∗(− ⊗ −) = (α∗−) ⊗ (α∗−)

and the projection formula (FDer5 left)

α!(− ⊗ (α∗−)) = ((α!−) ⊗ −)
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for certain functors α. Together with the base change formula (FDer4 left)

β∗α! = B!A
∗

for certain functors α,β,A,B forming a Cartesian square, this resembles a lot the datum
of a six-functor-formalism in which f∗ = f !, i.e. a Wirthmüller context. By defining a 2-
multicategory Diacor of multicorrespondences of diagrams (cf. Definition 5.2.3) we make
this analogy precise by showing the following general theorem. (Note that a monoidal
derivator is the same as a left fibered multiderivator over {⋅}. )

Theorem 1.7.1 (cf. Corollary 5.4.3). Let D and S be pre-multiderivators satisfying
(Der1) and (Der2). A strict morphism of pre-multiderivators D → S is a left (resp.
right) fibered multiderivator if and only if Diacor(D) → Diacor(S) is a 1-opfibration (resp.
1-fibration) of 2-multicategories.

Here Diacor(D) is defined for any pre-multiderivator as an extension of the 2-multicategory
of correspondences of diagrams Diacor. We have Diacor = Diacor({⋅}). However it is not
essential that a pre-multiderivator is given a priori. From any 1-(op)fibration and 2-
fibration D → Diacor(S) with 1-categorical fibers a (non-strict) pre-multiderivator can
be reconstructed (cf. 6.2.6).
Using the correspondence (cf. 2.4.16) between 1-opfibrations (and 2-fibrations) of 2-
multicategories over Diacor(S) with 1-categorical fibers and pseudo-functors Diacor(S) →
CAT into the 2-multicategory of all categories (where the multistructure is given by
multivalued functors) this formulation unifies in a nice way the two pseudofunctors

Dia(S)1−op → CAT and Diaop(S)1−op → CAT

that are associated with a fibered multiderivator (cf. 1.6.13) because there are embed-
dings of Dia(S)1−op and Diaop(S)1−op into Diacor(S) (cf. 5.3.8–5.3.9).
For example, Ayoub has defined in [Ayo07a, Ayo07b] an algebraic derivator as a pseudo-
functor Dia(S)1−op → CAT satisfying certain axioms, mentioning that this involved a
choice because Diaop(S) is an equally justified forming. This problem led the author to
the definition of a fibered multiderivator instead of using Ayoub’s notion of algebraic
derivator. The new viewpoint has thus the advantage of not only of clarifying the differ-
ence of these two approaches but also of encoding most axioms of a fibered multiderivator
in a more elegant way.
The formal equalization of six-functor-formalisms and monoidal derivators explains many
of their similarities. This is worked out in Chapter 6. For example, in both cases there is
an internal monoidal product ⊗ (with adjoint denoted HOM) and an external monoidal
product ⊠ (with adjoint denoted HOM). The external monoidal product and Hom are
compatible with the one on Scor given by S ⊗ T = S × T , and HOM(S,T ) = S × T ,
and with the one on Diacor given by I ⊗ J = I × J , and HOM(I, J) = Iop × J . This
is just a common feature of 1-/2- (op)fibrations of 2-multicategories: The notions are
transitive. Hence if D → S → {⋅} is a sequence of 1- (op)fibrations of multicategories,
where {⋅} is the final multicategory, also D → {⋅} is a 1- (op)fibration. While D → S
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being a 1-opfibration encodes the existence of the internal monoidal product, D → {⋅}
being a 1-opfibration encodes the existence of the external monoidal product.
From the abstract properties of 1-/2- (op)fibrations of 2-multicategories we can derive

E ⊗F = ∆●(E ⊠ F), (9)

HOM(E ,F) = (∆′)●(HOM(E ,F)), (10)

and that the external product, resp. the external Hom, can also be reconstructed from
the internal ones in an analogous way. For the meaning of ∆ and ∆′ see Section 6.1.
Explicitly, formula (9) specializes to:

E ⊗F = ∆∗(E ⊠ F)

for the diagonal map ∆ ∶ S → S ×S in the six-functor-formalism case, resp. ∆ ∶ I → I × I
in the monoidal derivator case. Formula (10) specializes to

HOM(E ,F) = ∆!HOM(E ,F)

in the six-functor-formalism case and to

HOM(E ,F) = pr2,∗ π∗π
∗HOM(E ,F)

in the monoidal derivator case, with the following functors:

tw(I) π // Iop × I pr2 // I,

where tw(I) is the twisted arrow category. The slightly different behavior is due to the
different definitions of Scor and Diacor. The definition of Diacor takes the 2-categorical
nature of Dia into account. For the same reason, it encodes the more complicated base
change formula of derivators involving comma categories as opposed to the simpler base
change formula of a six-functor-formalism. And for the same reason the duality on Diacor

is not given by the identity S ↦ S as for Scor but by I ↦ Iop.
The upshot is that the theory of 1-/2- (op)fibrations of 2-multicategories is sufficiently
powerful to treat classical six-functor formalisms and monoidal (resp. fibered multi-)
derivators alike. It is even sufficiently powerful to deal with derivator six-functor-
formalisms, an amalgam of the two theories (cf. Section 1.9 of this introduction).

1.8 (Co)homological descent revisited

1.8.1. Using fibered derivators, there is a neat conceptual solution to the problem
of (co)homological descent. Analogously to a derivator D which associates a (derived)
category D(I) with each diagram shape I, we now have a (derived) category D(I)F for
each diagram F ∶ I → S (resp. F ∶ I → Sop), cf. also 1.6.13. Let a simplicial resolution
π ∶ U● → S as in Section 1.4 be given, considered as a morphism p ∶ (∆op, U●) → (⋅, S)
of diagrams in S, resp. as a morphism i ∶ (∆, (U●)op) → (⋅, S) of diagrams in Sop. In a
fibered derivator D→ Sop the corresponding pull-back i∗ has a right adjoint i∗, and in a
fibered derivator D → S, the pull-back p∗ does have a left adjoint p!, respectively. Then
the first question of (co)homological descent becomes simply:
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Q1: Is the corresponding unit id→ i∗i
∗ (resp. counit p!p

∗ → id) an isomorphism?

More generally, we may consider Cartesian (resp. coCartesian) objects (cf. Sec-
tion 7.4) in the fiber over a diagram (∆op, U●) (resp. over (∆, (U●)op)), and denote
the corresponding subcategories by D(∆op)cart

U●
(resp. D(∆)cocart

Uop
●

).

The second question of (co)homological descent becomes:

Q2: Do these categories depend only on U● up to taking (finite) hypercovers w.r.t. the
Grothendieck topology on S? In particular, if an object S in S is presented by a
Čech cover (or finite hypercover) U●, do we have

D(∆op)cart
U● ≅ D(⋅)S , resp. D(∆)cocart

Uop
●

≅ D(⋅)S ?

The categories of coCartesian objects can also be seen as a generalization of the equiv-
ariant derived categories of Bernstein and Lunts (cf. 7.4.3).
We call a fibered derivator (co)local w.r.t. a given Grothendieck pre-topology on the
base (cf. section 4.5) if a few simple axioms are satisfied, i.e. if for each covering {fi ∶
Ui → S} in the given Grothendieck pre-topology, the corresponding pull-backs f∗i (resp.
f !
i)

1. are jointly conservative,

2. satisfy base-change,

3. and have adjoints on the other side.

In Section 7.5 we prove that these axioms imply that (co)homological descent as de-
scribed in Q1 and Q2 for all finite hypercovers is satisfied. The stronger form Q2 only
holds under the stronger technical hypothesis that the fibers are stable (hence triangu-
lated) and compactly generated. In this case the additional adjoints of f∗ (resp. f !)
do exist automatically provided f∗ commutes with infinite products as well (resp. f !

commutes with infinite coproducts as well). This follows from Brown representability,
cf. Chapter 8.
As a special case of cohomological descent we recover the theory of Grothendieck and
Deligne developed in SGA IV. The present theory, however, is more general in that it is
not restricted to diagrams of simplicial shape and is completely self-dual, leading to a
theory of homological descent as well.

1.8.2. We will explain our theory of (co)homological descent in fibered derivators now
in detail. We concentrate on the case of homological descent. The cohomological case is
formally dual.
For this we assume that S is a category equipped with a Grothendieck pre-topology and
S is its associated pre-derivator.

Definition 1.8.3 (cf. Definition 4.5.4). A left fibered derivator p ∶ D→ S is called local
w.r.t. the pre-topology on S, if the following conditions hold:
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1. Every morphism Ui → S which is part of a cover is D-local (see 1.6.15).

2. For a cover {fi ∶ Ui → S} the family

f●i ∶ D(S) → D(Ui)

is jointly conservative.

Definition 1.8.4 (cf. Definition 7.2.3). A subclass W of morphisms in Dia(S) is called
an absolute localizer (or just localizer) if the following properties are satisfied:

(L1) W is weakly saturated.

(L2 left) If D = (I,F ) ∈ Dia(S), and I has a final object e, then the projection D → (e,F (e))
is in W.

(L3 left) For any commutative diagram in Dia(S)

D1

%%

α // D2

yy
D3 = (E,F )

and chosen covering {Ui,e → F3(e)} for all e ∈ E, the following implication holds
true:

∀e ∈ E ∀i w ×/D3
(e,Ui) ∈ W ⇒ w ∈ W.

(L4 left) For any morphism w ∶ D1 → D2 = (E,F ) of pure diagram type, the following
implication holds true:

∀e ∈ E (e,F (e)) ×/D2
D1 → (e,F (e)) ∈ W ⇒ w ∈ W.

The corresponding dual version with axioms (L1), (L2–L4 right) is called a colocalizer.
The notion of localizer over S = {⋅} is due to Grothendieck. In this case (L2–L3 left)
and (L2–L3 right) are equivalent and (L4 left/right) are implied by the other axioms.
The class of localizers is obviously closed under intersection, hence there is a smallest
localizerWmin. In the case S = {⋅}, Cisinski [Cis04] showed thatWmin = W∞, the class of
functors α such that N(α) is a weak equivalence. There should be a connection between
this more general notion of (co)localizer and the homotopy theory of simplicial sheaves
on S. In particular

Theorem 1.8.5 (cf. Theorem 7.3.15). LetW be a localizer in Dia(S). If F ∶ (∆op, S●) →
(∆op, T●) is a morphism of simplicial diagrams in S which is a finite hypercover, then
F is in W.

or more simply:
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Example 1.8.6 (Mayer-Vietoris). The easiest example of an interesting morphism in
W arises from a cover {U1 → S,U2 → S} consisting of two monomorphisms. Then the
projection

p ∶
⎛
⎜⎜⎜
⎝

U1 ∩U2
//

��

U1

U2

⎞
⎟⎟⎟
⎠
→ S

is in W, as is easily derived from the axioms (L1–L4).

Question Q1 (cf. 1.8.1) is answered by

Theorem 1.8.7 (cf. Main Theorem 7.5.5, 1). Let D→ S be a fibered derivator which is
local w.r.t. the pre-topology on S. Then the classes WD,S, where S ∈ S runs through all
objects, of those morphisms f ∶D1 →D2 in Dia(S)/(⋅, S) such that the induced morphism

p1!p
∗
1 → p2!p

∗
2

is an isomorphism, form a system of relative localizers.

The notion of system of relative localizers (cf. Definition 7.2.2) is a relative version of
the notion of (absolute) localizer given above.

Definition 1.8.8 (cf. Definition 7.4.1). Let D→ S be a fibered derivator. Let I,E ∈ Dia
be diagrams and let α ∶ I → E be a functor in Dia. We say that an object

X ∈ D(I)

is E-(co)Cartesian, if for any morphism µ ∶ i → j in I mapping to an identity in E,
the corresponding morphism D(µ) ∶ i∗X → j∗X is (co)Cartesian.
If E is the trivial category, we omit it from the notation, and talk about (co)Cartesian
objects.

Question Q2 (cf. 1.8.1) is answered by

Theorem 1.8.9 (cf. Main Theorem 7.5.5, 2). Let D → S be a stable fibered derivator
which is well-generated (cf. Chapter 8) and local w.r.t. the pre-topology on S. Under
some additional conditions, the set WD of those f ∶ D1 → D2 in Dia(S) such that
f∗ ∶ D(D2) → D(D1) induces an equivalence

f∗ ∶ D(D2)cart → D(D1)cart

form a localizer.

Note that hence, in particular, f∗ induces an equivalence between categories of Cartesian
objects, if f is a finite hypercover (∆op, S●) → (∆op, T●). There is a variant including
arbitrary hypercovers which, however, requires more axioms.
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1.8.10. If f ∶ D1 → D2 is given by (p,ϕ) where D2 is of the form (⋅, S), and p ∶ I → ⋅ is
the projection, then the inverse of the equivalence f∗ of Theorem 1.8.9 is just given by
f∗ which is the push-forward ϕ● along ϕ followed by a homotopy colimit (see Theorem
1.6.16, 1.). In this case obviously D(D2)cart = D(D2) = D(S). In general, the inverse is
given by ϕ● followed by a Cartesian projection (cf. 7.4.4).

1.8.11. Resuming Example 1.8.6: If D→ S is local and stable, and A ∈ D(⋅)S this yields

A ≅ p!p
∗A,

i.e. the homotopy colimit of

i1,2,●i
●
1,2A

//

��

i1,●i
●
1A

i2,●i
●
2A

is isomorphic to A which translates to the usual Mayer-Vietoris distinguished triangle

i1,2,●i
●
1,2A

// i1,●i
●
1A⊕ i2,●i●2A // A // i1,2,●i

●
1,2A[1]

in the language of triangulated categories.

1.8.12. If D is a stable derivator (not fibered) which is well-generated then we get by
the above result and Cisinski’s Theorem that the categories

D(I)cart

depend (up to equivalence) only on the homotopy type of N(I). Note that in the non-
fibered setting “cart” and “cocart” are synonymous. The results presented in this section
lead to the expectation that a similar statement holds for a local fibered derivator over
S and homotopy types replaced by homotopy classes of simplicial sheaves over S.

1.9 Derivator six-functor-formalisms

In most of their occurrences in nature the values of a six-functor-formalism, i.e. the
fibers of the fibration D → Scor, are derived categories. It is therefore natural to seek to
enhance the situation to a fibered multiderivator.
As we have seen, enhancements of this sort are essential to deal with questions of
(co)homological descent (cf. Section 1.8). The notion of a fibered multiderivator given in
4.3.6, however, is not sufficient because Scor is a 2-multicategory (as opposed to a usual
multicategory). Although the 2-multicategory Scor gives rise to a usual (not-represented)
pre-multiderivator, by identifying 2-isomorphic 1-morphisms in the diagram categories
Scor(I), a fibered multiderivator over that pre-multiderivator would not encode what we
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want12. It turns out that the theory of fibered multiderivators over pre-multiderivators
has a straightforward extension to 2-pre-multiderivators in which the knowledge of the
2-morphisms of the base is preserved. In Section 5.4, we therefore develop the theory of
fibered multiderivators over 2-pre-multiderivators. This allows to consider the symmet-
ric 2-pre-multiderivator Scor represented by the symmetric 2-multicategory Scor and to
give the following:

Definition 1.9.1 (cf. Definition 9.1.1).
A (symmetric) derivator six-functor-formalism is a left and right fibered (symmet-
ric) multiderivator

D→ Scor.

It becomes important to have notions of (symmetric) (op)lax fibered multiderivators as
well. Those are useful to enhance to derivators the definition of a proper or etale six-
functor-formalism which arises, for instance, whenever for some class of morphisms one
has isomorphisms f ! ≅ f∗ or f! ≅ f∗ which are part of the formalism. If this is the case
for all morphisms, one speaks of a Wirthmüller, or Grothendieck context, respectively.
Section 9.2 is devoted to the construction of derivator six-functor-formalisms. There, we
concentrate on the case in which f! = f∗ for all morphisms f in S, i.e. to Grothendieck
contexts. In the classical case this construction is almost tautological:

1. One starts with a four-functor-formalism (f∗, f
∗,⊗,HOM) encoded by a bifibra-

tion of usual (symmetric) multicategories D → Sop (where Sop becomes a multi-
category via the product, cf. Example 1.5.11), or equivalently by a pseudo-functor
of (2-)multicategories Sop → CAT . Then one simply defines a pseudo-functor
Scor → CAT by mapping a multicorrespondence (3) to the functor

f∗((g∗1−) ⊗⋯⊗ (g∗n−)).

It is straightforward (but slightly tedious) to check that this defines a pseudo-
functor if and only if base-change and projection formula hold (cf. Proposition 3.3.3).

2. In the derived world, using theorems on Brown representability, one gets formally
that the f∗ functors have right adjoints f ! (provided that f∗ commutes with infinite
coproducts as well) hence the 1-opfibration (and 2-bifibration) with 1-categorical
fibers E → Scor, which corresponds to the pseudo-functor in 1., is also a 1-fibration.

It is surprising, however, that constructions 1. and 2. are also possible in the world of
fibered multiderivators, although they become more involved. The first is however still
completely formal. We will describe the results in detail in Section 1.10. It turns out that
one can relax the condition that Sop is a multicategory coming from a usual category S

12E.g. the push-forward along a correspondence of the form {⋅} ← X → {⋅} should yield something
like the cohomology with compact support of X with constant coefficients. Identifying 2-isomorphic 1-
morphisms in Scor would force this to become the invariant part (in a derived sense) under automorphisms
of X.
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via the categorical product — one can start with any opmulticategory S. The definition
of Scor generalizes readily to this situation.
The ultimate goal is to construct derivator six-functor-formalisms in interesting situa-
tions (e.g. etale constructible sheaves over schemes, or (pro-)quasi-coherent sheaves over
schemes). This case, in which f! /= f∗, is much more involved. Imitating the classical
constructions of f! using compactifications and f ! as its right adjoint using Brown rep-
resentability, we will achieve this in forthcoming work [Hör17a] which is not part of this
habilitation thesis. The degree of generality (in particular which category Dia can be
taken) is not yet completely clear. The input is, in any case, a bifibration of monoidal
model categories like in 1.6.12 over Sop satisfying a bunch of additional axioms, including
the existence of compactifications.

1.10 Construction of derivator six-functor-formalisms

Let S be an opmulticategory with multipullbacks. It may also be equipped with the
structure of symmetric or braided opmulticategory. As before, S will mostly be a usual
category with the structure of opmulticategory given by the product, i.e.

HomS(Y ;X1, . . . ,Xn) = HomS(Y,X1) × ⋯ ×HomS(Y,Xn). (11)

This structure is canonically symmetric. However, S may be arbitrary (it also does
not need to be representable). If S is symmetric, or braided, all other multicategories
and 2-multicategories occurring, e.g. Scor, will also be symmetric, resp. braided, and all
functors have to be compatible with the corresponding actions.

Definition 1.10.1. Let S be an opmulticategory with multipullbacks. Let D → Sop be a
bifibration of usual multicategories. We say that it satisfies multi-base-change, if for
every multipullback in S

X1, . . . ,Xi, . . . ,Xn Z
goo

X1, . . . ,X
′
i , . . . ,Xn

(id,...,f,...,id)

OO

Z ′

G
oo

F

OO

the natural transformation

g●(−, . . . , f●−
°
at i

, . . . ,−) Ð→ F ●G●(−, . . . ,−)

is an isomorphism.

If S is a usual category equipped with the opmulticategory structure (11) this encodes
projection formula and base change.
In this definition, f● denotes the pull-back along fop in Sop, that is, the usual push-
forward f∗ along f in S. The reason for this notation is that we stick to the convention
that f● is always right adjoint to f● and, at the same time, we want to avoid the notation
f∗, f

∗, f !, f! because of the possible confusion with the left and right Kan extension
functors which are be denoted by α!, and α∗, respectively.
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Theorem 1.10.2 (cf. Main Theorem 9.2.1). Let S be a (symmetric) opmulticategory
with multipullbacks and let Sop be the (symmetric) pre-multiderivator represented by Sop .
Let D→ Sop be a (symmetric) left and right fibered multiderivator satisfying the following
conditions:

1. The pullback along 1-ary morphisms (i.e. the pushforward along 1-ary morphisms
in S) commutes also with homotopy colimits (of shape in Dia).

2. In the underlying bifibration D(⋅) → S(⋅) multi-base-change holds in the sense of
Definition 1.10.1.

Then there exists a (symmetric) oplax left fibered multiderivator

E→ Scor,G,oplax

with the following properties:

a) The corresponding (symmetric) 1-opfibration, and 2-opfibration, of 2-multicategories
with 1-categorical fibers

E(⋅) → Scor,G,oplax(⋅) = Scor,G

is just (up to equivalence) obtained from D(⋅) → Sop by the procedure described in
Definition 3.3.2.

b) For every S ∈ S there is a canonical equivalence between the fibers (which are usual
left and right derivators):

ES ≅ DS .

Using standard theorems on Brown representability etc. (cf. Chapter 8) we can refine
this:

Theorem 1.10.3 (cf. Main Theorem 9.2.2). Let Dia be an infinite diagram category (cf.
4.1.1) which contains all finite posets. Let S be a (symmetric) opmulticategory with mul-
tipullbacks and let S be the corresponding represented (symmetric) pre-multiderivator.
Let D → Sop be an infinite (symmetric) left and right fibered multiderivator satisfying
conditions 1. and 2. of Theorem 9.2.1, with stable, perfectly generated fibers (cf. Defi-
nition 4.3.19 and Definition 8.1.7).
Then the restriction of the left fibered multiderivator E from Main Theorem 9.2.1 is a
(symmetric) left and right fibered multiderivator

E∣Scor → Scor

and has an extension as a (symmetric) lax right fibered multiderivator

E′ → Scor,G,lax.
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We call E∣Scor together with the extensions to Scor,G,lax, and to Scor,G,oplax, respectively,
a derivator Grothendieck context, cf. Definition 9.1.1.
The construction in Definition 3.3.2 recalled above is quite tautological. Why is The-
orem 9.2.1 not similarly tautological? To understand this point, let us look at the
following simple example: A fibered derivator D over ∆1, the (represented pre-derivator
of the) usual category with one arrow, encodes an enhancement of an adjunction be-
tween derivators (the two fibers of D). Think about the case in which this is the derived
adjunction coming from an adjunction of underived functors f∗, f

∗. This includes, for
instance, as fiber of D(∆1) over the identity in Fun(∆1,∆1), the category of coherent
diagrams of the form X → f∗Y , or equivalently f∗X → Y , up to quasi-isomorphisms
between such diagrams. Here f∗, f

∗ are the underived functors. The extension E in
Theorem 9.2.1 allows to consider coherent diagrams of the form Rf∗X → Y , or equiv-
alently X → f !Y , if Rf∗ has a right adjoint f !, the point being that, however, f ! may
not exist before passing to the derived categories. Nevertheless, we are now allowed to
speak about “coherent diagrams of the form X → f !Y ” although this does not make
literally sense. In particular, Theorem 9.2.1 yields a coherent enhancement in D(∆1)p∗ei
for i = 0, and i = 1, respectively, of the unit and counit

Rf∗f
!E → E E → f !Rf∗E .

In this particular case, the construction boils down to the following. The fiber of E(∆1)
over the correspondence

e0

~~
e1 e0

will consist of coherent diagrams of the form f∗X ← Z → Y in the original fibered deriva-
tor D with the property that the induced morphism Rf∗X ← Z is a quasi-isomorphism,
i.e. the morphism X ← Z in D(∆1) becomes coCartesian, when considered as a morphism
in D(⋅). The purpose of Sections 9.2–9.3 is thus to make this construction work in the
full generality of Theorem 9.2.1. Although the idea is still very simple, the construction
of E (cf. Definition 9.2.17), and the proof that it really is a (left) fibered multiderivator
over Scor, becomes quite technical.

1.11 Localization triangles and n-angles

As an application of the general definition of derivator six-functor-formalisms, in Sec-
tion 9.4 we explain that the appearance of distinguished triangles like

j!j
!E // E // j∗j

∗E [1] //

for an “open immersion” j and its complementary “closed immersion” j can be treated
elegantly. Actually there are four flavours of these sequences, two for proper derivator six-
functor-formalisms, and two for etale derivator six-functor-formalisms. More generally,
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a sequence of “open embeddings”

X1
� � // X2

� � // ⋯ � � // Xn

leads immediately to so called (n+1)-angles in the sense of [GS14, §13] in the fiber over
Xn which is a usual stable derivator.

1.12 The six functors for stacks

The results described in this section will appear in a forthcoming article which is not
part of this habilitation thesis.
Consider a derivator six-functor-formalism with stable, compactly generated fibers D→
Scor as in Section 1.9. We neglect the multi- (i.e. monoidal) aspect in this section.

1.12.1. Consider again the case in which S is equipped with a Grothendieck pre-
topology.
With a simplicial object X●, i.e. an object in Fun(∆op,S), the derivator six-functor-
formalism associates canonically two categories:

D(X●)cart D((X●)op)cocart (12)

If the restriction D → S is local (cf. 4.5.4) then by homological decent the first category
does only depend on X● up to taking finite hypercovers. If the restriction D → Sop is
colocal (cf. 4.5.6) then by cohomological decent the second category does only depend on
X● up to taking finite hypercovers. In particular if both properties are satisfied, and if
X● presents an algebraic stack, then both categories do only depend on the equivalence
class of the stack.

1.12.2. Let α ∶ X● → Y● be a morphism of simplicial objects in S, i.e. a morphism in
Fun(∆op,S). It induces the following pairs of adjoint functors:

D(X●)cart

α!

��

D((X●)op)cocart

α∗
��

D(Y●)cart

α!

OO

D((Y●)op)cocart

α∗

OO

Here (cf. also 1.8.10) α∗ is the usual pull-back (αop)● in the fibered derivator D →
Sop followed by a right coCartesian projection, and α! is the usual push-forward α●
in the fibered derivator D → S followed by a left Cartesian projection. To extend all
four functors (and eventually all six) to stacks, we have to be able to identify the two
categories (12) in a canonical way. This is achieved by the following

Theorem 1.12.3. If X● presents a 1-stack, and if the derivator six-functor-formalism
has certain additional locality properties w.r.t. the Grothendieck pretopology, then we
have a canonical equivalence

D(X●)cart ≅ D((X●)op)cocart.

Therefore we dispose of the 4 functors in either version. These satisfy base-change w.r.t.
the fiber product of 1-stacks.
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Idea of proof. Here the utility of the general derivator version of a four- (or six-) functor-
formalism is revealed: We construct a diagram of correspondences Xcor

●,● ∈ Fun(∆ ×
∆op,Scor) (for this it is crucial that X● presents a 1-stack) with morphisms of diagrams
in Scor

Xcor
●,●

}} ""
X● Xop

●

and show that these induce equivalences

D(X●)cart ≅ D(Xcor
●,● )∆op−cart,∆−cocart ≅ D((X●)op)cocart.

The base change formula can be proven using the symmetric diagrams Xcor
●,● . The proof

is completely formal.

Unfortunately, so far, the author has not been able to make this construction coherent,
that is, to construct something like a fibered derivator over correspondences of stacks.
This would probably be necessary to extend the result to higher stacks.
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Notation

We denote by CAT the 2-“category”13 of categories, by (S)MCAT the 2-“category”
of (symmetric) multicategories, and by Cat the 2-category of small categories. We
consider a partially ordered set (poset) X as a small category by considering the relation
x ≤ y to be equivalent to the existence of a unique morphism x → y. We denote the
positive integers (resp. the non-negative integers) by N (resp. by N0). The ordered set
{0, . . . , n} ⊂ N0 considered as a small category is denoted by ∆n. We denote by Mor(D)
(resp. Iso(D)) the class of morphisms (resp. isomorphisms) in a category D. The final
category (which consists of only one object and its identity) is denoted by ⋅ or ∆0. The
same notation is also used for the final multicategory, which has one object and precisely
one n-ary morphism for any n ∈ N0.

13where we put “category” into quotation marks to indicate that is has classes replaced with 2-classes
(or, if you prefer, is constructed w.r.t. a larger universe).
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2 Categorical generalities

2.1 Classical (op)fibrations

For the convenience of the reader we recall the theory of classical (op)fibrations of cat-
egories in this section. The theory will be generalized to multicategories and finally to
2-multicategories in Section 2.4.

2.1.1 (right). Let p ∶ D → S be a functor, and let f ∶ S → T be a morphism in S. A
morphism ξ ∶ E ′ → E over f is called Cartesian if the composition with ξ induces an
isomorphism

Homg(F ,E ′) ≅ Homf○g(F ,E)

for any morphism g ∶ R → S in S and for every F ∈ DR.
The functor p is called a (Grothendieck) fibration if for any f ∶ S → T and for every
object E in DT (i.e. such that p(E) = T ) there exists a Cartesian morphism E ′ → E .

2.1.2 (left). Let p ∶ D → S be a functor, and let f ∶ S → T be a morphism in S. A
morphism ξ ∶ E → E ′ over f is called coCartesian if the composition with ξ induces an
isomorphism

Homg(E ′,F) ≅ Homg○f(E ,F)

for any morphism g ∶ T → U in S and for every F ∈ DU .
The functor p is called a (Grothendieck) opfibration if for any f ∶ S → T and for
every object E in DS there exists a coCartesian morphism E → E ′.

2.1.3. The functor p is an opfibration if and only if pop ∶ Dop → Sop is a fibration.
We say that p is a bifibration if is a fibration and an opfibration at the same time. If
p ∶ D → S is a fibration we may choose an associated pseudo-functor, i.e. to each S ∈ S
we associate the category DS , and to each f ∶ S → T we associate a push-forward functor

f● ∶ DS → DT

such that for each E in DS there is a Cartesian morphism E → f●E . The same holds
similarly for an opfibration with the pull-back f● instead of the push-forward. If the
functor p is a bifibration, f● is left adjoint to f●. Situations where this is the opposite
can be modeled by considering bifibrations D → Sop.

2.2 2-multicategories

The notion of 2-multicategory is a straight-forward generalization of the notion of 2-
category. For lack of reference and because we want to stick to the case of (strict)
2-categories as opposed to bicategories, we list the relevant definitions here:

Definition 2.2.1. A 2-multicategory D consists of

• a class of objects Ob(D);
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• for all n ∈ Z≥0, and for all objects X1, . . . ,Xn, Y in Ob(D) a category

Hom(X1, . . . ,Xn;Y );

• a composition, i.e. for all objects X1, . . . ,Xn, Y1, . . . , Ym, Z in Ob(D) and for all
i ∈ {1, . . . ,m} a functor:

Hom(X1, . . . ,Xn;Yi) ×Hom(Y1, . . . , Ym;Z) → Hom(Y1, . . . ,X1, . . . ,Xn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

at i

, . . . , Ym;Z)

f, g ↦ g ○i f ;

• for all X ∈ Ob(D) an identity object idX in the category Hom(X;X);

satisfying strict associativity and identity laws. The composition w.r.t. independent
slots is commutative, i.e. for 1 ≤ i < j ≤ m if f ∈ Hom(X1, . . . ,Xn;Yi) and f ′ ∈
Hom(X ′

1, . . . ,X
′
k;Yj) and g ∈ Hom(Y1, . . . , Ym;Z) we have

(g ○i f) ○j+n−1 f
′ = (g ○j f ′) ○i f. (13)

A symmetric (braided) 2-multicategory is given by an action of the symmetric (braid)
groups, i.e. isomorphisms of categories

α ∶ Hom(X1, . . . ,Xn;Y ) → Hom(Xα(1), . . . ,Xα(n);Y )

for α ∈ Sn (resp. α ∈ Bn) forming an action which is strictly compatible with composition
in the obvious way (in the braided case: substitution of strings).

The 1-composition of 2-morphisms is (as for usual 2-categories) determined by the follow-
ing whiskering operations: Let f, g ∈ Hom(X1, . . . ,Xn;Yi) and h ∈ Hom(Y1, . . . , Ym;Z)
be 1-morphisms and let µ ∶ f ⇒ g be a 2-morphism, i.e. a morphism in the category
Hom(X1, . . . ,Xn;Yi). Then we define

h ∗ µ ∶= idh ⋅µ

where the right hand side is the image of the 2-morphism idh ×µ under the composition
functor. Similarly we define µ ∗ h for µ ∶ f ⇒ g with f, g ∈ Hom(Y1, . . . , Ym;Z) and
h ∈ Hom(X1, . . . ,Xn;Yi).

2.2.2. In the same way, we define a 2-opmulticategory having categories of 1-
morphisms of the form

Hom(X;Y1, . . . , Yn).

For each 2-multicategory D there is a natural 2-opmulticategory D1−op, and vice versa,
where the direction of the 1-morphisms is flipped.

Definition 2.2.3. A pseudo-functor F ∶ C → D between 2-multicategories is given by
the following data:
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• for X ∈ Ob(C) an object F (X) ∈ Ob(C);

• for X1, . . . ,Xn;Y ∈ Ob(C), a functor

Hom(X1, . . . ,Xn;Y ) → Hom(F (X1), . . . , F (Xn);F (Y ));

• for X ∈ Ob(C) a 2-isomorphism

FX ∶ F (idX) ⇒ idF (X);

• for X1, . . . ,Xn;Y1, . . . , Ym;Z ∈ Ob(C) and i ∈ {1, . . . ,m} a natural isomorphism

F−,− ∶ F (−) ○i F (−) ⇒ F (− ○i −)

of functors

Hom(X1, . . . ,Xn;Yi) ×Hom(Y1, . . . , Ym;Z)
→ Hom(F (Y1), . . . , F (Yi−1), F (X1), . . . , F (Xn), F (Yi+1), . . . , F (Ym);F (Z));

satisfying
FidY ,f = FY ∗ F (f) Fg,idYi = F (g) ∗ FYi

for f ∈ Hom(X1, . . . ,Xn;Y ), and g ∈ Hom(Y1, . . . , Ym;Z), respectively, and for compos-
able f, g, h that

F (h) ○j F (g) ○i F (f)
F (h)∗Fg,f //

Fh,g∗F (f)

��

F (h) ○j F (g ○i f)
Fh,gf
��

F (h ○j g) ○i F (f)
Fhg,f // F (h ○j g ○i f)

commutes. A pseudo-functor is called a strict functor if all Fg,f and FX are identities.

Definition 2.2.4. A pseudo-natural transformation α ∶ F1, . . . , Fm ⇒ G between
pseudo-functors F1, . . . , Fm;G ∶ C → D is given by:

• for X ∈ Ob(C) a 1-morphism α(X) ∈ Hom(F1(X), . . . , Fm(X);G(X));

• for each 1-morphism f in Hom(X1, . . . ,Xn;Y ) a 2-isomorphism

αf ∶ α(Y ) ○ (F1(f), . . . , Fm(f)) ⇒ G(f) ○ (α(X1), . . . , α(Xn));

such that all the following diagrams commute:

• for f ∈ Hom(X1, . . . ,Xn;Yi) and g ∈ Hom(Y1, . . . , Yk;Z):

α(Z)(F1(g)F1(f), . . . , Fm(g)Fm(f))
(G(g)∗αf )(αg∗F (f)) //

α(Z)∗((F1)g,f ,...,(Fm)g,f )

��

G(g)G(f)(α(Y1), . . . , α(X1), . . . , α(Xn), . . . , α(Yk))

Gg,f∗(... )

��
α(Z)(F1(gf), . . . , Fm(gf))

αgf // G(gf)(α(Y1), . . . , α(X1), . . . , α(Xn), . . . , α(Yk))
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• for X ∈ Ob(C):

α(X)(F1(idX), . . . , Fn(idX))
αidX //

α(X)∗((F1)X ,...,(Fn)X)

��

G(idX)α(X)

GX∗α(X)

��
α(X)(idF1(X), . . . , idFn(X)) idG(X) α(X)

• for each 2-morphism f ⇒ g in Hom(X1, . . . ,Xn;Y ):

α(Y ) ⋅ (F1(f), . . . , Fm(f)) //

��

G(f) ⋅ (α(X1), . . . , α(Xn))

��
α(Y ) ⋅ (F1(g), . . . , Fm(g)) // G(g) ⋅ (α(X1), . . . , α(Xn))

Similarly we define an oplax natural transformation, if the morphism αf is no longer
required to be a 2-isomorphism but can be any 2-morphism. We define a lax natural
transformation requiring that the morphism αf goes in the other direction, with the
diagrams above changed suitably.

Definition 2.2.5. A modification µ ∶ α⇛ β between α,β ∶ F1, . . . , Fm ⇒ G (pseudo-,
lax-, or oplax-) natural transformations is given by the following data:

• For X ∈ Ob(C) a 2-morphism

µX ∶ α(X) ⇒ β(X)

such that for each 1-morphism f ∈ Hom(X1, . . . ,Xn;Y ) the following diagram commutes:

α(Y ) ○ (F1(f), . . . , Fm(f)) //

��

G(f) ○ (α(X1), . . . , α(Xn))

��
β(Y ) ○ (F1(f), . . . , Fm(f)) // F (f) ○ (β(X1), . . . , β(Xn))

resp. (in the lax case) the analogous diagram with the horizontal arrows reversed.

Lemma 2.2.6. Let C, D be 2-multicategories. Then the collection

Fun(C,D)

of pseudo-functors, pseudo-natural transformations and modifications forms a 2-multicategory.
Similarly the collections

Funlax(C,D) Funoplax(C,D)

of pseudo-functors, (op)lax natural transformations and modifications form 2-multicategories.
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Proof. We leave the proof to the reader, but will explicitly spell out how pseudo-natural
transformations are composed:
Let α ∶ F1, . . . , Fm ⇒ Gi and β ∶ G1, . . . ,Gn ⇒ H be pseudo-natural transformations.
Then the pseudo-natural transformation

β ○i α ∶ G1, . . . ,Gi−1, F1, . . . , Fm,Gi+1, . . . ,Gn ⇒H

is given as follows. (β○iα)(X) is just the composition of β(X)○α(X) and the 2-morphism

(β ○i α)f ∶ β(X) ○i α(X) ○ (G1(f), . . . , F1(f), . . . , Fm(f), . . . ,Gn(f))
⇒H(f) ○ (β(X1)α(X1), . . . , β(Xn)α(Xn))

is given by the composition

β(X) ○i α(X) ○ (G1(f), . . . , F1(f), . . . , Fm(f), . . . ,Gn(f)) ⇒

β(X) ○i (G1(f), . . . ,Gi(f), . . . ,Gn(f)) ○ (α(X1), . . . , α(Xn)) ⇒

H(f) ○ (β(X1) ○i α(X1), . . . , β(Xn) ○i α(Xn)).

2.3 Localization of multicategories

The following proposition deals with usual multicategories (not 2-multicategories).

Proposition 2.3.1. Let D be a (symmetric, braided) multicategory and let W be a
subclass of 1-ary morphisms. Then there exists a (symmetric, braided) multicategory
D[W−1], which is not necessarily locally small if D is, together with a functor ι ∶ D →
D[W−1] of (symmetric, braided) multicategories with the property that ι(w) is an iso-
morphism for all w ∈ W and which is universal w.r.t. this property.

Proof. This construction is completely analogous to the construction for usual categories.
Morphisms Hom(X1, . . . ,Xn;Y ) are formal compositions of i-ary morphisms in D and
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formal inverses of morphisms in W, for example:

X1

X2 f1
// ⋅ ⋅w1oo

X3

X4 f3
// ⋅ Y

w3oo

X5 f2
// ⋅ ⋅w2oo

X6

More precisely: Morphisms are defined to be the class of lists of ni-ary morphisms
fi ∈ Hom(Xi,1, . . . ,Xi,ni ;Yi), morphisms wi ∶ Y ′

i → Yi in W and integers ki as follows

(f1,w1), k1, (f2,w2), k2, . . . , kn−1, (fn,wn)

such that Y ′
i =Xi+1,ki , modulo relations coming from commutative squares, the relations

(13), and relations forcing the (id,wi) to become the left and right inverse of (wi, id).

2.4 (Op)fibrations of 2-multicategories

For (op)fibrations of (usual) multicategories the reader may consult [Her00, Her04], and
for (op)fibrations of 2-categories [Bak09, Buc14, Her99]. The definitions in this section
however are slightly different from those in any of these sources.

2.4.1. Let
A //

��
⇙µ

B
β
��

C γ
// D

be a 2-commutative diagram of (usual) categories, where µ is a natural isomorphism.
Then we say that the diagram is 2-Cartesian if it induces an equivalence

A ≅ B ×∼/D C,

where B ×∼
/D
C is the full subcategory of the comma category B ×/D C consisting of

those objects (b, c, ν ∶ β(b) → γ(c)), with b ∈ B, c ∈ C in which the morphism ν is an
isomorphism.
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If µ is an identity then the diagram is said to be Cartesian, if it induces an equivalence
of categories

A ≅ B ×D C.

Lemma 2.4.2. If

A δ //

α
��

B
β
��

C γ
// D

(14)

is a strictly commutative diagram of categories then:

1. If β is an iso-fibration (i.e. the corresponding functor between the groupoids of
isomorphisms is a fibration or, equivalently, an opfibration) then for (14) the two
notions

2-Cartesian and Cartesian

are equivalent.

2. If α is an iso-fibration then (14) is Cartesian if and only if

A → B ×D C (15)

is fully-faithful and for any b ∈ B and c ∈ C with β(b) = γ(c) there exists an a ∈ A
with α(a) = c and an isomorphism κ ∶ δ(a) → b with β(κ) = idβ(b).

3. If α and β are fibrations (resp. opfibrations) and δ maps Cartesian (resp. co-
Cartesian) morphisms to Cartesian (resp. coCartesian) morphisms then (15) is
fully-faithful if and only if δ induces an isomorphism

HomA,idc(a, a′) ≅ HomB,idγ(c)(δ(a), δ(a
′))

for all c ∈ C and a, a′ ∈ A with α(a) = α(a′) = c. In particular (14) is Cartesian,
or equivalently 2-Cartesian, if and only if δ induces an equivalence of categories
between the fibers

Ac ≅ Bγ(c)
for all objects c ∈ C.

Proof. 1. Indeed, if β is an iso-fibration, the obvious functor

B ×D C → B ×∼/D C

has a quasi-inverse functor which maps an object (b, c, ν ∶ β(b) → γ(c)) to (b′, c) for any
choice of coCartesian morphism b→ b′ (necessarily an isomorphism as well) over ν.
2. Obviously if the condition is satisfied then the functor (15) is essentially surjective.
If it is in turn essentially surjective, for any b ∈ B and c ∈ C with β(b) = γ(c) there
exists an a′ ∈ A, an isomorphism τ ∶ α(a′) → c, and an isomorphism κ′ ∶ δ(a′) → b with
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β(κ′) = γ(τ). Now choose a coCartesian morphism ξ ∶ a′ → a in A lying over τ which
exists by assumption. It is necessarily an isomorphism. Then we have α(a) = c and an
isomorphism κ ∶= κ′ ○ δ(ξ−1) with β(κ) = idβ(b). Hence the statement of 2. is satisfied.
3. The only if part is clear. For the if part, let f ∶ c → c′ be a morphism in C. We have
to show that

HomA,f(a, a′′) ≅ HomB,γ(f)(δ(a), δ(a′′)).

for any a, a′′ ∈ A with α(a) = c,α(a′′) = c′. Choose a Cartesian morphism g ∶ a′ → a′′

over f . Since δ maps g to a Cartesian morphism we get a commutative diagram

HomA,idc(a, a′)
δ //

g○

��

HomA,idγ(c)(δ(a), δ(a′)))

δ(g)○

��
HomA,f(a, a′′) δ

// HomB,γ(f)(δ(a), δ(a′′))

in which the vertical maps are isomorphisms. Hence it suffices to see the assertion of 3.
to show fully-faithfulness. If α,β are opfibrations one proceeds analogously choosing a
coCartesian morphism.

Definition 2.4.3. Let p ∶ D → S be a strict functor of 2-multicategories. A 1-morphism

ξ ∈ Homf(E1, . . . ,En;F)

in D over a 1-morphism f ∈ Hom(S1, . . . , Sn;T ) is called coCartesian w.r.t. p, if for
all i and objects F1, . . . ,Fm,G ∈ D with Fi = F , lying over T1, . . . , Tm, U ∈ S the diagram
of categories

HomD(F1, . . . ,Fm;G) ○iξ //

��

HomD(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)

��
HomS(T1, . . . , Tm;U) ○if // HomS(T1, . . . , Ti−1, S1, . . . , Sn, Ti+1, . . . , Tm;U)

is 2-Cartesian.
A 1-morphism

ξ ∈ Homf(E1, . . . ,En;F)

is called weakly coCartesian w.r.t. p, if

HomidT (F ;G) ○ξ // Homf(E1, . . . ,En;G)

is an equivalence of categories for all G ∈ D with p(G) = T .

If p ∶ D → S is a 2-isofibration (cf. Definition 2.4.5) then a coCartesian 1-morphism is
weakly coCartesian by the proof of Proposition 2.4.6 below.
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Definition 2.4.4. Let p ∶ D → S be a strict functor of 2-multicategories. A 1-morphism

ξ ∈ Homf(E1, . . . ,En;F)

in D over f ∈ Hom(S1, . . . , Sn;T ) is called Cartesian w.r.t. p and w.r.t. the i-th slot, if
for all G1, . . . ,Gm ∈ D lying over U1, . . . , Um ∈ S the diagram of categories

HomD(G1, . . . ,Gm;Ei)
ξ○i //

��

HomD(E1, . . . ,Ei−1,G1, . . . ,Gm,Ei+1, . . . ,En;F)

��
HomS(U1, . . . , Um;Si)

f○i // HomS(S1, . . . , Si−1, U1, . . . , Um, Si+1, . . . , Sn;T )

is 2-Cartesian.
A 1-morphism

ξ ∈ Homf(E1, . . . ,En;F)
is called weakly Cartesian w.r.t. p and the w.r.t. i-th slot, if

HomidSi
(G;Ei)

ξ○i // Homf(E1, . . . ,G, . . . ,En;F)

is an equivalence of categories for all G ∈ D with p(G) = Si.

Definition 2.4.5. Let p ∶ D → S be a strict functor of 2-multicategories.

• p is called a 1-opfibration of 2-multicategories if for all 1-morphisms f ∈
HomS(S1, . . . , Sn;T ) and all objects E1, . . . ,En ∈ D lying over S1, . . . , Sn ∈ S there is
an object F ∈ D with p(F) = T and a coCartesian 1-morphism in Homf(E1, . . . ,En;F).

• p is called a 2-opfibration of 2-multicategories if for E1, . . . ,En;F ∈ D lying
over S1, . . . , Sn;T ∈ S the functors

HomD(E1, . . . ,En;F) → HomS(S1, . . . , Sn;T )

are opfibrations, and the composition functors in D are morphisms of opfibrations,
i.e. they map pairs of coCartesian 2-morphisms to coCartesian 2-morphisms.

• p is called a 1-fibration of 2-multicategories if for all 1-morphisms

f ∈ HomS(S1, . . . , Sn;T ), for all i = 1, . . . , n and for all objects E1, î. . .,En;F ∈ D
lying over S1, î. . ., Sn;T ∈ S there is an object Ei ∈ D with p(Ei) = Si and a Cartesian
1-morphism w.r.t. the i-th slot in Homf(E1, . . . ,En;F).

• p is called a 2-fibration of 2-multicategories if for E1, . . . ,En;F ∈ D lying over
S1, . . . , Sn;T ∈ S the functors

HomD(E1, . . . ,En;F) → HomS(S1, . . . , Sn;Y )

are fibrations, and the composition functors in D are morphisms of fibrations, i.e.
they map pairs of Cartesian 2-morphisms to Cartesian 2-morphisms.
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• Similarly we define the notions of 1-bifibration and 2-bifibration.

• Let S be an object in S. The 2-category consisting of those objects, (1-ary) 1-
morphisms, and 2-morphisms which p maps to S, idS and ididS respectively is
called the fiber DS of p above S.

• We say that p has 1-categorical fibers, if all fibers DS are equivalent to 1-
categories (this is also equivalent to all 2-morphism sets in the fibers being either
empty or consisting of exactly one isomorphism).

• We say that p has discrete fibers, if all fibers DS are equivalent to sets (this
is also equivalent to all morphism categories in the fibers being either empty or
equivalent to the terminal category).

• p is called a 2-isofibration if p induces a 2-fibration (or equivalently a 2-opfibration)
when restricted to the strict 2-functor

D2−∼ → S2−∼

where the 2-morphisms sets are the subsets of 2-isomorphisms in D and S, respec-
tively.

Obviously every 2-fibration (or 2-opfibration) is a 2-isofibration.

Note that p is a 2-isofibration precisely if the restriction D2−∼ → S2−∼ is full on 2-
morphisms, i.e. if 2-isomorphisms have a preimage under p.
For 2-isofibrations, by Lemma 2.4.2, we could have defined (co)Cartesian 1-morphisms
equivalently using the notion of Cartesian diagram instead of 2-Cartesian diagram.

Proposition 2.4.6. A 2-fibration or 2-opfibration of 2-multicategories p ∶ D → S is a
1-fibration if and only if the following two conditions hold:

1. For all 1-morphisms f ∈ HomS(S1, . . . , Sn;T ) and all i = 1, . . . , n and all objects

E1, î. . .,En;F ∈ D with p(Ek) = Sk and p(F) = T there is an object Ei with p(Ei) = Si
and a weakly Cartesian 1-morphism w.r.t. the i-th slot in Homf(E1, . . . ,En;F);

2. The composition of weakly Cartesian 1-morphisms is weakly Cartesian.

A similar statement holds for 1-opfibrations where it is important that the Cartesian
morphisms are composed w.r.t. the correct slot (otherwise see 2.4.7).

Proof. Let f ∈ HomS(S1, . . . , Sn;Ti), and let ξ ∈ Homf(E1, . . . ,En;Fi) be a weakly co-
Cartesian morphism with p(ξ) = f . We have to show that ξ is coCartesian.
By Lemma 2.4.2, 3., to prove that p is a 1-fibration, it suffices to show that

Homg(F1, . . . ,Fm;G) → Homg○if(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)
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is an equivalence of categories for all g ∈ Hom(T1, . . . , Tm;U). Now choose another
weakly coCartesian 1-morphism

ξ′ ∈ F1, . . . ,Fm → G′

over g. We get the following sequence of functors

HomidU (G′;G)
○ξ′ // Homg(F1, . . . ,Fm;G)

○ξ // Homg○f(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G).

Since the composition ξ′○ξ is also weakly coCartesian the left functor and the composition
are equivalences of categories. Hence also the right functor is an equivalence.
To show the converse, we show that coCartesian morphisms are weakly coCartesian. The
following Lemma states that, in general, coCartesian morphisms are stable under com-
position. Let f ∈ HomS(S1, . . . , Sn;T ), and let ξ ∈ Homf(E1, . . . ,En;F) be a coCartesian
morphism with p(ξ) = f . In particular, the diagram

HomD(F ;G) ○iξ //

��

HomD(E1, . . . ,En;G)

��
HomS(U ;U) ○if // HomS(S1, . . . , Sn;U)

is 2-Cartesian and hence (this uses that we have a 2-isofibration) satisfies the statement
of Lemma 2.4.2, 2. which implies that

HomidU (F ;G) → Homf(E1, . . . ,En;G)

is an equivalence.

Lemma 2.4.7. Let p ∶ D → S be a strict functor between 2-multicategories. Then
the composition of (co)Cartesian 1-morphisms (resp. 2-morphisms) is (co)Cartesian.
For Cartesian 1-morphisms this holds true only if the slot used for the composition
agrees with the slot at which the second morphism is Cartesian. Otherwise we have
the following statement: If ξ ∈ Hom(E1, . . . ,En;Fi) is a coCartesian 1-morphism and
ξ′ ∈ Hom(F1, . . . ,Fm;G) is a Cartesian 1-morphism w.r.t. the j-th slot (i /= j) then the
composition

ξ′ ○j ξ ∈ HomD(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)

is Cartesian w.r.t. the j-th slot if j < i and w.r.t. the j +n−1-th slot if j > i. (This holds
true in particular also in the case n = 0).
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Proof. The 1-categorical statement is well-known, hence the composition of (co)Cartesian
2-morphisms is (co)Cartesian. We now show that the composition of coCartesian 1-
morphisms is coCartesian. Let f ∈ HomS(S1, . . . , Sn, Ti) and f ′ ∈ HomS(T1, . . . , Tm, Uj)
be arbitrary 1-morphisms in S, and let

ξ ∈ Homf(E1, . . . ,En;Fi)

and
ξ′ ∈ Homf ′(F1, . . . ,Fm;Gj)

be coCartesian morphisms. We want to show that their composition w.r.t. the i-th-slot

ξ′ ○i ξ ∈ Homf ′○if(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;Gj)

is Cartesian.
Let G1,

ĵ. . .,Gk ∈ D be objects lying over U1,
ĵ. . ., Uk ∈ S, and let H ∈ D an object over

V ∈ S (all arbitrary). Consider the diagram
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HomD
⎛
⎜
⎝

G1

. . .
Gk

;H
⎞
⎟
⎠

○jξ
′

//

��

HomD

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

G1

. . .
Gj−1

F1

. . .
Fm
Gj+1

. . .
Gk

;H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

○iξ //

��

HomD

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

G1

. . .
Gj−1

F1

. . .
Fi−1

E1

. . .
En
Fi+1

. . .
Fm
Gj+1

. . .
Gk

;H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

��

HomS
⎛
⎜
⎝

U1

. . .
Uk

;V
⎞
⎟
⎠

○jf
′

// HomS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

U1

. . .
Uj−1

T1

. . .
Tm
Uj+1

. . .
Uk

;V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

○if // HomS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

U1

. . .
Uj−1

T1

. . .
Ti−1

S1

. . .
Sn
Ti+1

. . .
Tm
Uj+1

. . .
Uk

;V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The right hand square is 2-Cartesian because ξ is coCartesian, and the left square is
2-Cartesian because ξ′ is coCartesian. Hence also the composed square is 2-Cartesian,
i.e. ξ′ ○ ξ is coCartesian as well.
The assertion about the composition of 1-Cartesian morphisms is proven in the same way.
For the additional statement, let f ∈ HomS(S1, . . . , Sn, Ti) and f ′ ∈ HomS(T1, . . . , Tm, U)
be arbitrary 1-morphisms in S, and let

ξ ∈ Homf(E1, . . . ,En;Fi)
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be coCartesian (here n = 0 is possible) and

ξ′ ∈ Homf ′(F1, . . . ,Fm;G)

be Cartesian w.r.t. to the slot j /= i. To fix notation assume i < j.
We want to show that their composition w.r.t. the i-th-slot

ξ′ ○i ξ ∈ Homf ′○if(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)

is Cartesian w.r.t. to the slot j + n − 1.
Let E ′1, . . . ,E ′k ∈ D be objects lying over S′1, . . . , S

′
k ∈ S (all arbitrary). Consider the

diagram

HomD
⎛
⎜
⎝

E ′1
. . .
E ′k

;Fj
⎞
⎟
⎠

ξ′○j //

��

HomD

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F1

. . .
Fj−1

E ′1
. . .
E ′k
Fj+1

. . .
Fm

;G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

○iξ //

��

HomD

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

F1

. . .
Fi−1

E1

. . .
En
Fi+1

. . .
Fj−1

E ′1
. . .
E ′k
Fj+1

. . .
Fm

;G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

��

HomS
⎛
⎜
⎝

S′1
. . .
S′k

;Tj
⎞
⎟
⎠

f ′○j // HomS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

T1

. . .
Tj−1

S′1
. . .
S′k
Tj+1

. . .
Tm

;U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

○if // HomS

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

T1

. . .
Ti−1

S1

. . .
Sn
Ti+1

. . .
Tj−1

S′1
. . .
S′k
Tj+1

. . .
Tm

;U

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Now note that the composed functor

ρ↦ (ξ′ ○j ρ) ○i ξ

is the same as
ρ↦ (ξ′ ○i ξ) ○j+n−1 ρ

because of the independence of slots (analogously for the bottom line functors). The
right hand square is 2-Cartesian because ξ is coCartesian, and the left square is 2-
Cartesian because ξ′ is Cartesian w.r.t. the i-th slot. Hence also the composed square is
2-Cartesian, i.e. ξ′ ○j ξ is Cartesian w.r.t. the slot i + n − 1 as well.

2.4.8. Recall the definition of pseudo-functor between strict 2-categories, pseudo-natural
transformations, and modifications (Definitions 2.2.3–2.2.5). Let F , G be pseudo-functors
from a 2-category D to a 2-category D′. A pseudo-natural transformation ξ ∶ F → G
is called an equivalence if there are a pseudo-natural transformation η ∶ G → F , and
modifications (isomorphisms) ξ ○ η ≅ idG, and η ○ ξ ≅ idF .

Lemma 2.4.9. A pseudo-natural transformation ξ ∶ F → G is an equivalence if and only
if for all E ∈ D

ξE ∶ F (E) → G(E)
is an equivalence in the target-2-category D′. In other words, choosing a point-wise
inverse sets up automatically a pseudo-natural transformation as well, and the point-wise
natural transformations between the compositions constitute the required modifications.

Proof. The “only if” implication is clear. For the “if” part choose a quasi-inverse ξ′(E) ∶
G(E) → F (E) to ξ(E) ∶ F (E) → G(E) for all objects E ∈ D. Hence, for all E ∈ D, we
can find isomorphisms idG(E) ⇒ ξ(E) ○ ξ′(E) and ξ′(E) ○ ξ(E) ⇒ idF (E) satisfying the
unit-counit equations. Let f ∶ E → F be a 1-morphism in D. Define ξ′f to be the following
composition:

ξ′(F)○G(f) ⇒ ξ′(F)○G(f) ○ ξ(E)○ ξ′(E) ⇐ ξ′(F)○ ξ(F)○F (f) ○ ξ′(E) ⇒ F (f) ○ ξ′(E).

We leave to reader to check that this defines indeed a pseudo-natural transformation.

Definition 2.4.10. Recall that an object E in a strict 2-category defines a strict 2-functor

Hom(E ,−) ∶ D → CAT
F ↦ Hom(E ,F)

A pseudo-functor from a 2-category D

F ∶ D → CAT

is called representable if there is an object E and a pseudo-natural transformation

ν ∶ F → Hom(E ,−)

which is an equivalence, cf. 2.4.8.
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Lemma 2.4.11. An object E which represents a functor F is determined up to equiva-
lence.

Proof. We have to show that every pseudo-natural transformation

ξ ∶ Hom(E ,−) → Hom(E ′,−)

which has an inverse up to modification, induces an equivalence E → E ′. Let η be the
quasi-inverse of ξ. We have a 2-commutative diagram

Hom(E ,E ′) ξE′ //

ξE(idE)○−

��
⇓∼

Hom(E ′,E ′)
ξE(idE)○−
��

Hom(E ,E)
ξE
// Hom(E ′,E)

by the definition of pseudo-natural transformation. Hence also a 2-commutative diagram:

Hom(E ,E ′)
ξE(idE)○−

��
⇓∼

Hom(E ′,E ′)
ξE(idE)○−
��

ηE′oo

Hom(E ,E) Hom(E ′,E)ηE
oo

In particular, we get 2-isomorphisms

ξE(idE) ○ ηE ′(idE ′) ⇒ ηE(ξE(idE)) ⇒ idE

where the second one comes from the fact that η and ξ are inverse to each other up to
2-isomorphism. Similarly, there is a 2-isomorphism

ηE ′(idE ′) ○ ξE(idE) ⇒ idE ′ .

Hence we get the required equivalence

E
ηE′(idE′) -- E ′
ξE(idE)

mm

The previous lemma shows that the following definition makes sense:

Definition 2.4.12. 1. Let p ∶ D → S be a strict functor of 2-multicategories which is a
1-opfibration and 2-isofibration. The target object F of a coCartesian 1-morphism
(cf. Definition 2.4.3) starting from E1, . . . ,En and lying over a 1-multimorphism
f ∈ Hom(S1, . . . , Sn;T ) in S is denoted by f●(E1, . . . ,En).
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2. Let p ∶ D → S be a strict functor of 2-multicategories which is a 1-fibration and
2-isofibration. The i-th source object F of a Cartesian 1-morphism w.r.t. to the

i-th slot (cf. Definition 2.4.4) starting from E1, î. . .,En with target F and lying over

a 1-multimorphism f ∈ Hom(S1, . . . , Sn;T ) in S is denoted by f●,i(E1, î. . .,En;F).
In both cases the objects are uniquely determined up to equivalence in DT .

Note that for two different objects f●(E1, . . . ,En) and f○(E1, . . . ,En) each representing
the 2-functor

F ↦ Homf(E1, . . . ,En;F)
on the 2-categoryDT , we get an equivalence f●(E1, . . . ,En) ↔ f○(E1, . . . ,En) by Lemma 2.4.11.

2.4.13. The 2-category CAT has a natural structure of a symmetric 2-multicategory
setting

Hom(C1, . . . ,Cn;D) ∶= Fun(C1 ×⋯ × Cn,D).
CAT is obviously opfibered over {⋅} with the monoidal product given by the product of
categories and with the final category as neutral element.

Definition 2.4.14 (2-categorical Grothendieck construction). For a pseudo-functor of
2-multicategories

Ξ ∶ S → CAT
where CAT is equipped with the structure of 2-multicategory of 2.4.13, we get a 2-
multicategory ∫ Ξ and a strict functor

∫ Ξ→ S

which is 1-opfibered and 2-fibered and whose fiber over S ∈ S is isomorphic to Ξ(S)
(hence it is a 1-category), as follows: The objects of ∫ Ξ are pairs

(E , S)

where S is an object of S, and E is an object of Ξ(S). The 1-morphisms in

Hom
∫ Ξ((E1, S1), . . . , (En, Sn); (F , T ))

are pairs (α, f) where f ∈ Hom(S1, . . . , Sn;T ) is a 1-morphism in S and α ∶ Ξ(f)(E1, . . . ,En) →
F is a morphism in Ξ(T ). The 2-morphisms

ν ∶ (α, f) ⇒ (β, g)

are those 2-morphisms ν ∶ f ⇒ g such that β ○Ξ(ν) = α.
Similarly there is a Grothendieck construction which starts from a pseudo-functor of
2-multicategories

Ξ ∶ S2−op → CAT
and produces a 1-opfibration and 2-opfibration.
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2.4.15. There is also a Grothendieck construction which starts from a pseudo-functor
of 2-categories (not 2-multicategories)

Ξ ∶ S1−op → CAT

and produces a 1-fibration and 2-opfibration ∇Ξ→ S, or from a pseudo-functor

Ξ ∶ S1−op,2−op → CAT

respectively, and produces a 1-fibration and 2-fibration ∇Ξ → S. A 1-fibration of
(2-)multi categories cannot be so easily described by a pseudo-functor because one gets
several pullback functors depending on the slot (e.g. HOMl,HOMr).

Proposition 2.4.16. For a strict functor between 2-multicategories p ∶ D → S which is
1-opfibered and 2-fibered with 1-categorical fibers, we get an associated pseudo-functor
of 2-multicategores:

ΞD ∶ S → CAT
S ↦ DS

The construction is inverse (up to isomorphism of pseudo-functors, resp. 1-opfibrations/2-
fibrations) to the one given in the previous definition.

An analogous proposition is true for 1-(op)fibrations and 2-(op)fibrations, with the re-
striction that for 1-fibrations the multi-aspect has to be neglected.

Proof (Sketch). The pseudo-functor ΞD maps a 1-morphism f ∶ S1, . . . , Sn → T to the
functor (cf. Definition 2.4.12)

f●(−, . . . ,−) ∶ DS1 × ⋅ ⋅ ⋅ × DSn → DT .

A 2-morphism ν ∶ f ⇒ g is mapped to the following natural transformation between
f●(−, . . . ,−) and g●(−, . . . ,−). With the definition (or characterization) of f●(−, . . . ,−)
there comes a natural equivalence of discrete categories

Homf(E1, . . . ,En;F) → HomDT (f●(E1, . . . ,En);F). (16)

Because p is 2-fibered and any 2-isomorphism is Cartesian, ν induces a well-defined
isomorphism

Homf(E1, . . . ,En;F) ≅ Homg(E1, . . . ,En;F).

Since this is true for any F , using the natural equivalences (16) for f and g, we get a
morphism in DT

f●(E1, . . . ,En) → g●(E1, . . . ,En).

One checks that this defines a natural transformation and that the whole construction
Ξ is indeed a pseudo-functor of 2-multicategories.
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Corollary 2.4.17. The concept of functor between 1-multicategories p ∶ D → {⋅} which
are (1-)opfibered is equivalent to the concept of a monoidal category. The functor is, in
addition, (1-)fibered if the corresponding monoidal category is closed.

2.4.18. For a strict functor between 2-multicategories p ∶ D → S which is 1-opfibered
and 2-fibered but with arbitrary 2-categorical fibers, and every f ∈ HomS(S1, . . . , Sn;T )
and E1, . . . ,En we get still an object

f●(E1, . . . ,En)

which is well-defined up to equivalence. This defines a certain kind of pseudo-3-functor

S → 2 − CAT .

Since this becomes confusing and we will not need it, we will not go into any details of
this. For example, if S = {⋅} then a 2-multicategory D which is 1-opfibered14 over {⋅}
is the same as a monoidal 2-category in the sense of [KV94, Shu10, Gur06, GPS95].
The (symmetric) prototype here is CAT with the structure of 2-multicategory considered
above.

Example 2.4.19. Let S be a usual category. Then S may be turned into a symmetric
multicategory by setting

Hom(S1, . . . , Sn;T ) ∶= Hom(S1;T ) ×⋯ ×Hom(Sn;T ).

If S has coproducts, then S (with this multicategory structure) is opfibered over {⋅}. Let
p ∶ D → S be an opfibered (usual) category. Then a multicategory structure on D which
turns p into an opfibration w.r.t. this multicategory structure on S, is equivalent to a
monoidal structure on the fibers of p such that the push-forwards f● are monoidal functors
and such that the compatibility morphisms between them are morphisms of monoidal
functors. This is called a covariant monoidal pseudo-functor in [LH09, (3.6.7)].

Example 2.4.20. Let S be a usual category. Then Sop may be turned into a symmetric
multicategory (or equivalently S into a symmetric opmulticategory) by setting

Hom(S1, . . . , Sn;T ) ∶= Hom(T ;S1) ×⋯ ×Hom(T ;Sn).

If S has products then Sop (with this multicategory structure) is opfibered over {⋅}. Let
p ∶ D → Sop be an opfibered (usual) category. Then a multicategory structure on D which
turns p into an opfibration w.r.t. this multicategory structure on Sop, is equivalent to a
monoidal structure on the fibers of p such that the pull-backs f∗ (along morphisms in
S) are monoidal functors and such that the compatibility morphisms between them are
morphisms of monoidal functors. This is called a contravariant monoidal pseudo-functor
in [LH09, (3.6.7)].

14Note that everything is trivially 2-(op)fibered over {⋅}
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Lemma 2.4.21. Let p ∶ D → S be a strict functor of 2-multicategories. Any equivalence
in D is a Cartesian and coCartesian 1-morphism.

Proof. An equivalence F → F ′ has the property that the composition

HomD(E1, . . . ,En;F) → HomD(E1, . . . ,En;F ′)

is an equivalence of categories for all objects E1, . . . ,En of D. We hence get a commutative
diagram of categories

HomD(E1, . . . ,En;F) //

��

HomD(E1, . . . ,En;F ′)

��
HomS(S1, . . . , Sn;T ) // HomS(S1, . . . , Sn;T ′)

where the two horizontal morphisms are equivalences. It is automatically 2-Cartesian.

Lemma 2.4.22. Let p ∶ D → S be a functor of 2-multicategories. If ξ ∈ HomD(E1, . . . ,En;F)
is a (co)Cartesian 1-morphism and α ∶ ξ ⇒ ξ′ is a 2-isomorphism in D, then ξ′ is
(co)Cartesian as well.

Proof. The 2-isomorphism α induces a natural isomorphism between the functor ‘com-
position with ξ’ and the functor ‘composition with ξ′’. And p(α) induces a natural
isomorphism between the functor ‘composition with p(ξ)’ and the functor ‘composition
with p(ξ′)’. Therefore the diagram expressing the coCartesianity of ξ is 2-Cartesian if
and only if the corresponding diagram for ξ′ is 2-Cartesian.

2.4.23. Consider 2-multicategories D, S, S ′ and a diagram

D
p

��
S ′

F
// S

where p is a strict 2-functor and F is a pseudo-functor. We define the pull-back of p
along F as the following 2-multicategory F ∗D:

1. The objects of F ∗D are pairs of objects F ∈ D and S ∈ S ′ such that p(F) = F (S).

2. The 1-morphisms (S1,F1), . . . , (Sn,Fn) → (T,G) are pairs consisting of a 1-morphism
α ∈ HomD(F1, . . . ,Fn;G) and a 1-morphism β ∈ HomS′(S1, . . . , Sn;T ) and a 2-
isomorphism

(p(F1), . . . , p(Fn))
p(α) //

⇓γ

p(G)

(F (S1), . . . , F (Sn))
F (β)

// F (T )
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3. The 2-morphisms (α,β, γ) ⇒ (α′, β′, γ′) are 2-morphisms µ ∶ α⇒ α′ and ν ∶ β ⇒ β′

such that γ′p(µ) = F (ν)γ.

4. Composition for the γ’s is given by the following pasting (here depicted for 1-ary
morphisms):

p(F) p(α1) //

p(α2α1)

''

⇓γ1

p(F ′) p(α2) //

⇓γ2

p(F ′′)

F (S) F (β1) //

F (β2β1)

⇓
Fβ2,β1

77
F (S′) F (β2) // F (S′′)

Here Fβ2,β1 is the 2-isomorphism given by the pseudo-functoriality of F (cf. Defi-
nition 2.2.3). Associativity follows from the axioms of a pseudo-functor.

We get a commutative diagram of 2-multicategories in which the vertical 2-functors are
strict:

F ∗D
F ∗p
��

// D
p

��
S ′

F
// S

Proposition 2.4.24. If p is a 1-fibration (resp. 1-opfibration, resp. 2-fibration, resp.
2-opfibration) then F ∗p is a 1-fibration (resp. 1-opfibration, resp. 2-fibration, resp. 2-
opfibration).

Proof. We show the proposition for 1-opfibrations and 2-opfibrations. The other asser-
tions are shown similarly. Consider the diagram

HomF ∗D((S1,F1), . . . , (Sm,Fm); (T,G)) //

F ∗p
��

HomD(F1, . . . ,Fm;G)
p

��
HomS′(S1, . . . , Sm;T ) F // HomS(F (S1), . . . , F (Sm);F (T ))

where S1, . . . , Sm, T are objects of S ′ and F1, . . . ,Fm,G are objects ofD such that F (Si) =
p(Fi) and F (T ) = p(G). By definition of pull-back this diagram is 2-Cartesian.
Hence if p is an opfibration then so is F ∗p. Furthermore a 2-morphism in F ∗D, i.e.
a morphism in the category HomF ∗D((T1,F1), . . . , (Tm,Fm); (U,G)) is coCartesian for
F ∗p if and only if its image in HomD(F1, . . . ,Fm;G) is coCartesian for p.
Let f ∈ Hom(S1, . . . , Sn;Ti) be a 1-morphism in S ′ and E1, . . . ,En be objects of D such
that F (Si) = p(Ei). Choose a coCartesian 1-morphism ξ ∈ HomD(E1, . . . ,En;Fi) over
F (f) and consider the corresponding morphism

(ξ, f) ∈ HomF ∗D((S1,E1), . . . , (Sm,Em); (Ti,Fi))
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over f . We will show that the 1-morphism (ξ, f) is coCartesian for F ∗D → S ′. Consider
the following 2-commutative diagram of categories (we omitted the natural isomorphisms
which occur in the left, right, bottom and top faces):

HomD
⎛
⎜
⎝

F1
. . .
Fm

;G
⎞
⎟
⎠

○iξ //

��

HomD

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1
. . .
Fi−1
E1
. . .
En
Fi+1
. . .
Fm

;G

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

��

HomF∗D
⎛
⎜
⎝

(T1,F1)

. . .
(Tm,Fm)

; (U,G)
⎞
⎟
⎠

;;

��

○i(ξ,f) // HomF∗D

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(T1,F1)

. . .
(Ti−1,Fi−1)
(S1,E1)
. . .

(Sn,En)
(Ti+1,Fi+1)

. . .
(Tm,Fm)

; (U,G)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

��

;;

HomS
⎛
⎜
⎝

F (T1)

. . .
F (Tm)

;F (U)
⎞
⎟
⎠

○iF (f) // HomS

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F (T1)

. . .
F (Ti−1)
F (S1)

. . .
F (Sn)
F (Ti+1)
. . .

F (Tm)

;F (U)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

HomS′
⎛
⎜
⎝

T1
. . .
Tm

;U
⎞
⎟
⎠

;;

○if // HomS′

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T1
. . .
Ti−1
S1
. . .
Sn
Ti+1
. . .
Tm

;U

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;;

The back face of the cube is 2-Cartesian by the definition of coCartesian for ξ. The left
and right face of the cube are 2-Cartesian by the definition of pull-back. Therefore also
the front face is 2-Cartesian, and hence (ξ, f) is a Cartesian 1-morphism.
Furthermore, for the composition with any (not necessarily coCartesian) 1-morphism we
may draw a similar diagram and have to show that if the top horizonal functor in the
back face is a morphism of opfibrations then the front face is a morphism of opfibrations.
This follows from the characterization of coCartesian 2-morphisms given in the beginning
of the proof.

Proposition 2.4.25. If p1 ∶ E → D and p2 ∶ D → S are 1-fibrations (resp. 1-opfibrations,
resp. 2-fibrations, resp. 2-opfibrations) of 2-multicategories then the composition p2 ○p1 ∶
E → S is a 1-fibration, (resp. 1-opfibration, resp. 2-fibration, resp. 2-opfibration) of 2-
multicategories. An i-morphism ξ is (co)Cartesian w.r.t. p2 ○ p1 if and only if it is
i-(co)Cartesian w.r.t. p1 and p1(ξ) is i-(co)Cartesian w.r.t. p2.
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Proof. Let ξ ∈ HomE(Σ1, . . . ,Σn; Ξi) be a 1-morphism which is coCartesian for p1 and
such that p1(ξ) is coCartesian for p2. Then we have the following diagram

HomE(Ξ1, . . . ,Ξm; Π) ○iξ //

��

HomE(Ξ1, . . . ,Ξi−1,Σ1, . . . ,Σn,Ξi+1, . . . ,Ξm; Π)

��
HomD(F1, . . . ,Fm;G) ○ip1(ξ) //

��

HomD(F1, . . . ,Fi−1,E1, . . . ,En,Fi+1, . . . ,Fm;G)

��
HomS(T1, . . . , Tm;U) ○ip2(p1(ξ)) // HomS(T1, . . . , Ti−1, S1, . . . , Sn, Ti+1, . . . , Tm;U)

(17)
in which both small squares commute and are 2-Cartesian. Hence also the composite
square is 2-Cartesian, that is, ξ is coCartesian for p2 ○ p1.
Let f ∈ HomS(S1, . . . , Sn;T ) be a 1-morphism and Σ1, . . . ,Σn be objects of E over
S1, . . . , Sn. Choose a coCartesian 1-morphism µ ∈ HomD(p1(Σ1), . . . , p1(Σn);Fi) in D
over f . Choose a coCartesian 1-morphism (for p1) ξ ∈ HomE(Σ1, . . . ,Σn; Ξi) over µ. We
have seen before that ξ is coCartesian for p2 ○ p1 as well.
Let ξ′ ∈ HomE(Σ1, . . . ,Σn; Ξ′

i) be a different coCartesian 1-morphism for p2 ○ p1 over f .
We still have to prove the implication that ξ′ is coCartesian for p1 and that p1(ξ′) is
coCartesian for p2.
By Lemma 2.4.11 there is an equivalence α ∶ Ξ′

i → Ξi such that ξ′ is isomorphic to α ○ ξ.
Then p1(ξ′) is isomorphic to p1(α)○µ. The 1-morphism α○ξ is coCartesian for p1, being
a composition of coCartesian 1-morphisms for p1 (cf. Lemma 2.4.7 and Lemma 2.4.21).
Therefore, by Lemma 2.4.22, also ξ′ is coCartesian for p1, and hence p1(α) ○ µ is a
composition of coCartesian morphisms for p2. Therefore, by Lemma 2.4.22, also p1(ξ′)
is coCartesian for p2.

There is a certain converse to Proposition 2.4.25:

Proposition 2.4.26. Let p1 ∶ E → D and p2 ∶ D → S be 2-isofibrations of 2-multicategories.
Then p1 ∶ E → D is a 1-fibration (resp. 1-opfibration), if the following conditions hold:

1. p2 ○ p1 is a 1-fibration (resp. 1-opfibration);

2. p1 maps (co)Cartesian 1-morphisms w.r.t. p2 ○ p1 to (co)Cartesian 1-morphisms
w.r.t. p2;

3. p1 induces a 1-fibration (resp. 1-opfibration) between fibers15 ES → DS for any S ∈ S
and (co)Cartesianity of 1-morphisms in the fibers of p1 is stable under pull-back
(resp. push-forward) w.r.t. p2 ○ p1.

More precisely (here for the opfibered case, the other case is similar): For a mor-
phism f ∈ Hom(S1, . . . , Sn;T ), for objects Ei over Si, and morphisms τi ∶ Ei → Fi

15Note that these fibers are usual 2-categories, not 2-multicategories.

62



over idSi, consider a diagram in D

E1, . . . ,En
(τ1,...,τn) //

ξ
��

⇙∼

F1, . . . ,Fn
ξ′

��
G // H

over the diagram in S
S1, . . . , Sn

f
��

S1, . . . , Sn

f
��

T T

where ξ and ξ′ are coCartesian 1-morphisms (in particular the 1-morphism G → H
is uniquely determined up to 2-isomorphism). Given a diagram in E

Ξ1, . . . ,Ξn
(µ1,...,µn) //

κ
��

⇙∼

Φ1, . . . ,Φn

κ′

��
Π

ν // Σ

over the other two, the following holds true: If κ and κ′ are coCartesian 1-
morphisms w.r.t. p2 ○ p1 and if µ1, . . . , µn are coCartesian 1-morphisms w.r.t. p1

(restriction to the respective fiber) then also ν is a coCartesian 1-morphism w.r.t.
p1 (restriction to the fiber over T ).

Proof. We have to show that coCartesian 1-morphisms w.r.t. p1 exist. To ease notation
we will neglect the multi-aspect.
Let τ ∶ E → F be a 1-morphism over f ∶ S → T and let Ξ be an object over E . Choose a
coCartesian 1-morphism ξ ∶ Ξ → Ξ′ over f w.r.t. p2 ○ p1 which exists by property 1. By
property 2. we have that p1(ξ) ∶ E → E ′ is a coCartesian 1-morphism over f w.r.t. p2.
We therefore have an induced 1-morphism τ̃ ∶ E ′ → F over idT and a 2-isomorphism

η ∶ τ̃ ○ p1(ξ) ⇒ τ.

Now choose a coCartesian 1-morphism ξ′ ∶ Ξ′ → Ξ′′ w.r.t. p1,T ∶ ET → DT over τ̃ . We
claim that

η∗(ξ′ ○ ξ) ∶ Ξ→ Ξ′′

is a coCartesian 1-morphism over τ . Using Lemma 2.4.22 this is equivalent to ξ′ ○ ξ
being a coCartesian 1-morphism over τ̃ ○ p1(ξ). Using diagram (17) from the proof of
the previous proposition we see that ξ is a coCartesian 1-morphism for p1 as well. Since
the composition of coCartesian 1-morphisms is coCartesian we are left to show that ξ′

is coCartesian for p1. Let f ∶ T → U be a morphism in S and Σ an object over G over
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U . We have to show that

HomE,f(Ξ′′,Σ) ○ξ′ //

��

HomE,f(Ξ′,Σ)

��
HomD,f(F ,G) ○τ̃ // HomD,f(E ′,G)

(18)

is 2-Cartesian (or Cartesian, which amounts to the same). We can form a 2-commutative
diagram

Ξ′ ξ′ //

��
⇙∼

Ξ′′

⇙∼

����
Ξ̃′ ξ̃′ // Ξ̃′′ // Σ

in which the vertical morphisms are coCartesian 1-morphisms w.r.t. p2 ○ p1 over f . The
diagram (18) is point-wise equivalent to the diagram

HomE,idU (Ξ̃′′,Σ) ξ̃′ //

��

HomE,idU (Ξ̃′,Σ)

��
HomD,idU (p1(Ξ̃′′),G)○p1(ξ̃

′) // HomD,idU (p(Ξ̃′),G)

which is 2-Cartesian because ξ̃′ is coCartesian w.r.t. p1,U by property 3.

64



3 Correspondences in a category and abstract six-functor-
formalisms

3.1 Categories of multicorrespondences

Let S be a usual 1-category with fiber products and final object and assume that strictly
associative fiber products have been chosen in S.

Definition 3.1.1. We define the 2-multicategory Scor of correspondences in S to
be the following 2-multicategory.

1. The objects are the objects of S.

2. The 1-morphisms Hom(S1, . . . , Sn;T ) are the (multi-)correspondences16

U
α1

tt
αn~~

β

��
S1 ⋯ Sn ; T.

3. The 2-morphisms (U,α1, . . . , αn, β) ⇒ (U ′, α′1, . . . , α
′
n, β

′) are the isomorphisms
γ ∶ U → U ′ such that in

U
α1

tt
αn~~

γ

��

β

  
S1 ⋯ Sn T

U ′

α′1

jj
α′n

``

β′

?? (19)

all triangles are commutative.

4. The composition is given by the fiber product in the following way: the correspon-
dence

U ×Ti V

vv ((
U

tt ~~

βU

++

V

ss
αV,i��   **

S1 ⋯ Sn ; T1 ⋯ Ti ⋯ Tm ; W

in Hom(T1, . . . , Ti−1, S1, . . . , Sn, Ti+1, . . . , Tm;W ) is the composition w.r.t. the i-th
slot of the left correspondence in Hom(S1, . . . , Sn;Ti) and the right correspondence
in Hom(T1, . . . , Tm;W ).

16as usual, n = 0 is allowed.
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The 2-multicategory Scor is symmetric, representable (i.e. opfibered over {⋅}), closed (i.e.
fibered over {⋅}) and self-dual, with tensor product and internal hom both given by the
product × in S and having as unit the final object of S.

Definition 3.1.2. We define also the larger category Scor,G where in addition every
morphism γ ∶ U → U ′, such that in (19) all triangles commute, is a 2-morphism (i.e. γ
does not necessarily have to be an isomorphism).

3.1.3. The previous definition can be generalized to the case of a general opmulticate-
gory (2.2.2) S which has multipullbacks: Given a multimorphism T → S1, . . . , Sn and a
morphism S′i → Si for some 1 ≤ i ≤ n, a multipullback is a universal square of the form

T ′ //

��

S1, . . . , S
′
i, . . . , Sn

��
T // S1, . . . , Sn.

A usual category S becomes an opmulticategory setting

Hom(T ;S1, . . . , Sn) ∶= Hom(T,S1) ×⋯ ×Hom(T,Sn). (20)

In case that a usual category S has pullbacks it automatically has multipullbacks w.r.t.
opmulticategory structure given by (20). Those are given by Cartesian squares

T ′ //

��

S′i

��
T // Si.

For any opmulticategory S with multipullbacks we define Scor to be the 2-category
whose objects are the objects of S, whose 1-morphisms are the multicorrespondences of
the form

U

��zz
S1, . . . , Sn T

and whose 2-morphisms are commutative diagrams of multimorphisms

U

  yy

��

S1, . . . , Sn T.

U ′

>>ee

The composition is given by forming the multipullback. The reader may check that if
the opmulticategory structure on S is given by (20) we reobtain the 2-multicategory Scor

defined in 3.1.1.
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Definition 3.1.4. Let S be a opmulticategory with multipullbacks. A (symmetric) six-
functor-formalism on S is a 1-bifibered and 2-bifibered (symmetric) 2-multicategory
with 1-categorical fibers

p ∶ D → Scor.

A (symmetric) Grothendieck context on S is a 1-bifibered and 2-opfibered (sym-
metric) 2-multicategory with 1-categorical fibers

p ∶ D → Scor,G.

A (symmetric) Wirthmüller context on S is a 1-bifibered and 2-fibered (symmetric)
2-multicategory with 1-categorical fibers

p ∶ D → Scor,G.

For an explanation of the terminology “Grothendieck” and “Wirthmüller” cf. Section 6.2.

3.1.5. If we are given a class of “proper” (resp. “etale”) 1-ary morphisms S0 in S,
it is convenient to define Scor,0 to be the category where the morphisms γ ∶ U → U ′

entering the definition of 2-morphism are the morphisms in S0. Then we would consider
a 1-bifibration

p ∶ D → Scor,0

which is a 2-opfibration in the proper case and a 2-fibration in the etale case. We call
this respectively a (symmetric) proper six-functor-formalism and a (symmetric)
etale six-functor-formalism.

3.2 Multicorrespondences and the six functors

3.2.1. We have a morphism of opfibered (over {⋅}) symmetric multicategories Sop →
Scor. However, if S has the opmulticategory structure (20), i.e. if Scor is as defined in
3.1.1, there is no reasonable morphism of opfibered multicategories S → Scor where S is
equipped with the symmetric multicategory structure as in 2.4.1917. This reflects the fact
that, in the classical formulation of the six functors, there is no compatibility involving
only ‘⊗’ and ‘!’. From a six-functor-formalism over S equipped with the opmulticategory
structure (20) we get operations g∗, g∗ as the pull-back and the push-forward along the
correspondence

S
g

��
T ; S.

17There is though a morphism of multicategories S → Scor, where S is equipped with the multicategory
structure HomS(S1, . . . , Sn;T ) ∶= Hom(S1 ×⋯ × Sn;T ).
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We get f ! and f! as the pull-back and the push-forward along the correspondence

S
f

��
S ; T.

We get the monoidal product E ⊗ F for objects E ,F above S as the target of any
coCartesian morphism ⊗ over the correspondence

ξS =
⎛
⎜⎜⎜
⎝

S

S S ; S

⎞
⎟⎟⎟
⎠
.

Alternatively, we have
E ⊗F = ∆∗(E ⊠ F)

where ∆∗ is the push-forward along the correspondence

⎛
⎜⎜⎜
⎝

S
∆

||
S × S ; S

⎞
⎟⎟⎟
⎠

induced by the canonical 1-morphism ξS ∈ Hom(S,S;S), and where ⊠ is the absolute
monoidal product which exists because by Proposition 2.4.25 the composition D → {⋅}
is opfibered as well, i.e. D is monoidal.

3.2.2. It is easy to derive from the definition of bifibered multicategory over Scor that
the absolute monoidal product E⊠F can be reconstructed from the fiber-wise product as
pr∗1 E⊗pr∗2 F on S×T , whereas the absolute HOM(E ,F) is given by HOM(pr∗1 E ,pr!

2F)
on S × T . In particular, for an object E of D lying over an object S in S, we can define
the absolute duality by DE ∶= HOM(E ,1). It is then equal to HOM(E , π!1) for π ∶ S → ⋅
being the final morphism. Here 1 is the unit object w.r.t. to the monodal structure on
D●, i.e. an object representing HomD●(;−). The unit object 1 seen as an object in D is
also the unit w.r.t. the absolute monoidal structure. We will discuss this more thoroughly
in Section 6.1.

Proposition 3.2.3. Given a six-functor-formalism on S

p ∶ D → Scor

where S is a usual category equipped with the opmulticategory structure (20) for the
six functors as extracted in 3.2.1 there exist naturally the following compatibility iso-
mophisms:
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isomorphisms isomorphisms
between left adjoints between right adjoints

(∗,∗) (fg)∗ ∼Ð→ g∗f∗ (fg)∗
∼Ð→ f∗g∗

(!, !) (fg)!
∼Ð→ f!g! (fg)! ∼Ð→ g!f !

(!,∗) g∗f!
∼Ð→ F!G

∗ G∗F
! ∼Ð→ f !g∗

(⊗,∗) f∗(− ⊗ −) ∼Ð→ f∗ − ⊗f∗− f∗HOM(f∗−,−) ∼Ð→HOM(−, f∗−)
(⊗, !) f!(− ⊗ f∗−)

∼Ð→ (f!−) ⊗ − f∗HOM(−, f !−) ∼Ð→HOM(f!−,−)
f !HOM(−,−) ∼Ð→HOM(f∗−, f !−)

(⊗,⊗) (− ⊗ −) ⊗ − ∼Ð→ −⊗ (− ⊗ −) HOM(−⊗ −,−) ∼Ð→HOM(−,HOM(−,−))

Here f, g,F,G are morphisms in S which, in the (!,∗)-row, are related by a Cartesian
diagram

⋅ G //

F

��

⋅
f

��⋅ g
// ⋅

Remark 3.2.4. In the right column the corresponding adjoint natural transformations
are listed. In each case the left hand side natural isomorphism determines the right hand
side one and conversely. (In the (⊗, !)-case there are 2 versions of the commutation
between the right adjoints; in this case any of the three isomorphisms determines the
other two.) The (!,∗)-isomorphism (between left adjoints) is called base change, the
(⊗, !)-isomorphism is called the projection formula, and the (∗,⊗)-isomorphism is
usually part of the definition of a monoidal functor. The (⊗,⊗)-isomorphism is the
associativity of the tensor product and usually part of the definition of a monoidal cate-
gory. The (∗,∗)-isomorphism, and the (!, !)-isomorphism express that the corresponding
functors arrange as a pseudo-functor with values in categories.

Proof. The existence of all isomorphisms is a consequences of the fact that the compo-
sition of coCartesian morphisms is coCartesian. For example, the projection formula
(⊗, !) is derived from the following composition in Scor:

⎛
⎜⎜⎜
⎝

Y

Y Y ; Y

⎞
⎟⎟⎟
⎠
○1

⎛
⎜⎜⎜
⎝

X
f

��
X ; Y

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

X

f��

f

��
X Y ; Y

⎞
⎟⎟⎟
⎠
,

where ○1 means that we compose w.r.t. the first slot.
The “monoidality of f∗” (∗,⊗) is derived from the following composition in Scor:

⎛
⎜⎜⎜
⎝

X

f��
Y ; X

⎞
⎟⎟⎟
⎠
○
⎛
⎜⎜⎜
⎝

Y

Y Y ; Y

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

X
f

ww
f��

Y Y ; X

⎞
⎟⎟⎟
⎠
.
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Base change (!,∗) is derived from:

⎛
⎜⎜⎜
⎝

X
g

��
A ; X

⎞
⎟⎟⎟
⎠
○
⎛
⎜⎜⎜
⎝

Y
f

��
Y ; A

⎞
⎟⎟⎟
⎠
≅
⎛
⎜⎜⎜
⎝

Y ×AX
F

{{

G

##
Y ; X

⎞
⎟⎟⎟
⎠
.

Remark 3.2.5. This raises the question about to what extent a converse of Proposi-
tion 3.2.3 holds true. In the literature a six-functor-formalism is often introduced merely
as a collection of functors such that the isomorphisms of Proposition 3.2.3 exist, without
specifying explicitly their compatibilities. In view of the theory developed in this section
the question becomes: how can the 1- and 2-morphisms in the 2-multicategory Scor be
presented by generators and relations? We will not try to answer this question because
all compatibilities, if needed, can be easily derived from the definition of Scor. As an
illustration, we prove that the diagram of isomorphisms

G!F
∗(A⊗ g∗B)

(⊗,∗)
��

f∗g!(A⊗ g∗B)(!,∗)oo

(⊗,!)
��

G!((F ∗A) ⊗ F ∗g∗B) f∗(g!A⊗B)

(⊗,∗)

��

G!((F ∗A) ⊗ (gF )∗)
(∗,∗)

��

(∗,∗)

OO

G!((F ∗A) ⊗G∗f∗B)

(⊗,!) ))

(f∗g!A) ⊗ f∗B

(∗,!)uu
(G!F

∗A) ⊗ f∗B

(21)

commutes. For this we only have to check that the two chains of obvious 2-isomorphisms
in Scor given in Figure 5 and Figure 6 are equal.
To see this, observe that the multicorrespondences in the lines are all 2-isomorphic to
the multicorrespondence

X
gF

ww
F��

G

  
W Z ; Y.

and that all the 2-isomorphisms in the chains (which induce the isomorphisms in Lemma 3.2.3
used in the diagram (21)) respect these 2-isomorphisms.
See 6.2.4 for a similar calculation involving also an (iso-)morphism f! → f∗, i.e. involving
a proper six-functor-formalism.
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

F

~~

G

  
Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

ww
W Z ; Z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

F

ww
F~~

G

  
Z Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

~~
W ; Z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↑

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

gF

ww
F~~

G

  
W Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

G

ww
F~~

G

  
Y Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

f~~
W ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

Y Y ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

F

~~

G

  
Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

f~~
W ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 5: The first composition

3.3 Canonical Grothendieck contexts

3.3.1. Let S be a 1-opmulticategory with multipullbacks and let p ∶ D → Sop be an
ordinary bifibration of 1-multicategories. Let S0 be a subcategory of “proper” morphisms
for which projection formula and base change formula hold true. This means that for
every multipullback with fi ∈ S0

T ′
G //

Fi
��

S1, . . . , S
′
i, . . . , Sn

(idS1
,...,fi,...,idSn)

��
T g

// S1, . . . , Si, . . . , Sn

the canonical exchange natural transformation

g● ○i f●i → F ●
i ○G● (22)

is an isomorphism. Note that the morphisms are morphisms in S (and not in Sop), e.g.
F ●
i ∶ DT ′ → DT denotes a right-adjoint push-forward along the corresponding morphism

in S.
Assume that S0 is stable under multipullback, i.e. for any multipullback diagram as
above, Fi is in S0 as well.
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

F

~~

G

  
Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

ww
W Z ; Z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↑

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

f

~~
W ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

  
Z ; W

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

ww
W Z ; Z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

f

~~
W ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W

W W ; W

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

  
Z ; W

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

f

vv
f~~

W W ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z

g

  
Z ; W

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

↓

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

Y Y ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X

F

~~

G

  
Z ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y

f~~
W ; Y

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 6: The second composition

Definition 3.3.2. Define a category D̃proper which has the same objects as D and whose
1-morphisms Hom(E1, . . . ,En;F), where p(Ei) = Si and p(F) = T , are the 1-morphisms

U
g

yy

f

��
(S1, . . . , Sn) T

in Scor,0 (cf. 3.1.5) such that f ∈ S0, together with a 1-morphism

ρ ∈ HomT (f●g●(E1, . . . ,En);F)

in DT . A 2-morphism (U, g, f, ρ) ⇒ (U ′, g′, f ′, ρ′) is a morphism h ∶ U → U ′ in S0

making the obvious diagrams commute and such that the diagram

(f ′)●g●(E1, . . . ,En)
ρ′ //

unith
��

F

(f ′)●h●h●g′●(E1, . . . ,En) ∼ // f●g●(E1, . . . ,En)

ρ

OO

also commutes.
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Proposition 3.3.3. Definition 3.3.2 is reasonable, i.e. the composition induced by pro-
jection and base change formula, i.e. by the natural isomorphism (22), is associative.
The obvious projection

p̃ ∶ D̃proper → Scor,proper,0

where Scor,proper,0 is the subcategory of Scor,0 in whose multicorrespondences the mor-
phism f is in S0, is a 1-opfibration and 2-opfibration of 2-multicategories with 1-categorical
fibers.

Proof. This is a straight-forward check that we leave to the reader. For the second
assertion note that the category D̃proper is obviously 2-opfibered over Scor,proper,0, the
2-push-forward given by ρ↦ unith ○ ρ.

In particular, if (22) holds true for all multipullbacks in S, and all f● have right adjoints,
we obtain the canonical Grothendieck context associated with p ∶ D → S:

p̃ ∶ D̃ → Scor,G.

If (22) holds true only for a proper subclass of morphisms, it is possible under additional
hypothesis to extend the so constructed partial six-functor-formalism to a 1-opfibration
(which is still 2-opfibered with 1-categorical fibers) over the whole Scor,0:

D̃proper � � //

��

D̃

��
Scor,proper,0 � � // Scor,0

That is, if right adjoints exist, even to a six-functor-formalism. The right hand side
1-opfibration and 2-opfibration encodes also morphisms f! → f∗ for the corresponding
operations and all their compatibilities (cf. 6.2.3). Its construction will be explained
more generally in the derivator context in forthcoming work [Hör17a] and parallels the
classical construction using compactifications.
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4 Fibered multiderivators

4.1 Categories of diagrams

Definition 4.1.1. A diagram category is a full sub-2-category Dia ⊂ Cat, satisfying
the following axioms:

(Dia1) The empty category ∅, the final category ⋅ (or ∆0), and ∆1 are objects of Dia.

(Dia2) Dia is stable under taking finite coproducts and fibered products.

(Dia3) For each functor α ∶ I → J in Dia and object j ∈ J the slice categories I ×/J j and
j ×/J I are in Dia.

A diagram category Dia is called self-dual, if it satisfies in addition:

(Dia4) If I ∈ Dia then Iop ∈ Dia.

A diagram category Dia is called infinite, if it satisfies in addition:

(Dia5) Dia is stable under taking arbitrary coproducts.

In the following we mean by a diagram a small category.

Example 4.1.2. We have the following diagram categories:

Cat the category of all diagrams. It is self-dual.

Inv the category of inverse diagrams C, i.e. small categories C such that there exists
a functor C → N0 with the property that the preimage of an identity consists of
identities18. An example is the injective simplex category ∆○:

⋯ ⋅
oooooooo ⋅oooo

oo ⋅oooo

Dir the category of directed diagrams D, i.e. small categories such that Dop is inverse.
An example is the opposite of the injective simplex category (∆○)op:

⋯ ////
//// ⋅ ////// ⋅ //// ⋅

Catf, Dirf, and Invf are defined as before but consisting of finite diagrams. Those are
self-dual and Dirf = Invf.

Catlf, Dirlf, and Invlf are defined as before but consisting of locally finite diagrams,
i.e. those which have the property that a morphism γ factors as γ = α ○ β only in
a finite number of ways.

Pos, Posf, Dirpos, and Invpos: the categories of posets, finite posets, directed
posets, and inverse posets.

18In many sources N0 is replaced by any ordinal.
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4.2 Pre-(multi)derivators

Definition 4.2.1. A pre-derivator of domain Dia is a contravariant (strict) 2-functor

D ∶ Dia1−op → CAT .

A pre-multiderivator of domain Dia is a contravariant (strict) 2-functor

D ∶ Dia1−op →MCAT

into the 2-“category” of multicategories. A morphism of pre-derivators is a natural
transformation.
For a morphism α ∶ I → J in Dia the corresponding functor

D(α) ∶ D(J) → D(I)

will be denoted by α∗.
We call a pre-multiderivator symmetric (resp. braided), if its images are symmetric
(resp. braided), and the morphisms α∗ are compatible with the actions of the symmetric
(resp. braid) groups.

4.2.2. The pre-derivator associated with a (multi)category: Let S be a (multi)category.
We associate with it the pre-derivator

S ∶ I ↦ Fun(I,S).

The pull-back α∗ is defined as composition with α. A 2-morphism κ ∶ α → β induces a
natural 2-morphism S(κ) ∶ α∗ → β∗.

4.2.3. The pre-derivator associated with a simplicial class (in particular with an ∞-
category): Let S be a simplicial class, i.e. a functor

S ∶ ∆→ CLASS

into the “category” of classes. We associate with it the pre-derivator

S ∶ I ↦ Ho(Hom(N(I),S)),

where N(I) is the nerve of I and Ho is the left adjoint of N . In detail this means the
objects of the category S(I) are morphisms α ∶ N(I) → S, the class of morphisms in
S(I) is freely generated by morphisms µ ∶ N(I ×∆1) → S considered to be a morphism
from its restriction to N(I × {0}) to its restriction to N(I × {1}) modulo the relations
given by morphisms ν ∶ N(I × ∆2) → S, i.e. if ν1, ν2 and ν3 are the restrictions of ν to
the 3 faces of ∆2 then we have µ3 = µ2 ○ µ1. The pull-back α∗ is defined as composition
with the morphism N(α) ∶ N(I) → N(J). A 2-morphism κ ∶ α → β can be given as a
functor I ×∆1 → J which yields (applying N and composing) a natural transformation
which we call S(κ).
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4.2.4. The following will not be needed in the sequel. More generally, consider the
full subcategory m∆ ⊂ MCAT of all finite connected multicategories M that are freely
generated by a finite set of multimorphisms f1, . . . , fn such that each object of M occurs
at most once as a source and at most once as the target of one of the fi. Similarly consider
the full subcategory T ⊂ SMCAT which is obtained from m∆ adding images under the
operations of the symmetric groups. This category is usually called the symmetric tree
category. With a functor

S ∶m∆→ CLASS resp. S ∶ T → CLASS

we associate the pre-multiderivator (resp. symmetric pre-multiderivator):

S ∶ I ↦ Ho(Hom(N(I),S)),

where N ∶ MCAT → CLASSm∆ (resp. N ∶ SMCAT → CLASST ) is the nerve, I is
considered to be a multicategory without any n-ary morphisms for n ≥ 2, and Ho is the
left adjoint of N . Objects in SET T are called dendroidal sets in [MW07].

4.3 Fibered (multi)derivators

4.3.1. Let p ∶ D → S be a strict morphism of pre-derivators with domain Dia, and let
α ∶ I → J be a functor in Dia. Consider an object S ∈ S(J). The functor α∗ induces a
morphism between fibers (denoted the same way)

α∗ ∶ D(J)S → D(I)α∗S .

We are interested in the case that the latter has a left adjoint αS! , resp. a right adjoint
αS∗ . These will be called relative left/right homotopy Kan extension functors with
base S. For better readability we often omit the base from the notation. Though the
base is not determined by the argument of α!, it will often be understood from the
context, cf. also (4.3.28).

4.3.2. We are interested in the case in which all morphisms

p(I) ∶ D(I) → S(I)

are fibrations, resp. opfibrations (2.1) or, more generally, (op)fibrations of multicate-
gories (cf. Definition 2.4.5 or Definition 1.5.8). We will later assume (cf. Axioms (FDer0
left/right)) that the functors α∗ ∶= D(α) map coCartesian morphisms to coCartesian
morphisms but map Cartesian morphisms to Cartesian morphisms (for arity n ≥ 2) only
if α itself is a opfibration.
Then we will choose an associated pseudo-functor, i.e. for each f ∶ S → T in S(I) a pair
of adjoints functors

f● ∶ D(I)S → D(I)T ,
resp.

f● ∶ D(I)T → D(I)S ,
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characterized by functorial isomorphisms:

Homf(E ,F) ≅ HomidT (E , f●F) ≅ HomidS(f●E ,F).

More generally, in the multicategorical setting, if f is a multimorphism f ∈ Hom(S1, . . . , Sn;T )
for some n ≥ 1, we get an adjunction of n variables

f● ∶ D(I)S1 ×⋯ ×D(I)Sn → D(I)T ,

and

f i,● ∶ D(I)op
S1
× î⋯×D(I)op

Sn
×D(I)T → D(I)Si .

4.3.3. For a diagram of categories

I

α
��

K
β
// J

the slice category K ×/J I is the category of triples (k, i, µ), where k ∈ K, i ∈ I and
µ ∶ β(k) → α(i). It sits in a corresponding 2-commutative square:

K ×/J I
B //

A
��

⇗µ

I

α

��
K

β
// J

which is universal w.r.t. such squares. This construction is associative, but of course not
commutative unless J is a groupoid. The projection K ×/J I →K is a fibration and the
projection K ×/J I → I is an opfibration (see 2.1). There is an adjunction

I ×/J J
//
I.oo

4.3.4. Consider an arbitrary 2-commutative square

L
B //

A
��
⇗µ

I

α
��

K
β
// J

(23)

and let S ∈ S(J) be an object and E a preimage in D(J) w.r.t. p. The 2-morphism
(natural transformation) µ induces a functorial morphism

S(µ) ∶ A∗β∗S → B∗α∗S
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and therefore a functorial morphism

D(µ) ∶ A∗β∗E → B∗α∗E

over S(µ), or — if we are in the (op)fibered situation — equivalently

A∗β∗E → (S(µ))●B∗α∗E

respectively
(S(µ))●A∗β∗E → B∗α∗E

in the fiber above A∗β∗S, resp. B∗α∗S,
Let now F be an object over α∗S. If relative right homotopy Kan extensions exist,
we may form the following composition which will be called the (right) base-change
morphism:

β∗α∗F → A∗A
∗β∗α∗F → A∗(S(µ))●B∗α∗α∗F → A∗(S(µ))●B∗F . (24)

(We again omit the base S from the notation for better readability — it is always
determined by the argument.)
Let now F be an object over β∗S. If relative left homotopy Kan extensions exist, we
may form the composition, the (left) base-change morphism:

B!(S(µ))●A∗F → B!(S(µ))●A∗β∗β!F → B!B
∗α∗β!F → α∗β!F . (25)

We will later say that the square (23) is homotopy exact if (24) is an isomorphism for
all right fibered derivators (see Definition 4.3.6 below) and (25) is an isomorphism for
all left fibered derivators. It is obvious a priori that for a left and right fibered derivator
(24) is an isomorphism if and only if (25) is, one being the adjoint of the other (see
[Gro13, §1.2] for analogous reasoning in the case of usual derivators).

Definition 4.3.5. We consider the following axioms19 on a pre-(multi)derivator D:

(Der1) For I, J in Dia, the natural functor D(I∐J) → D(I) ×D(J) is an equivalence of
(multi-)categories. Moreover, D(∅) is not empty.

(Der2) For I in Dia the ‘underlying diagram’ functor

dia ∶ D(I) → Fun(I,D(⋅))

is conservative.

In addition, we consider the following axioms for a strict morphism of pre-(multi)derivators

p ∶ D→ S ∶
19The numbering is compatible with that of [Gro13] in the case of non-fibered derivators.
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(FDer0 left) For each I in Dia the morphism p specializes to an opfibered (multi)category and
any functor α ∶ I → J in Dia induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of opfibered (multi)categories, i.e. the top horizontal functor maps coCartesian
morphisms to coCartesian morphisms.

(FDer3 left) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers

D(J)S → D(I)α∗S

has a left-adjoint αS! .

(FDer4 left) For each functor α ∶ I → J in Dia, and for any object j ∈ J , and the 2-cell

I ×/J j
ι //

αj

��
⇙µ

I

α

��
{j} � � j // J

the induced natural transformation of functors αj !(S(µ))●ι∗ → j∗α! is an isomor-
phism w.r.t. all bases S ∈ S(J).

(FDer5 left) (if S is strong, only needed for the multiderivator case). For any opfibration α ∶
I → J in Dia, and for any morphism ξ ∈ Hom(S1, . . . , Sn;T ) in S(⋅) for some n ≥ 1,
the natural transformations of functors

α!(α∗ξ)●(α∗−,⋯, α∗−, − , α∗−,⋯, α∗−) ≅ ξ●(−,⋯,−, α!− ,−,⋯,−)

are isomorphisms.

and their dual variants:

(FDer0 right) For each I in Dia the morphism p specializes to a fibered (multi)category and any
opfibration α ∶ I → J in Dia induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of fibered (multi)categories, i.e. the top horizontal functor maps Cartesian mor-
phisms w.r.t. the i-th slot to Cartesian morphisms w.r.t. the i-th slot.
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(FDer3 right) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers

D(J)S → D(I)α∗S

has a right-adjoint αS∗ .

(FDer4 right) For each morphism α ∶ I → J in Dia, and for any object j ∈ J , and the 2-cell

j ×/J I
ι //

αj

��
⇗µ

I

α

��
{j} � � j // J

the induced natural transformation of functors j∗α∗ → αj∗(S(µ))●ι∗ is an isomor-
phism w.r.t. all bases S ∈ S(J).

(FDer5 right) (if S is strong, only needed for the multiderivator case). For any functor α ∶ I → J
in Dia, and for any morphism ξ ∈ Hom(S1, . . . , Sn;T ) in S(⋅) for some n ≥ 1, the
natural transformations of functors

α∗(α∗ξ)●,i(α∗−,⋯, α∗− ; −) ≅ ξ●,i(−,⋯,− ; α∗−)

are isomorphisms for all 1 ≤ i ≤ n.

Definition 4.3.6. A strict morphism of pre-(multi)derivators p ∶ D → S with domain
Dia is called a left fibered (multi)derivator with domain Dia, if axioms (Der1–2)
hold for D and S and (FDer0–5 left) hold for p. Similarly it is called a right fibered
(multi)derivator with domain Dia, if instead the corresponding dual axioms (FDer0–5
right) hold. It is called just fibered if it is both left and right fibered.

The squares in axioms (FDer4 left/right) are in fact homotopy exact and it follows from
the axioms (FDer4 left/right) that many more are (see 4.3.23).
There is some reduncancy in the axioms, cf. 4.3.8 and 4.3.27.

Question 4.3.7. It seems natural to allow also (symmetric) multicategories, in partic-
ular operads, as domain for a fibered (symmetric) multiderivator. The author however
did not succeed yet in writing down a neat generalization of (FDer3–4) which would
encompass (FDer5).

Lemma 4.3.8. For a strict morphism of pre-derivators D → S such that both satisfy
(Der1) and (Der2) and such that it induces a bifibration of multicategories D(I) → S(I)
for all I ∈ Dia we have the following implications:

(FDer0 left) for n-ary morphisms, n ≥ 1 ⇔ (FDer5 right) (26)

(FDer0 right) ⇔ (FDer5 left) (27)
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Proof. We will only show the implication (26), the other being similar. Choosing pull-
back functors f●, the remaining part of (FDer0) says that the natural 2-morphism

D(J)S1 ×⋯ ×D(J)Sn
f● //

α∗

��
⇙

D(J)T
α∗

��
D(I)α∗S1 ×⋯ ×D(J)α∗Sn

(α∗f)● // D(I)α∗T

is an isomorphism. Taking the adjoint of this diagram (of f● w.r.t. the i-th slot) we get
the diagram

D(I)op
α∗S1

× î⋯×D(I)op
α∗Sn

× D(I)α∗T

α∗

��

⇙

(α∗f)●,i // D(J)α∗Si

α∗

��
D(I)op

S1
× î⋯×D(J)op

Sn

(α∗)op

OO

× D(J)T
f●,i // D(J)Si

That its 2-morphism is an isomorphism is the content of (FDer5 left). Hence (FDer0
left) and (FDer5 right) are equivalent in this situation.
For (27) note that for both (FDer0 right) and (FDer5 left), the functor α in question is
restricted to the class of opfibrations.

Remark 4.3.9. The axioms (FDer0) and (FDer3–5) are similar to the axioms of a six-
functor-formalism (cf. Section 1.7). It is actually possible to make this analogy precise
and define a fibered multiderivator as a bifibration of 2-multicategories [D] → Diacor(S)
where Diacor(S) is a certain category of multicorrespondences of diagrams in S, simi-
lar to our definition of a usual six-functor-formalism (cf. Definition 3.1.4). This also
clarifies the existence and comparison of the internal and external monoidal structure,
resp. duality, in a closed monoidal derivator (i.e. fibered multiderivator over {⋅}) or more
generally for any fibered multiderivator. We will explain this in detail in section 5.2.

4.3.10. The pre-derivator associated with an ∞-category S is actually a left and right
derivator (in the usual sense, i.e. fibered over {⋅}) if S is complete and co-complete
[GPS13]. This includes the case of pre-derivators associated with categories, which is,
of course, classical — axiom (FDer4) expressing nothing else than Kan’s formulas.

4.3.11. Let S ∈ S(⋅) be an object and p ∶ D → S be a (left, resp. right) fibered multi-
derivator. The association

I ↦ D(I)π∗S ,

where π ∶ I → ⋅ is the projection, defines a (left, resp. right) derivator in the usual sense
which we call its fiber DS over S. The axioms (FDer6–7) stated below involve only these
fibers.
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Definition 4.3.12. More generally, if S ∈ S(J) we may consider the association

I ↦ D(I × J)pr∗2 S
,

where pr2 ∶ I × J → J is the second projection. This defines again a (left, resp. right)
derivator in the usual sense which we call its fiber DS over S.

Lemma 4.3.13 (left). Let D → S be a left fibered multiderivator and let I ∈ Dia be
a diagram and f ∈ HomS(J)(S1, . . . , Sn;T ) for some n ≥ 1 be a morphism. Then the
collection of functors for each J ∈ Dia

f● ∶ D(J × I)pr∗2 S1
×⋯ ×D(J × I)pr∗2 Sn

→ D(J × I)pr∗2 T

E1, . . . ,En ↦ (pr∗2 f)●(E1, . . . ,En)

defines a morphism of derivators DS1 × ⋅ ⋅ ⋅ × DSn → DT . Furthermore, for a collection
Ek ∈ D(I), k /= i the morphism of derivators:

D(J × I)pr∗2 Si
→ D(J × I)pr∗2 T

Ei ↦ (pr∗2 f)●(pr∗2 E1, . . . ,Ei, . . . ,pr∗2 En)

is left continuous (i.e. commutes with left Kan extensions).

Proof. The only point which might not be clear is the left continuity of the bottom mor-
phism of pre-derivators. Consider the following 2-commutative square, where I, J, J ′ ∈
Dia, α ∶ J → J ′ is a functor, and j′ ∈ J ′

I × (j′ ×/J ′ J)
(id,ι) //

(id,p)

��
⇗

I × J

(id,α)

��
I × j′ // I × J ′

It is homotopy exact by 4.3.23, 4. Therefore we have (using FDer3–5 left):

(id, j′)∗(id, α)!(pr∗1 f)●(pr∗1 E1, . . . ,Ei, . . . ,pr∗1 En)
≅ (id, p)!(id, ι)∗(pr∗1 f)●(pr∗1 E1, . . . ,Ei, . . . ,pr∗1 En)
≅ (id, p)!(pr∗1 f)●((id, ι)∗ pr∗1 E1, . . . , (id, ι)∗Ei, . . . , (id, ι)∗ pr∗1 En)
≅ (id, p)!(pr∗1 f)●((id, p)∗E1, . . . , (id, ι)∗Ei, . . . , (id, p)∗En)
≅ f●(E1, . . . , (id, p)!(id, ι)∗Ei, . . . ,En)
≅ f●(E1, . . . , (id, j′)∗(id, α)!Ei, . . . ,En)
≅ (id, j′)∗(pr∗1 f)●(pr∗1 E1, . . . , (id, α)!Ei, . . . ,pr∗1 En)

(Note that (id, p) is trivially an opfibration). A tedious check shows that the composition
of these isomorphisms is (id, j′)∗ applied to the exchange morphism

(id, α)!(pr∗1 f)●(pr∗1 E1, . . . ,Ei, . . . ,pr∗1 En) → (pr∗1 f)●(pr∗1 E1, . . . , (id, α)!Ei, . . . ,pr∗1 En)

Since the above holds for any j′ ∈ J ′ the exchange morphism is therefore an isomorphism
by (Der2).
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In the right fibered situation the analogously defined morphisms f i,● are not expected
to be made into a morphism of fibers this way. For a discussion of how this is solved, we
refer the reader to Section 5.4, where a fibered multiderivator is redefined as a certain
type of six-functor-formalism. This will let appear the discussion and results of this
section in a much more clear fashion. However, we have:

Lemma 4.3.14 (right). Let D → S be a right fibered multiderivator and let I ∈ Dia be
a diagram and f ∈ HomS(J)(S1, . . . , Sn;T ), for some n ≥ 1, be a morphism. For each
J ∈ Dia and for each collection Ek ∈ D(I), k /= i, the association

D(J × I)pr∗2 T
→ D(J × I)pr∗2 Si

F ↦ (pr∗2 f)●,i(pr∗2 E1, . . . ,pr∗2 En;F)

defines a morphism of derivators which is right continuous (i.e. commutes with right
Kan extensions). This is the right adjoint in the pre-derivator sense to the morphism of
pre-derivators in the previous lemma, as soon as D→ S is left and right fibered.

Proof. Consider the following 2-commutative square where I, J, J ′ ∈ Dia, α ∶ J → J ′ is a
functor, and j′ ∈ J ′

I × (J ×/J ′ j
′) (id,ι) //

(id,p)

��
⇙

I × J

(id,α)

��
I × j′ // I × J ′

It is homotopy exact by 4.3.23, 4.
Therefore we have (using FDer3–5 right):

(id, j′)∗(id, α)!(pr∗1 f)i,●(pr∗1 E1, î. . .,pr∗1 En;F)
≅ (id, p)∗(id, ι)∗(pr∗1 f)i,●(pr∗1 E1, î. . .,pr∗1 En,F)
≅ (id, p)∗(pr∗1 f)i,●((id, ι)∗ pr∗1 E1, î. . ., (id, ι)∗ pr∗1 En; (id, ι)∗F)
≅ (id, p)∗(pr∗1 f)i,●((id, p)∗E1, î. . ., (id, p)∗En; (id, ι)∗F)
≅ f i,●(E1, î. . .,En; (id, p)∗(id, ι)∗F)
≅ f i,●(E1, î. . .,En; (id, j′)∗(id, α)∗F)
≅ (id, j′)∗(pr∗1 f)i,●(pr∗1 E1, î. . .,pr∗1 En; (id, α)!F)

Note that (id, ι) is an opfibration, but (id, j′) is not. Hence the last step has to be
justified further. Consider the 2-commutative diagram:

I × (J ×/J ′ j
′) (id,ι′) //

(id,p)

��
⇙

I × J ′

I × j′ // I × J ′
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It is again homotopy exact by 4.3.23, 4. Therefore we have

≅ f i,●(E1, î. . .,En; (id, j′)∗(id, α)∗F)
≅ f i,●(E1, î. . .,En; (id, p)∗(id, ι′)∗(id, α)∗F)
≅ (id, p)∗(pr∗1 f)i,●((id, p)∗E1, î. . ., (id, p)∗En; (id, ι′)∗(id, α)∗F)
≅ (id, p)∗(pr∗1 f)i,●((id, ι′)∗ pr∗1 E1, î. . ., (id, ι′)∗ pr∗1 En; (id, ι′)∗(id, α)∗F)
≅ (id, p)∗(id, ι′)∗(pr∗1 f)i,●(pr∗1 E1, î. . .,En; (id, ι′)∗(id, α)∗F)
≅ (id, j′)∗(pr∗1 f)i,●(pr∗1 E1, î. . .,pr∗1 En; (id, α)!F)

Note that (id, ι′) is an opfibration as well. In other words: the reason why f●,i also
commutes with (id, j′)∗ in this particular case is that the other argument are constant
in the J direction.
A tedious check shows the composition of the isomorphisms of the previous computations
yield (id, j′)∗ applied to the exchange morphism

(id, α)∗(pr∗1 f)i,●(pr∗1 E1, î. . .,pr∗1 En;F) → (pr∗1 f)i,●(E1, î. . .,En; (id, α)∗F).

Since the above holds for any j′ ∈ J ′ it is therefore an isomorphism by (Der2).

Axiom (FDer5 left) and Corollary 2.4.17 imply the following:

Proposition 4.3.15. The definition of a left fibered multiderivator D→ {⋅} is equivalent
to the definition of a monoidal left derivator in the sense of Groth [Gro12]. It is also,
in addition, right fibered if and only if it is a right derivator and closed monoidal in the
sense of [loc. cit.].

4.3.16. Let p ∶ D → S be a (left, resp. right) fibered multi-derivator and S ∶ {⋅} → S(⋅)
a functor of multicategories. This is equivalent to the choice of an object S ∈ S(⋅)
and a collection of morphisms αn ∈ HomS(⋅)(S, . . . , S´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

;S) for all n ≥ 2, compatible with

composition. Then the fiber
I ↦ D(I)p∗S

defines even a (left, resp. right) monoidal derivator (i.e. a fibered multiderivator over
{⋅}). The same holds analogously for a functor of multicategories S ∶ {⋅} → S(I).

Definition 4.3.17. We call a pre-derivator D strong, if the following axiom holds:

(Der8) For any diagram K in Dia the ‘partial underlying diagram’ functor

dia ∶ D(K ×∆1) → Fun(∆1,D(K))

is full and essentially surjective.

Definition 4.3.18. Let p ∶ D → S be a fibered (left and right) derivator. We call D
pointed (relative to p) if the following axiom holds:
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(FDer6) For any S ∈ S(⋅), the category D(⋅)S has a zero object.

Definition 4.3.19. Let p ∶ D → S be a fibered (left and right) derivator. We call D
stable (relative to p) if its fibers are strong and the following axiom holds:

(FDer7) For any S ∈ S(⋅), an object in the category D(◻)p∗S is homotopy Cartesian if and
only if it is homotopy coCartesian.

This condition can be weakened (cf. [GS12, Corollary 8.13]).

4.3.20. Recall from [Gro13] that axiom (FDer7) implies that the fibers of a stable
fibered derivator are triangulated categories in a natural way. Actually the proof shows
that it suffices to have a derivator of domain Posf (finite posets).
Since, by Lemma 4.3.13 and Lemma 4.3.14 push-forward, resp. pull-back w.r.t. any
slot commute with homotopy colimits, resp. homotopy limits, they induce triangulated
functors between the fibers.

4.3.21 (left). The following is a consequence of (FDer0): For a functor α ∶ I → J and a
morphism in f ∶ S → T ∈ S(J), we get a natural isomorphism

S(α∗f)●α∗ → α∗S(f)●.

W.r.t. this natural isomorphism we have the following:

Lemma 4.3.22 (left). Given a “pasting” diagram

N

⇙ν

G //

A
��

L

⇙µ

B //

a
��

I

α
��

M
γ // K

β // J

we get for the pasted natural transformation ν ⊙ µ ∶= (β ∗ ν) ○ (µ ∗G) that the following
diagram is commutative:

A!S(β ∗ ν)●G∗S(µ)●B∗ //

∼

��

γ∗a!S(µ)●B∗ // γ∗β∗α!

A!S(β ∗ ν)●S(G ∗ µ)●G∗B∗

∼

��
A!S(ν ⊙ µ)●G∗B∗

55

Here the morphisms going to the right are (induced by) the various base-change mor-
phisms. In particular, the pasted square is homotopy exact if the individual two squares
are.

Proof. This is an analogue of [Gro13, Lemma 1.17] and proven similarly.
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Proposition 4.3.23. 1. Any square of the form

I ×/J K
B //

A
��

⇙µ

I

α

��
K

β // J

(where I ×/JK is the slice category) is homotopy exact (in particular the ones from
axiom FDer4 left and FDer4 right are).

2. A Cartesian square

I ×J K B //

A
��

I

α
��

K
β // J

(where I ×J K is the fiber product) is homotopy exact, if α is an opfibration or if
β is a fibration.

3. If α ∶ I → J is a morphism of opfibrations over a diagram E, then

Ie
wI //

αe
��

I

α

��
Je

wJ // J

is homotopy exact for all objects e ∈ E.

4. If a square

L
B //

A
��
⇙µ

I

α
��

K
β // J

is homotopy exact then so is the square

L ×X B //

A
��

⇙µ

I ×X
α
��

K ×X β // J ×X

for any diagram X.

Proof. This proof is completely analogous to the non-fibered case. We sketch the argu-
ments here (for the left-case only, the other case follows by logical duality):
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3. Let j be an object in Je and consider the cube:

Ie ×/Je j

⇙µ

ιe //

w

yy

pe

��

Ie

αe

��

wI

��
I ×/J j

⇙µ

ι //

p

��

I

α

��

⋅ j // Je

wJ��
⋅ j // J

(28)

where w is given by the inclusions ιI,e resp. ιJ,e. By standard arguments on homotopy
exact squares it suffices to show that the left square is homotopy exact on constant
diagrams, i.e. that

pe,!w
∗ ≅ p!

holds true for all usual derivators. By [Gro13, Proposition 1.23] it suffices to show that
w has a left adjoint.
Denote πI ∶ I → E and πJ ∶ J → E the given opfibrations. Consider the two functors

Ie ×/J,e j
w // I ×/J jc

oo

where c is given by mapping (i, µ ∶ α(i) → j) to (i′, µ′ ∶ α(i′) → j) where we chose,
for any i, a coCartesian morphism ξi,µ ∶ i → i′ over πI(µ) ∶ πI(i) → e. Since α maps
coCartesian morphisms to coCartesian morphisms by assumption, α(ξi,µ) ∶ α(i) → α(i′)
is coCartesian, and therefore there is a unique factorization

α(i) α(ξi) // α(i′) µ′ // j

of µ. A morphism α ∶ (i1, µ1 ∶ α(i1) → j) → (i2, µ2 ∶ α(i2) → j), by definition of
coCartesian, gives rise to a unique morphism α′ ∶ i′1 → i′2 over πI(i1) → πI(i2) such that
α′ξi1,µ1 = ξi2,µ2α

′ holds, and we set c(α) ∶= α′. We have c ○ w = id, and a morphism
idI×/J j → w ○ c given by (i, µ) ↦ ξi,µ. This makes w right adjoint to c.
2. By axiom (Der2) it suffices to show that for any object k of K, the induced morphism

k∗A!B
∗ → k∗β∗α!

is an isomorphism. Consider the following pasting diagram

I ×J k
π

��

j // I ×J K ×/K k

⇙µ

ι //

p

��

I ×J K B //

A
��

I

α

��
⋅ ⋅ k // K

β // J
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Lemma 4.3.22 shows that the following composition

π!S(β ∗ µ ∗ j)●j∗ι∗B∗ → π!j
∗S(β ∗ µ)●ι∗B∗ → p!S(β ∗ µ)●ι∗B∗ → k∗A!B

∗ → k∗β∗α!

is the base-change associated with the pasting of the 3 squares in the diagram. All
morphisms in this sequence are isomorphisms except possibly for the rightmost one. The
second from the left is an isomorphism because j is a right adjoint [Gro13, Proposition
1.23]. The base-change morphism of the pasting is an isomorphism because of 3.
1. By axiom (Der2) it suffices to show that for any object k of K the induced morphism

k∗A!S(µ)●B∗ → k∗β∗α!

is an isomorphism. Consider the following pasting diagram

I ×/J k
ι //

p

��

I ×/J K

⇙µ

B //

A
��

I

α

��
⋅ k // K

β // J

Lemma 4.3.22 shows that the following diagram is commutative

p!S(µι)●ι∗B∗

∼can.

��

∼ // k∗β∗α!

p!ι
∗S(µ)●B∗ ∼ // k∗A!S(µ)●B∗

OO

where the bottom horizontal morphism is an isomorphism by 2., and the top horizontal
morphism is an isomorphism by (FDer4 left). Therefore the right vertical morphism is
also an isomorphism.
4. (cf. also [Gro13, Theorem 1.30]). For any x ∈X consider the cube

L
B //

⇙µ

(id,x)

{{
A

��

I

α

��

(id,x)

||
L ×X

⇙µ

B
//

A

��

I ×X

α

��

K
β //

(id,x)

{{

J

(id,x)||
K ×X β // J ×X

(29)

The left and right hand side squares are homotopy exact because of 3., whereas the rear
one is homotopy exact by assumption. Therefore the pasting

L //

A
��

I ×X
α
��

K // J ×X
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is homotopy exact. Therefore we have an isomorphism

(id, x)∗A!S(µ)●B∗ → (id, x)∗β∗α!

where the morphism is induced by the base change of the given 2-commutative square.
We may then conclude by axiom (Der2).

4.3.24 (left). If S is strong the pull-backs and push-forwards along a morphism in S(⋅),
or more generally along a morphism in S(I), can be expressed using only the relative
Kan-extension functors:
Let p ∶ D→ S be a left fibered derivator such that S is strong. Consider the 2-commutative
square

I

⇙µ

I

ι0
��

I ι1
// I ×∆1

and consider a morphism f ∶ S → T in S(I). By the strongness of S, the morphism f
may be lifted to an object F ∈ S(I ×∆1), and this means that the morphism

S(µ)● ∶ ι∗0F → ι∗1F

is isomorphic to f . Since the square is homotopy exact by Proposition 4.3.23 1., we get
that the natural transformation

f● → ι∗1ι0,!

is an isomorphism.

4.3.25 (left). Let α ∶ I → J a functor in Dia and let f ∶ S → T be a morphism in S(J).
Axiom (FDer0) of a left fibered derivator implies that we have a canonical isomorphism

(α∗(f))●α∗
∼Ð→ α∗f●

which is determined by the choice of the push-forward functors. We get an associated
exchange morphism

α!(α∗(f))● → f●α!. (30)

Proposition 4.3.26. If p ∶ D → S is a left fibered derivator, and S is strong, then the
natural transformation (30) is an isomorphism. The corresponding dual statement holds
for a right fibered derivator.

Proof. Consider the following 2-commutative squares (the third and fourth are even
commutative on the nose):

I

⇙µI

I

pI
��

I ιI
// I ×∆1

J

⇙µJ

J

pJ
��

J ιJ
// J ×∆1

I
α //

ιI
��

J

ιJ
��

I ×∆1 α
// J ×∆1

I
pI //

α

��

I ×∆1

α

��
J pJ

// J ×∆1

(31)
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They are all homotopy exact. Consider the diagram

α!(α∗(f))●

��

// f●α!

��
α!ι

∗
IpI,!

// ι∗Jα!pI,! // ι∗JpJ,!α!

where the vertical morphisms come from (4.3.24) — these are the base change mor-
phism for the first and second square in (31) — and the lower horizontal morphisms are
respectively the base change for the third diagram in (31), and the natural morphism
associated with the commutativity of the fourth diagram in (31). Repeatedly appying
Lemma 4.3.22 shows that this diagram is commutative. Therefore the upper horizontal
morphism is an isomorphism because all the others in the diagram are.

4.3.27. The last proposition states that push-forward commutes with homotopy colimits
(left case) and pull-back commutes with homotopy limits (right case). This is also the
content of (FDer5 left/right) for fibered derivators (not multiderivators), and hence this
axiom is implied by the other axioms of left fibered derivators if S is strong. Even in
the multi-case, by Lemma 4.3.8, axiom (FDer5 left/right) also follow from both (FDer0
left) and (FDer0 right).

4.3.28 (left). Let α ∶ I → J be a functor in Dia. Proposition 4.3.26 (or FDer5 left)
allows us to extend the functor α! to a functor

α! ∶ D(I) ×S(I) S(J) → D(J)

which is still left adjoint to α∗, more precisely: to (α∗, p(J)). Here the fiber product
is formed w.r.t. p(I) and α∗ respectively. We sketch its construction: α!(E , S) is given
by αS! E , where αS! is the functor from axiom (FDer3 left) with base S. Let a pair of a
morphism f ∶ S → T in S(J) and F ∶ E → F in D(I) over α∗(f) be given. We define
α!(F, f) as follows: F corresponds to a morphism

(α∗f)●E → F .

Applying αT! we get a morphism

αT! (α∗f)●E → αT! F

and composition with the inverse of the morphism (30) yields

f●α
S
! E → αT! F

or, equivalently, a morphism which we define to be α!(F, f)

αS! E → αT! F

over f .
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For the adjunction, we have to give a functorial isomorphism

Homα∗f(E , α∗F) ≅ Homf(α!(E , S),F),

where E ∈ D(I)α∗S and F ∈ D(J)T . We define it to be the following composition of
isomorphisms:

Homα∗f(E , α∗F)
≅ Homidα∗T ((α

∗f)●E , α∗F)
≅ HomidT (α!(α∗f)●E ,F)
≅ HomidT (f●α!E ,F)
≅ Homf(α!E ,F).

A dual statement holds for a right fibered derivator and the functor α∗.

From Proposition 4.3.26 we also get a vertical version of Lemma 4.3.22:

Lemma 4.3.29 (left). Given a “pasting” diagram

N

⇙ν

B //

Γ
��

M

γ

��
L

⇙µ

b //

a
��

I

α
��

K
β // J

we get for the pasted natural transformation µ⊙ ν ∶= (µ ∗ Γ) ○ (α ∗ ν) that the following
diagram is commutative:

a!S(µ)●Γ!S(α ∗ ν)●B∗ //

∼

��

a!S(µ)●b∗γ!
// β∗α!γ!

a!Γ!S(µ ∗ Γ)●S(α ∗ ν)●B∗

∼

��
a!Γ!S(µ⊙ ν)●B∗

66

Here the morphisms going to the right are (induced by) the various base-change mor-
phisms and the upper horizontal morphism is the isomorphism from Proposition 4.3.26.
In particular, the pasted square is homotopy exact if the two individual squares are.

4.4 Transitivity

Proposition 4.4.1. Let

E
p1 // D

p2 // S
be two left (resp. right) fibered multiderivators. Then also the composition p3 = p2 ○ p1 ∶
E→ S is a left (resp. right) fibered multiderivator.
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Proof. We will show the statement for left fibered multiderivators. The other statement
follows by logical duality.
Axiom (FDer0): For any I ∈ Dia, we have a sequence

E(I) → D(I) → S(I)

of fibered multicategories. It is well-known that then also the composition E(I) → S(I)
is a fibered multicategory (see 2.4). The other statement of (FDer0) is immediate as well.
Let α ∶ I → J be a functor as in axioms (FDer3 left) and (FDer4 left). We denote the
relative homotopy Kan-extension functors w.r.t. the two fibered derivators by α1

! , and
α2

! , respectively. As always, the base will be understood from the context or explicitly
given as extra argument as in (4.3.28).
Axiom (FDer3 left): Let S ∈ S(J) be given. We define a functor

α3
! ∶ E(I)α∗S → E(J)S

in the fiber (under p2) of E ∈ D(I)α∗S as the composition

E(I)α∗S
(ν●,α2

! p1) // E(I)α∗S ×D(I)α∗S
D(J)S

α1
! // E(J)S

where ν is the unit
ν ∶ E → α∗α2

! E
and α1

! with two arguments is the extension given in (4.3.28).
Let F1 ∈ E(I)α∗S and F2 ∈ E(J)S be given with images E1 and E2, respectively under p1.
The adjunction is given by the following composition of isomorphisms:

HomS(α3
! F1,F2)

= HomS(α1
! (ν●F1, α

2
! E1),F2) Definition

= {f ∈ HomS(α2
! E1,E2); ξ ∈ Homf(α1

! (ν●F1, α
2
! E1),F2)} Definition

≅ {f ∈ HomS(α2
! E1,E2); ξ ∈ Homα∗f(ν●F1, α

∗F2)} Adjunction (4.3.28)

≅ {f̃ ∈ Homα∗S(E1, α
∗E2); ξ ∈ Homf̃(F1, α

∗F2)} Note below

= Homα∗S(F1, α
∗F2)} Definition

Note that the composition

f̃ ∶ E1
ν // α∗α2

! E1
α∗f // α∗E2

is determined by f via the adjunction of (FDer3 left) for base S and p2 ∶ D→ S.
Axiom (FDer4 left): Let E be in E(I)α∗S and let F be its image under p1. We have to
show that the natural morphism

α3
j!S(µ)3

●ι
∗E → j∗α3

!

is an isomorphism. Inserting the definition of the push-forwards, resp. of the Kan ex-
tensions for p3, we get

α1
j!(νj)1

●cart1
●ι
∗E → j∗α1

! ν
1
●E .
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Here νj ∶ S(µ)2
●ι
∗F → α∗jα

2
j!S(µ)2

●ι
∗F is the unit and ν ∶ F → α∗α2

! F is the unit. ‘cart1’

is the Cartesian morphism ι∗F → S(µ)2
●ι
∗F . Consider the base-change isomorphism

(FDer4 for p2)
bc ∶ α2

j!S(µ)2
●ι
∗F → j∗α2

! F ,

and the morphism
D(µ) ∶ ι∗α∗α2

! F → α∗j j
∗α2

! F .

Claim: We have the equality

(α∗jbc) ○ νj ○ cart = D(µ) ○ ι∗(ν).

Proof of the claim: Consider the diagram (which affects only the fibered derivator p2 ∶
D→ S, hence we omit superscripts):

α∗jαj!S(µ)●ι∗F α∗jαj!S(µ)●ι
∗ν
//

α∗jbc

,,
α∗jαj!S(µ)●ι∗α∗α!F // α∗jαj!α

∗
j j

∗α!F // α∗j j
∗α!F

S(µ)●ι∗F S(µ)●ι∗ν
//

νj

OO

S(µ)●ι∗α∗α!F induced //

OO

α∗j j
∗α!F

OO

ι∗F
ι∗ν

//

cart

OO

ι∗α∗α!F
D(µ)

55

cart

OO

Clearly all squares and triangles in this diagram are commutative. The two given mor-
phisms are the compositions of the extremal paths hence they are equal.
We have a natural isomorphism induced by bc:

α1
j!(⋯, α2

j!S(µ)2
●ι
∗F) ≅ α1

j!((α∗jbc)●(⋯), j∗α2
! F)

(this is true for any isomorphism).
We therefore have

α1
j!
(νj)1

●cart1
●ι
∗E

≅ α1
j!
(α∗jbc)1

●(νj)1
●cart1

●ι
∗E

≅ α1
j!
D(µ)1

●(ι∗ν)1
●ι
∗E

≅ α1
j!
D(µ)1

●ι
∗ν1

●E

Thus we are left to show that

α1
j!D(µ)1

●ι
∗ν1

●E → j∗α1
! ν

1
●E

is an isomorphism. A tedious check shows that this is the base change morphism asso-
ciated with p1. It is an isomorphism by (FDer4 left) for p1.
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4.5 (Co)local morphisms

4.5.1. Let Dia be a diagram category and let S be a strong right derivator with domain
Dia. Strongness implies that for each diagram

U

��
S // T

in S(⋅) there exists a homotopy pull-back “U ×T S” which is well-defined up to (non-
unique!) isomorphism. A Grothendieck pre-topology on S is basically a Grothendieck
pre-topology in the usual sense on S(⋅) except that pull-backs are replaced by homotopy
pull-backs. We state the precise definition:

Definition 4.5.2. A Grothendieck pre-topology on S is the datum consisting of,
for any S ∈ S(⋅), a collection of families {Ui → S}i∈I of morphisms in S(⋅) called covers,
such that

1. Every family consisting of isomorphisms is a cover,

2. If {Ui → S}i∈I is a cover and T → S is any morphism then the family {“Ui×S T”→
T}i∈I is a cover for any choice of particular members of the family {“Ui ×S T”}.

3. If {Ui → S}i∈I is a cover and for each i, the family {Ui,j → Ui}j∈Ji is a cover then
the family of compositions {Ui,j → Ui → S}i∈I,j∈Ji is a cover.

Definition 4.5.3 (left). Let p ∶ D → S be a left fibered derivator satisfying also (FDer0
right). Assume that pull-backs exist in S. We say that a morphism f ∶ U →X in S(⋅) is
D-local if

(Dloc1 left) The morphism f satisfies base change: for any diagram Q ∈ D(◻) with underlying
diagram

A
F̃ //

G̃
��

B

g̃
��

C
f̃

// D

such that p(Q) in S(◻) is a pull-back-diagram, i.e. is (homotopy) Cartesian, the
following holds true: If F̃ and f̃ are Cartesian, and g̃ is coCartesian then also G̃
is coCartesian.20

20In other words, if

“U ×X Y ”
F //

G

��

Y

g

��
U

f
// X
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(Dloc2 left) The morphism of derivators (cf. Lemma 4.3.14)

f● ∶ DX → DU

commutes with homotopy colimits.

A morphism f ∶ U →X in S(⋅) is called universally D-local if any homotopy pull-back
of f is D-local.

Definition 4.5.4 (left). Assume that S is equipped with a Grothendieck pre-topology (cf.
4.5.2). A left fibered derivator p ∶ D → S as in Definition 4.5.3 is called local w.r.t. the
pre-topology on S, if the following conditions hold:

1. Every morphism Ui → S which is part of a cover is D-local.

2. For a cover {fi ∶ Ui → S} the family

f●i ∶ D(S) → D(Ui)

is jointly conservative.

Definition 4.5.5 (right). Let p ∶ D→ S be a right fibered derivator satisfying also (FDer0
left). Assume that push-outs exist in S. We say that a morphism f ∶ X → U in S(⋅) is
D-colocal if

(Dloc1 right) The morphism f satisfies base change: for any diagram Q ∈ D(◻) with underlying
diagram:

A B
F̃oo

C

G̃

OO

D

g̃

OO

f̃

oo

such that p(Q) in S(◻) is a pushout-diagram, i.e. is (homotopy) coCartesian, if F̃
and f̃ are coCartesian, and g̃ is Cartesian then also G̃ is Cartesian.

(Dloc2 right) The morphism of derivators (cf. Lemma 4.3.13)

f● ∶ DX → DU

commutes with homotopy limits.

A morphism f ∶ X → U in S(⋅) is called universally D-colocal if any homotopy push-
out of f is D-colocal.

is the underlying diagram of p(Q) then the exchange morphism

G●F
●
→ f●g●

is an isomorphism.
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Definition 4.5.6 (right). Assume that S is equipped with a Grothendieck pre-cotopology,
i.e. that Sop is equipped with a Grothendieck pre-topology (cf. 4.5.2). A right fibered
derivator p ∶ D → S as in Definition 4.5.5 is called colocal w.r.t. the pre-cotopology on
S, if

1. Every morphism S → Ui which is part of a cocover is D-colocal.

2. For a cocover {fi ∶ S → Ui} the family

(fi)● ∶ D(⋅)S → D(⋅)Ui
is jointly conservative.

4.6 The associated pseudo-functors

Let p ∶ D→ S be a morphism of pre-derivators with domain Dia.

4.6.1 (left). Let Dia(S) be the 2-category of diagrams over S, where the objects are
pairs (I,F ) such that I ∈ Dia and F ∈ S(I), the morphisms (I,F ) → (J,G) are pairs
(α, f) such that α ∶ I → J, f ∶ F → α∗G and the 2-morphisms (α, f) → (β, g) are the
natural transformations µ ∶ α⇒ β satisfying S(µ)(G) ○ f = g.
We call a morphism (α, f) of fixed shape if α = id, and of diagram type if f consists
of identities. Every morphism is obviously a composition of one of diagram type by one
of fixed shape.

4.6.2 (right). There is a dual notion of a 2-category Diaop(S). Explicitly, the objects
are pairs (I,F ) such that I ∈ Dia and F ∈ S(I), the morphisms (I,F ) → (J,G) are pairs
(α, f) such that α ∶ I → J, f ∶ α∗G → F and the 2-morphisms (α, f) → (β, g) are the
natural transformations µ ∶ α⇒ β satisfying f ○ S(µ)(G) = g .
The association (I,F ) ↦ (Iop, F op) induces an isomorphism Diaop(S) → Dia(Sop)2−op.

We are interested in associating to a fibered derivator a pseudo-functor like for classical
fibered categories.

4.6.3 (left). We associate to a morphism of pre-derivators p ∶ D → S which satisfies
(FDer0 right) a (contravariant) 2-pseudo-functor

D ∶ Dia(S)1−op → CAT
mapping a pair (I,F ) to D(I)F , and a morphism (α, f) ∶ (I,F ) → (J,G) to f● ○ α∗ ∶
D(J)G → D(I)F . A natural transformation µ ∶ α ⇒ β is mapped to the natural trans-
formation pasted from the following two 2-commutative triangles:

D(I)G○α
f●

%%
D(J)G

α∗
99

β∗

%%

⇓µ ⇓ D(I)F

D(I)G○β

S(µ)(G)●

OO

g●
99
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Proof of the pseudo-functor property. For a composition (β, g)○(α, f) = (β○α,α∗(g)○f)
we have: f● ○ α∗ ○ g● ○ β∗ ≅ f● ○ (α∗g)● ○ α∗ ○ β∗. This follows from the isomorphism
α∗ ○ g● ≅ (α∗g)● ○ α∗ (FDer0). One checks that this indeed yields a pseudo-functor.

4.6.4 (right). We associate to a morphism of pre-derivators p ∶ D → S which satisfies
(FDer0 left) a (contravariant) 2-pseudo-functor

D ∶ Diaop(S)1−op → CAT

mapping a pair (I,F ) to D(I)F (I), and a morphism (α, f) ∶ (I,F ) → (J,G) to f● ○ α∗
from D(J)G → D(I)F . This defines a functor by the same reason as in 4.6.3.

4.6.5 (left). We assume that S is a strong right derivator. There is a notion of “comma
object” in Dia(S) which we describe here for the case that S is the pre-derivator associ-
ated with a category S and leave it to the reader to formulate the derivator version. In
that case the corresponding object will be determined up to (non-unique!) isomorphism
only.
Given diagrams D1 = (I1, F1),D2 = (I2, F2),D3 = (I3, F3) in Dia(S) and morphisms
β1 ∶ D1 → D3, β2 ∶ D2 → D3, we form the comma diagram D1 ×/D3

D2 as follows: the
underlying diagram I1 ×/I3 I2 has objects being triples (i1, i2, µ) such that i1 ∈ I1, i2 ∈ I2,
and µ ∶ α1(i1) → α2(i2) in I3. A morphism is a pair βj ∶ ij → i′j for j = 1,2 such that

α1(i1)
α1(β1)//

µ

��

α1(i′1)

µ′

��
α2(i2)

α2(β2)// α2(i′2)

commutes in I3. The corresponding functor F̃ ∈ S(I1 ×/I3 I2) maps a triple (i1, i2, µ) to

F1(i1) ×F3(α2(i2)) F2(i2).

We define Pj to be (ιj , pj) for j = 1,2, where ιj maps a triple (i1, i2, µ) to ij , and pj is the
corresponding projection of the fiber product. We then get a 2-commutative diagram

D1 ×/D3
D2

P1 //

P2

��
⇙µ

D1

β1

��
D2

β2

// D3

If we are given I2, I3 only and two maps I1 → I3 and I2 → I3 we also form D1 ×/I3 I2 by
the same underlying category, with functor F1 ○ ι1.

4.6.6 (right). We assume that S is a strong left derivator. There is a dual notion
of “comma object” in Diaop(S) which we describe here again for the case that S is
the pre-derivator associated with a category S and leave it to the reader to formulate
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the derivator version. In that case the corresponding object will be determined up to
(non-unique!) isomorphism only.
Given three diagrams Do

1 = (I1, F1),Do
2 = (I2, F2) in Diaop(S) mapping to Do

3 = (I3, F3),
we form the comma diagram Do

1 ×/Do3
Do

2 as follows: the underlying diagram is I1 ×/D3
I2

which has object being triples (i1, i2, µ) such that i1 ∈ I1, i2 ∈ I2 and µ ∶ α1(i1) → α2(i2)
in I3. A morphism is a pair βj ∶ ij → i′j for j = 1,2 such that

α1(i1)
α1(β1)//

µ

��

α1(i′1)

µ′

��
α2(i2)

α2(β2)// α2(i′2)

commutes in I3. The corresponding functor F̃ maps a triple (i1, i2, µ) to

F1(i1) ⊔F3(α1(i1)) F2(i2).

We then get a 2-commutative diagram

Do
2 ×/Do3

Do
1

//

��
⇙µ

Do
1

��
Do

2
// Do

3

This language allows us to restate Lemma 4.3.22 and Lemma 4.3.29 in a more convenient
way:

Lemma 4.6.7 (left). 1. Given a “pasting” diagram in Dia(S)

D1

⇙ν

Γ //

A
��

D3

⇙µ

B //

a

��

D5

α

��
D2

γ // D4
β // D6

the pasted natural transformation ν ⊙ µ ∶= βν ○ µΓ satsisfies

ν! ⊙ µ! = (ν ⊙ µ)!.

2. Given a “pasting” diagram in Dia(S)

D1

⇙ν

B //

Γ
��

D2

γ

��
D3

⇙µ

b //

a

��

D4

α

��
D5

β // D6
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the pasted natural transformation ν ⊙ µ ∶= αν ○ µΓ satisfies

µ! ⊙ ν! = (µ⊙ ν)!.

Definition 4.6.8. If S is equipped with a Grothendieck pre-topology (cf. 4.5.2) then we
call (α, f) ∶ (I,F ) → (J,G) D-local if fi ∶ F (i) → G ○ α(i) is D-local (cf. 4.5.3) for all
i ∈ I. Likewise for the notions of universally D-local, D-colocal, and universally D-colocal.

Proposition 4.6.9 (left). Let D → S be a left fibered derivator satisfying also (FDer0
right) and such that S is a strong right derivator. Then the associated pseudo-functor
satisfies the following properties:

1. For a morphism of diagrams (α, f) ∶D1 →D2 the corresponding pull-back

(α, f)∗ ∶ D(D2) → D(D1)

has a left-adjoint (α, f)!.

2. For a diagram like in 4.6.5

D1 ×/D3
D2

P1 //

⇙α
P2

��

D1

β1

��
D2

β2

// D3

the corresponding exchange morphism

P2!P
∗
1 → β∗2β1!

is an isomorphism in D(D2) provided that β2 is D-local.

Proof. 1. By (FDer0 left) and (FDer3 left) we can form (α, f)! ∶= α! ○ f● which is clearly
left adjoint to (α, f)∗.
2. We first reduce to the case where I2 is the trivial category. Indeed consider the
diagram

D1 ×/D3
({i2}, F2(i2)) can. //

��
⇙

D1 ×/D3
D2 ×/D2

({i2}, F2(i2)) //

��
⇙

D1 ×/D3
D2

P1 //

⇙P2

��

D1

β1

��
({i2}, F2(i2)) ({i2}, F2(i2)) // D2

β2

// D3

The exchange morphism of the middle square and outmost rectangle are isomorphisms
by the reduced case. The morphism can. of the left hand square is of diagram type and
its underlying diagram functor has an adjoint. The exchange morphism is therefore an
isomorphism by [Gro13, 1.23]. Using Lemma 4.6.7 therefore, applying this for all i2 ∈ I2,
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also the exchange morphism of the right square has to be an isomorphism (this uses
axiom Der2).
Now we may assume D2 = ({i2}, F2(i2)). Consider the following diagram, in which we
denote β1 = (α1, f1), β2 = (α2, f2).

(I1 ×/I3 {i2}, F̃ ) p1 //

p2

��
⇙ 1

(I1 ×/I3 {i2}, F1 ○ ι1)
ι1 //

ι∗1f1

��
⇙ 4

(I1, F1)

f1

��
(I1 ×/I3 {i2}, F̃ ′)

p′1 //

p′2
��

⇙ 2

(I1 ×/I3 {i2}, F3 ○ α1 ○ ι1)
ι1 //

F3(µ)

��
⇙

5

(I1, F3 ○ α1)

α1

��

(I1 ×/I3 {i2}, F2(i2))
ι∗2f2 //

ι2
��

⇙ 3

(I1 ×/I3 {i2}, F3(α2(i2)))

ι2
��

({i2}, F2(i2))
f2 // ({i2}, F3(α2(i2)))

α2 // (I3, F3)

where F̃ is the functor defined in 4.6.5 mapping a triple (i1, i2, µ ∶ α1(i1) → α2(i2)) to

F1(i1) ×F3(α2(i2)) F2(i2)

and F̃ ′ is the functor mapping a triple (i1, i2, µ ∶ α1(i1) → α2(i2)) to

F3(α1(i1)) ×F3(α2(i2)) F2(i2).

We have to show that the exchange morphism for the outer square is an isomorphism.
Using Lemma 4.6.7 it suffices to show this for the squares 1–5. That the exchange mor-
phism for the squares 1 and 2, where the morphisms are of fixed shape, is an isomorphism
can be checked point-wise by (Der2). Then it boils down to the base change condition
(Dloc1 left). Note that the squares are pull-back squares in S by construction of F̃ ′

resp F̃ . The exchange morphism for 4 is an isomorphism by (FDer0). The exchange
morphism for 3 is an isomorphism because of (Dloc2 left). The exchange morphism for
5 is an isomorphism because of (FDer4 left).

Dualizing, there is a right-variant of the theorem, which uses Diaop(S) instead. We leave
its formulation to the reader.

4.7 Construction of fibered multiderivators

4.7.1. The most basic situation in which a (non-trivial) fibered (multi)derivator can be
constructed arises from a bifibration of (locally small) multicategories

p ∶ D → S

where we are given a class of weak equivalences WS ⊂ Mor(DS) for each object S of S.
In the examples we have in mind, the objects of S are spaces (or schemes), the objects
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of D are chain complexes of sheaves (coherent, etale Abelian, etc.) on them, and the
morphisms in WS are the quasi-isomorphisms. In these examples the multicategory-
structure arises from the tensor product and it is even, in most cases, the more natural
structure because no particular tensor-product is chosen a priori.

Definition 4.7.2. In the situation above, let S be the pre-multiderivator associated with
the multicategory S. We define a pre-multiderivator D as follows (cf. 2.3.1 for localiza-
tions of multicategories):

D(I) = Fun(I,D)[W−1
I ]

where WI is the set of natural transformations which are element-wise in the union

⋃SWS. The functor p obviously induces a morphism of pre-multiderivators

p̃ ∶ D→ S

Observe that morphisms in WI , by definition, necessarily map to identities in Fun(I,S).

In this section we prove that the above morphism of pre-(multi)derivators is a left (resp.
right) fibered (multi)derivator on directed (resp. inverse) diagrams, provided that the
fibers are model categories whose structure is compatible with the structure of bifibra-
tion. We use the definition of a model category from [Hov99]. We denote the cofibrant
replacement functor by Q and the fibrant replacement functor by R.

Definition 4.7.3. A bifibration of (multi-)model-categories is a bifibration of
(multi)categories p ∶ D → S together with the collection of a closed model structure
on the fiber

(DS ,CofS ,FibS ,WS)

for any object S in S such that the following two properties hold:

1. For any n ≥ 1 and for every multimorphism

S1

⋮ f // T

Sn

the push-forward f● and the various pull-backs f●,j define a Quillen adjunction in
n-variables

∏i(DSi ,CofSi ,FibSi ,WSi)
f● // (DT ,CofT ,FibT ,WT )

(DT ,CofT ,FibT ,WT ) ×∏i/=j(DSi ,CofSi ,FibSi ,WSi)
f●,j // (DSj ,CofSj ,FibSj ,WSj)
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2. For any 0-ary morphism f in S, let f●() be the corresponding unit object (i.e.
the object representing the 0-ary morphism functor Homf(;−)) and consider the
cofibrant replacement Qf●() → f●(). Then the natural morphism

F●(E1, . . . ,Ei−1,Qf●(),Ei, . . . ,En) → F●(E1, . . . ,Ei−1, f●(),Ei, . . . ,En) ≅ (F○if)●(E1, . . . ,En)

is a weak equivalence if all Ei are cofibrant. Here F is any morphism which is
composable with f .

Remark 4.7.4. If S = {⋅}, the above notion coincides with the notion of monoidal
model-category in the sense of [Hov99, Definition 4.2.6]. In this case it is enough to
claim property 1. for n = 1,2.

Theorem 4.7.5. Under the conditions of Definition 4.7.3 the morphism of pre-derivators

p̃ ∶ D→ S

(defined in 4.7.2) is a left fibered multiderivator (satisfying also FDer0 right) with do-
main Dir and a right fibered multiderivator (satisfying also FDer0 left) with domain Inv.
Furthermore for all S ∈ S(⋅) its fiber DS (c.f. 4.3.11) is just the pre-derivator associated
with the pair (DS ,WS).

There are techniques by Cisinski [Cis03] which allow to extend a derivator to more
general diagram categories. We will explain in a forthcoming article how these can be
applied to fibered (multi-)derivators.
The proof of the theorem will occupy the rest of this section. First we have:

Proposition 4.7.6. Let D → S be a bifibration of multicategories with complete fibers.
For any diagram category I, the functors

pI ∶ Fun(I,D) → Fun(I,S) = S(I)

are bifibrations of multicategories.
Morphisms in Fun(I,D) are Cartesian, if and only if they are point-wise Cartesian.
The 1-ary morphisms in Fun(I,D) are coCartesian, if and only if they are point-wise
coCartesian.

Proof (Sketch). We choose push-forward functors f● and pull-back functors f i,● for D →
S as usual. Let f ∈ Hom(S1, . . . , Sn;T ) be a morphism in Fun(I,S). We define a functor

f● ∶ Fun(I,D)S1 ×⋯ × Fun(I,D)Sn → Fun(I,D)T

by
E1, . . . ,En ↦ {i↦ (fi)●(E1(i), . . . ,En(i))}.

Note that a morphism α ∶ i→ i′ in I induces a well-defined morphism

(fi)●(E1(i), . . . ,En(i)) → (fi′)●(E1(i′), . . . ,En(i′))
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lying over T (α). The functor f● comes equipped with a morphism in

Hom(E1, . . . ,En; f●(E1, . . . ,En))

which is checked to be Cartesian in the strong form of Definition 2.4.4.
For 1-ary morphisms we can perform the same construction to produce coCartesian
morphisms. For n ≥ 2 the construction is more complicated. Let f ∈ Hom(S1, . . . , Sn;T )
be a morphism with n ≥ 2. To ease notation, we construct a pull-back functor w.r.t. the
first slot. The other constructions are completely symmetric.
For any i1 ∈ I consider the category (a variant of the twisted arrow category)

Xi1(I) ∶= { (i2, . . . , in, j,{αk}k=1..n) ∣ αk ∶ ik → j}

which is covariant in j and contravariant in i2, . . . , in. For any β ∶ i1 → i′1 we have an
induced functor β̃ ∶ Xi′1

(I) → Xi1(I). Any object α ∈ Xi1(I) defines by pre-composition
with Sk(αk) for all 1 ≤ k ≤ n a morphism fα ∈ Hom(S1(i1), . . . , Sn(in);T (j)).
We define a functor

f1,● ∶ (Fun(I,D)S2)op ×⋯ × (Fun(I,D)Sn)op × Fun(I,D)T → Fun(I,D)S1

assigning to E2, . . . ,En;F the following functor Xi1(I) → DS1(i1):

α ↦ (fα)1,●(E2(i2), . . . ,En(in);F(j))

and then taking limXi1(I)
which exists because the fibers are required to be complete.

For the functoriality note that for β ∶ i1 → i′1 we have a natural morphism

lim
Xi1(I)

⋯ → lim
Xi′

1
(I)

⋯

induced by β̃.
We define a morphism

Ξ ∈ Homf(f1,●(E2, . . . ,En;F),E2, . . . ,En;F)

and we will show that it is coCartesian w.r.t. the first slot in a weak sense. At some
object i ∈ I, the morphism Ξ is given by composing the projections from

lim
Xi=i1(I)

f1,●
α (E2(i2), . . . ,En(in);F(j))

to f1,●
i (E2(i), . . . ,En(i);F(i)) (note that fi = fα for α = {idi}k) and then composing with

the coCartesian morphism (in D) in

Hom(f1,●
i (E2(i), . . . ,En(i);F(i)),E2(i), . . . ,En(i);F(i)).

One checks that the so defined Ξ is functorial in i. It remains to be shown that the
composition with Ξ induces an isomorphism

HomidS1
(E1; f1,●(E2, . . . ,En;F)) → Homf(E1, . . . ,En;F). (32)
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We will give a map in the other direction which is inverse to composition with Ξ. Let

a ∈ Homf(E1, . . . ,En;F)

be a morphism. To give a morphism on the left hand side of (32), for any i1 and
α ∈Xi1(I) we have to give a morphism (functorial in i1)

E1(i1) → f1,●
α (E2(i2); . . . ,En(in);F(j))

or, which is the same, a morphism

Homfα(E1(i1),E2(i2), . . . ,En(in);F(j)).

But we have such a morphism, namely the pre-composition of aj with the n-tuple
{Ek(αk)}k. (Because we know already that Fun(I,D) → Fun(I,S) is an opfibration
of multicategories, it suffices to establish that Ξ is coCartesian in this weak form.)

Remark 4.7.7. The construction in the proof of the above Proposition become much
clearer in the light of Definition 5.4.1 where a fibered multiderivator is (re)defined itself
as a kind of six-functor-formalism. For example, for S = {⋅} get an external and internal
monoidal product, resp. right adjoints which a clear relation. We have in that case

⊠ ∶ Fun(I,D) × Fun(J,D) → Fun(I × J,D)

by applying ⊗ point-wise and

HOMl/r ∶ Fun(I,D) × Fun(J,D) → Fun(Iop × J,D)

by applying Homl/r point-wise. The formula for the internal hom obtained in the proof
of the proposition boils down to the formula

Homl/r(E ,F)(i1) = ∫
i
HOMl/r(E(i),F(i))Hom(i1,i)

where ∫i is the categorical end. See section 6.1 for more explanations.

We will need later the following

Lemma 4.7.8. Let f ∈ Hom(S1, . . . , Sn;T ) be a morphism in Fun(I,S) for some n ≥ 2.
Consider the pull-back functor f j,● constructed in the proof of Proposition 4.7.6. Let

p ∶ I × J → I be the projection and fix objects E1,
ĵ. . .,En,F in D lying over S1,

ĵ. . ., Sn, T .
Then the natural morphism

p∗f j,●(E1,
ĵ. . .,En;F) → (p∗f)j,●(p∗E1,

ĵ. . ., p∗En;p∗F)

is an isomorphism, or, in other words, the functor p∗ ∶ Fun(I,D) → Fun(I × J,S) maps
Cartesian morphisms to Cartesian morphisms.
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Proof. Again, we assume j = 1 to ease the notation. The statement concerning the other
pull-backs is completely symmetric. We have by definition

(f1,●(E2, . . . ,En;F))(i′) = lim
α∈Xi1(I)

f1,●
α (E2(i1), . . . ,En(in);F(i′))

and

((p∗f)1,●(E2, . . . ,En;F))(i′, j′) = lim
α∈Xi1,j1(I×J)

(p∗f)1,●
α ((p∗E2)(i1, j1), . . . , (p∗En)(in, jn); (p∗F)(i′, j′))

The natural map in question is induced by the functor p̃ ∶ Xi1,j1(I × J) → Xi1(I) which
forgets all data involving the J direction. Now there is also a functor s̃ ∶ Xi1(I) →
Xi1,j1(I × J) which is constant on the J-component with value {idj1}k=1..n. We have
p̃ ○ s̃ = id and a chain of natural transformations s̃ ○ p̃⇐ ⋯ ⇒ id involving only data in
the J-direction. However, all the natural transformations are mapped to identities by
the functor

α ↦ lim
α∈Xi1,j1(I×J)

(p∗f)1,●
α ((p∗E2)(i1, j1), . . . , (p∗En)(in, jn); (p∗F)(i′, j′))

because everything is constant along the J-direction. This shows that the natural mor-
phism in the statement is an isomorphism.

If I is directed or inverse we want to show that also pI is a bifibration of multi-model-
categories in the sense of Definition 4.7.3.
Afterwards we will apply the following variant and generalization to multicategories of
the results in [SGA73, Exposé XVII, §2.4].

Proposition 4.7.9. Let p ∶ D → S be a bifibration of (multi-)model-categories in the
sense of 4.7.3. Let W be the union of the WS over all objects S ∈ S. Then the fibers
of p̃ ∶ D[W−1] → S (as ordinary categories) are the homotopy categories DS[W−1

S ] and
p̃ is again a bifibration of multicategories such that the push-forward F● along any F ∈
HomS(S1, . . . , Sn;T ) (for n ≥ 1) is the left derived functor of the corresponding push-
forward w.r.t. p. Similarly the pull-back w.r.t. some slot ist the right derived functor of
the corresponding pull-back w.r.t. p.

4.7.10. The above proposition and its proof have several well-known consequences
which we mention, despite being all elementary, because the proof below gives a uniform
treatment of all the cases.

1. The homotopy category of a model category is locally small and can be described
as the category of cofibrant/fibrant objects modulo homotopy of morphisms. Apply
the proof of the proposition to the (trivial) bifibration of ordinary categories D →
{⋅}.

2. Quillen adjunctions lead to an adjunction of the derived functors on the homotopy
categories. Apply the proposition to a bifibration of ordinary categories D →∆1.
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3. The homotopy category of a closed monoidal model category is a closed monoidal
category. Apply the proposition to a bifibration of multicategories D → {⋅}.

4. Quillen adjunctions in n variables lead to an adjunction in n variables on the
homotopy categories. Apply the proposition to a bifibration of multicategories D →
∆1,n, where the multicategory ∆1,n consists of n+1 objects and one n-ary morphism
connecting them.

Before proving Proposition 4.7.9, we define homotopy relations on HomF (E1, . . . ,En;F)
where F ∈ Hom(S1, . . . , Sn;T ) is a multimorphism in S.

Definition 4.7.11. 1. Two morphisms f and g in HomF (E1, . . . ,En;F) are called
right homotopic if there is a path object of F

F // F ′
pr1 //
pr2

// F

and a morphism Hom(E1, . . . ,En;F ′) over the same multimorphism F such that
the compositions with pr1 and pr2 are f and g, respectively.

2. For n ≥ 1, two morphisms f and g in HomF (E1, . . . ,En;F) are called i-left ho-
motopic if there is a cylinder object E ′i of Ei

Ei
ι1 //
ι2
// E ′i // Ei

and a morphism Hom(E1, . . . ,E ′i , . . . ,En;F) over F such that the compositions with
ι1 and ι2 are f and g, respectively.

Lemma 4.7.12. 1. The condition ‘right homotopic’ is preserved under pre-composition,
while the condition ‘i-left homotopic’ is preserved under post-composition.

2. Let n ≥ 1. If f, g ∈ Hom(E1, . . . ,En;F) are i-left homotopic and all Ei are cofibrant
then f and g are right homotopic. If f, g ∈ Hom(E1, . . . ,En;F) are right homotopic,
F is fibrant, and all Ej for j /= i are cofibrant then f and g are i-left homotopic.

3. Let n ≥ 1. In Hom(E1, . . . ,En;F) right homotopy is an equivalence relation if all
Ei are cofibrant. In Hom(E1, . . . ,En;F) i-left homotopy is an equivalence relation
if F is fibrant, and all Ej, j /= i are cofibrant

In particular on the category DCof,Fib of fibrant/cofibrant objects, i-left homotopy=right
homotopy is an equivalence relation, which is compatible with composition.

Proof. 1. is obvious.
2. If all Ei are cofibrant then also F●(E1, . . . ,En) is cofibrant and f and g correspond
uniquely to morphisms f ′, g′ ∶ F●(E1, . . . ,En) → F . Since f and g are i-left homotopic,
there is a cylinder object

Ei // // E ′i // Ei
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realizing the i-left homotopy. Since Ei is cofibrant so is E ′i . Hence also

F●(E1, . . . ,En) //// F●(E1, . . . ,E ′i , . . . ,En) // F●(E1, . . . ,En)

is a cylinder object because all Ej are cofibrant, and hence also f ′ and g′ are left homo-
topic. These are therefore also right homotopic and hence so are f and g. Dually we
obtain the second statement.
3. follows from [Hov99, Proposition 1.2.5, (iii)].

Lemma 4.7.13. Two i-left homotopic morphisms become equal in DCof[(WCof)−1].

Proof. This follows from the fact that a cylinder object

Ei
ι1 //
ι2
// E ′i

p // Ei

automatically lies in DCof if Ei does, and the two maps ι1 and ι2 become equal because
p becomes invertible.

We have to distinguish the easier case, in which all objects F●() for 0-ary morphisms

F are cofibrant. Otherwise we define a category ̃DCof[(WCof)−1] in which we set
HomF (;F) ∶= HomDS[W−1

S ](QF●();F) for all F , where F is a 0-ary morphism with

domain S. Composition is given as follows: For a morphism f ∈ HomG(E1, . . . ,En;F)
with cofibrant Ei and F and ξ ∶ QF●() → Ei, we define the composition ξ ○ f as the
following composition

E1

⋮î cocart // (F ○G)●(E2, î. . .,En) ∼ // G●(E1, . . . , F●(), . . . ,En) oo

En

G●(E1, . . . ,QF●(), . . . ,En)oo // G●(E1, . . . ,En) // F .

One checks that the so-defined composition is associative and independent of the choice
of the push-forwards.

Lemma 4.7.14. If the object F●() is cofibrant for every 0-ary morphism F then the
natural functor

DCof[(WCof)−1] → D[W−1]

is an equivalence of categories. Otherwise it is, if we replace DCof[(WCof)−1] by ̃DCof[(WCof)−1].
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Proof. The inclusion DCof → D induces a functor Ξ ∶ DCof[(WCof)−1] → D[W−1]. If the
objects F●() are not cofibrant then Ξ may be modified to a functor

̃DCof[(WCof)−1] → D[W−1]

as follows: a 0-ary morphism QF●() → F is mapped to the composition

○
cocart // F●() QF●()oo // F

in D[W−1].
We now specify a functor Φ in the other direction. Φ maps an object E to a cofibrant
replacement QE . For n ≥ 1, a morphism f ∈ Hom(E1, . . . ,En;F) over F is mapped to
the following morphism. Composing with the morphisms QEi → Ei, we get a morphism

f ′ ∈ Hom(QE1, . . . ,QEn;F) or equivalently a morphism Xi → F ●,i(QE1, î. . .,QEn;F).
Now choose a lift (dotted arrow in the diagram)

F ●,i(QE1, î. . .,QEn;QF)

��

QEi //

77

F ●,i(QE1, î. . .,QEn;F)

which exists because the vertical map is again a trivial fibration (because all the QEi
are cofibrant). The resulting map in Hom(QE1, . . . ,QEn;PF) is actually well-defined in
DCof[(WCof)−1]. Indeed, two different lifts are left homotopic because QEi is cofibrant
[Hov99, Proposition 1.2.5. (iv)], and hence the two morphisms in Hom(QE1, . . . ,QEn;QF)
become equal in DCof[(WCof)−1] as well by Lemma 4.7.13. From this it follows that Φ
is indeed a functor on n-ary morphisms for n ≥ 1.
For n = 0, a morphism f ∈ Hom(;F) over F corresponds to a morphism F●() → F .
If F●() is cofibrant, this morphism lifts (again uniquely up to right homotopy) to a
morphism F●() → QF , i.e. to a morphism in HomF (;QF). If F●() is not cofibrant then
the composition lifts to a morphism: QF●() → PF which is defined to be the image of
Φ. Furthermore Φ is inverse to Ξ up to isomorphism.

Lemma 4.7.15. Right homotopic morphisms become equal in DCof,Fib[(WCof,Fib)−1].

Proof. The assertion follows from the fact that there exists a path object

F F ′
pr2

oo
pr1oo Fioo

where F ′ is cofibrant and fibrant which realizes the right homotopy [Hov99, Proposition
1.2.6.]. This uses that all sources are cofibrant and the domain is fibrant. The two
morphisms pr1 and pr2 become equal because i becomes invertible.
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Lemma 4.7.16. The functor DFib,Cof[(WFib,Cof)−1] → DCof[(WCof)−1], and the func-
tor

̃DFib,Cof[(WFib,Cof)−1] → ̃DCof[(WCof)−1], respectively, are equivalences of multicate-
gories.

Proof. The proof is analogous to that of Lemma 4.7.14 but with some minor changes
which require, in particular, the chosen order of restriction to cofibrant and fibrant
objects. We specify again a functor Φ in the other direction. On objects, Φ maps
E to a fibrant replacement RE . Note that RE is still cofibrant. A morphism f ∈
Hom(E1, . . . ,En;F) over F corresponds to a morphism F●(E1, . . . ,En) → F . Now choose
a lift (dotted arrow in the diagram)

F●(E1, . . . ,En)

��

// F // RF

F●(RE1,E2, . . . ,En)

��
⋮

��
F●(RE1,RE2, . . . ,REn)

>>

It exists because the vertical maps are again trivial cofibrations (because all the Ei and
REi are cofibrant). The lift is well-defined in DCof,Fib[(WCof,Fib)−1], because two lifts in
the triangle above become right homotopic (becauseRF is fibrant by [Hov99, Proposition
1.2.5. (iv)]). Therefore also the corresponding morphisms in Hom(RE1, . . . ,REn;RF)
become equal in DCof,Fib[(WCof,Fib)−1] by the previous lemma. It follows that Φ is
indeed a functor which is inverse to the inclusion up to isomorphism.

Lemma 4.7.17. If the objects F●() for all 0-ary morphisms in S are cofibrant then the
natural functor

DFib,Cof[(WFib,Cof)−1] → DFib,Cof/ ∼

is an isomorphism of categories. Otherwise it is, if we modify the 0-ary morphisms as
before.

Proof. The natural functor DFib,Cof → DFib,Cof/ ∼ takes weak equivalences to isomor-
phisms [Hov99, Proposition 1.2.8] and has the universal property ofDFib,Cof[(WFib,Cof)−1]
by the same argument as in [Hov99, Proposition 1.2.9].

Proof of Proposition 4.7.9. The previous lemmas showed that D[W−1] is equivalent to
DFib,Cof/ ∼ if all objects of the form F●() are cofibrant, or if we replace the second

multicategory by ̃DFib,Cof/ ∼, where we set Hom
F, ̃DFib,Cof/∼

(;F) ∶= HomDS[W−1
S ](F●(),F)

for all 0-ary morphism F in S with domain S and for every F ∈ DS .
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It remains to show that the functor

p / ∼ ∶ DFib,Cof/ ∼ → S

is bifibered if all F●() are cofibrant or otherwise bifibered for n ≥ 1 (i.e. (co)Cartesian

morphisms exist for n ≥ 1). (The modification ̃DFib,Cof/ ∼ has been constructed in such
a way that it has coCartesian morphisms for n = 0.)
We show that p / ∼ is opfibered, the other case being similar. Let F be a multimor-
phism in S with codomain S. The set HomF (E1, . . . ,En;F) modulo right homotopy is
in bijection with the set HomDY (F●(E1, . . . ,En),F) modulo right homotopy. Since F is
fibrant, the latter set is the same as HomDS(R(F●(E1, . . . ,En)),F) modulo right homo-
topy. Hence morphisms in HomF (E1, . . . ,En;F) uniquely decompose as the composition

E1

⋮ cocart // F●(E1, . . . ,En) // R(F●(E1, . . . ,En))

En

followed by a morphism in HomDS(R(F●(E1, . . . ,En)),F) modulo right homotopy. More
generally, by the same argument, a morphism in some HomGF (F1, . . . ,E1, . . . ,En, . . . ,Fm;G),
where G is another multimorphism in S, modulo right homotopy factorizes uniquely into
the above composition followed by a morphism in

HomG(F1, . . . ,R(F●(E1, . . . ,En)), . . . ,Fm;G)

modulo right homotopy.
It remains to see that the push-forward in D[W−1] corresponds to the left derived functor
of F●. For any objects E1, . . . ,En the composition

RQE1

⋮ cocart // F●(RQE1, . . . ,RQEn) // R(F●(RQE1, . . . ,RQEn))

RQEn
is a coCartesian morphism lying over F , with domains isomorphic to the Ei.
However, the object R(F●(RQE1, . . . ,RQEn)) is isomorphic to the value of the left de-
rived functor of F● at E1, . . . ,En.

4.7.18. We now focus on the left case. If I is a directed diagram, we proceed to construct
a model structure on the fibers of the bifibration of multicategories (cf. 4.7.6):

Fun(I,D) → Fun(I,S) = S(I).
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This model structure is an analogue of the classical Reedy model structure and it has
the property that pull-backs w.r.t. diagrams and the corresponding relative left Kan
extension functors form a Quillen adjunction.
Let I ∈ Dir and let F ∶ I → S be a functor. We will define a model-category structure

(DF ,CofF ,FibF ,WF )

where DF is the fiber of Fun(I,D) over F and whereWF is the class of morphisms which
are element-wise in the corresponding WF (i).
For any G ∈ DF , and for any i ∈ I, we define a latching object

LiG ∶= colimIi{F (α)●G(j)}α∶j→i,

Here Ii is the full subcategory of I ×/I i consisting of all objects except idi. We have a
canonical morphism

LiG→ G(i)

in DF (i). We define FibF to be the class of morphisms which are element-wise in the
corresponding FibF (i). We define CofF to be the class of morphisms G → H such that
for any i ∈ I the induced morphism δ in the diagram

LiG

��

// LiH

��
G(i) // push-out

δ // H(i)

belongs to CofF (i). We call a morphism G→H in CofF temporarily an acyclic cofibra-
tion if δ is, in addition, a weak equivalence. The proof that this yields a model-category
structure is completely analogous to the classical case [Hov99, §5.1] (here this is recovered
if S is trivial). We need a couple of lemmas:

Lemma 4.7.19. The class of cofibrations (resp. acyclic cofibrations) in DF consists
precisely of the morphisms which have the left lifting property w.r.t. trivial fibrations
(resp. fibrations). These are stable under retracts.

Proof. This is shown as in the classical case: we first prove that acyclic cofibrations have
the lifting property w.r.t. fibrations. Consider a diagram

G1
//

α

��

H1

β
��

G2
// H2

where α is an acyclic cofibration and β is a fibration. We proceed by induction on n and
assume that for all i ∈ I with ν(i) < n a map G2(i) → H1(i) has been constructed such
that it is a lift in the above diagram, evaluated at i. For each i of degree n consider
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the following diagram (where the morphism LiG2 → LiH1 → H1(i) is formed using the
already constructed lifts):

G1(i)∐LiG1
LiG2

//

α′(i)

��

H1(i)

β(i)

��
G1(i) // H2(i)

Here α′(i) is a trivial CofF (i)-cofibration by definition, and β(i) is a FibF (i)-fibration
by definition. Hence a lift exists. In the same way the statement for cofibrations and for
trivial fibrations is shown. Closure under retracts is left as an exercise for the reader. The
assertion that the class of acyclic cofibrations (resp. cofibrations) is precisely the class
of morphisms that have the left lifting property w.r.t. fibrations (resp. trivial fibrations)
follows from the retract argument as for model categories.

Lemma 4.7.20. There exists a functorial factorization of morphisms in DF into a
fibration followed by an acyclic cofibration and into a trivial fibration followed by a cofi-
bration.

Proof. We show this again by induction on n. We do the first case, the other being
similar. Let G→K a morphism in DF . We have the following diagram:

LiG //

��

LiH //

��

LiK

��
G(i) // G(i)∐LiGLiH

// H(i) // K(i)

Here the top row is constructed using the already defined factorizations. The object
H(i) and the dotted maps are constructed as the factorization in the model category
DF (i) into a trivial CofF (i)-cofibration followed by FibF (i)-fibration.

Lemma 4.7.21. The classes of cofibrations, acyclic cofibrations, fibrations and weak
equivalences are stable under composition.

Proof. This follows from the characterization by a lifting property (resp. by definition
for the case of the weak equivalences).

Lemma 4.7.22. Acyclic cofibrations are precisely the trivial cofibrations.

Proof. We begin by showing that an acyclic cofibration is a weak equivalence. It suffices
to show that in the diagram

LiG

��

// LiH

��
G(i) // H(i)
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the top horizontal morphism is a trivial cofibration. Then the lower horizontal morphism
is a composition of two trivial cofibrations and hence is a weak equivalence. The top
morphism is indeed a trivial cofibration because the morphism of Ii-diagrams (cf. 4.7.18)

{F (α)●G(j)}α∶j→i → {F (α)●G(j)}α∶j→i

is a trivial cofibration in the classical sense (i.e. over the constant diagram over Ii with
value F (i)) because of Lemmas 4.7.23 and 4.7.24.
In the other direction, let f be a trivial cofibration and factor it as f = pg, where g is
an acyclic cofibration and p is a fibration. It follows that p is a weak-equivalence. Now
construct a lift in the diagram

F
g //

f
��

H

p

��
G G

This shows that f is a retract of g, and hence is an acyclic cofibration as well.

Lemma 4.7.23. For each (1-ary) morphism of diagrams f ∈ HomS(S1;T ) there is an
associated push-forward and an associated pull-back, defined by taking the point-wise
push-forward f●, and point-wise pull-back f● (cf. 4.7.6), respectively. The push-forward
f● respects the classes of cofibrations and acyclic cofibrations. The pull-back f● respects
the classes of fibrations and trivial fibrations.

Proof. It suffices (by the lifting property) to show that f● respects fibrations and trivial
fibrations. This is clear because they are defined point-wise.

A posteriori this will say that the pair of functors f●, f● form a Quillen adjunction
between the corresponding model categories (cf. 4.7.28).

Lemma 4.7.24. Let i ∈ I be an object, let ι ∶ Ii → I be the corresponding latching
category with its natural functor to I, and let Fi ∶= ι∗F ∶ Ii → S be the restriction of F
to Ii. The pull-back ι∗ ∶ DF → DFi respects cofibrations and acyclic cofibrations.

Proof. It is easy to see that the pull-back induces an isomorphism of the corresponding
latching objects as in the classical case.

Corollary 4.7.25. The structure constructed in 4.7.18 defines a model category.

Proof. This follows from the previous Lemmas.

Proposition 4.7.26. For any morphism of directed diagrams α ∶ I → J , and for any
functor F ∶ J → S, the functor

α∗ ∶ DF → Dα∗F
has a left adjoint αF! . The pair α∗, αF! define a Quillen adjunction.
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Proof. That the two functors define a Quillen adjunction is clear once we have shown
that α! exists because α∗ preserves fibrations and weak equivalences. Let G be an object
of DF . We define

(α!G)(j) ∶= colimI×/J j S(µ)●ι
∗
jG.

For each morphism µ ∶ j → j′ we get a functor

µ̃ ∶ I ×/J j → I ×/J j
′

and hence an induced morphism

F (µ)●S(µ)●ι∗jG→ µ̃∗S(µ′)●ι∗j′ .

Sincd F (µ)● commutes with colimits we get a morphism

F (µ)● colimI×/J j S(µ)●ι
∗
jG→ colimI×/J j

′ S(µ′)●ι∗j′

which we define to be (α!G)(µ). We now proceed to show that the functor we have
constructed is indeed adjoint to α∗. A morphism µ ∶ G → α∗H is given by a collection
of maps a(i) ∶ G(i) → H(α(i)) for all objects i ∈ I, subject to the condition that the
diagram

F (α(λ))●G(i) F (α(λ))●a(i)//

G(λ)
��

F (α(λ))●H(α(i))

H(α(λ))
��

G(i′) a(i′) // H(α(i′))

commutes for each morphism λ ∶ i → i′ in I. For each j ∈ J and morphism µ ∶ α(i) → j
we get a morphism

H(µ) ○ (F (µ)●a(i)) ∶ F (µ)●G(i) →H(j)

and therefore for fixed j a morphism

colimI×/J j S(µ)●ι
∗
jG→H(j).

One checks that this yields a morphism α!G → H. On the other hand, let b ∶ α!G → H
be a morphism given by

b(j) ∶ colimI×/J j S(µ)●ι
∗
jG→H(j)

or equivalently for all µ ∶ α(i) → j by morphisms

F (µ)●G(i) →H(j).

In particular, if µ is the identity of α(i), we get morphisms

G(i) →H(α(i))

which constitute a morphism of diagrams G→ α∗H. One checks that these associations
are inverse to each other.

114



Lemma 4.7.27. Let α ∶ I → J be a morphism of directed diagrams and let j be an object
of J . The functor ι∗j ∶ DI → DI×/J j respects cofibrations and trivial cofibrations.

Proof. This follows easily from the fact that ιj induces a canonical identification

Ii = (I ×/J j)µ

for any µ = (i, α(i) → j). For this implies that we have a canonical isomorphism LiG ≅
Lµι

∗
jG.

Lemma 4.7.28. The bifibration of multicategories, defined in 4.7.6

Fun(I,D) → Fun(I,S) = S(I)

equipped with the model-category structures constructed in 4.7.18 is a bifibration of multi-
model-categories in the sense of 4.7.3.

Proof. First for each multimorphism of diagrams f ∈ HomS(S1, . . . , Sn;T ) we have to
see that the push-forward and the various pull-backs form a Quillen adjunction in n
variables. The case n = 1 has been treated above. We only work out the case n = 2, the
proof for higher n being similar. It suffices to check the following: for any cofibration
E1 → E ′1 and for any fibration F → F ′ the dotted induced morphism in the following
diagram

f●,2(E ′1;F) // pull-back //

��

f●,2(E ′1;F ′)

��
f●,2(E1;F) // f●,2(E1;F ′)

is a fibration. Since fibrations are defined point-wise and fibered products are computed
point-wise, we have only to see that the assertion holds point-wise. Now F → F ′ is a
point-wise fibration and E1 → E ′1 is a Reedy cofibration, so by the reasoning in the proof
of Lemma 4.7.22 it is in particular a point-wise cofibration. Hence the assertion holds
because of the assumption that D → S is a bifibration of multi-model-categories (4.7.3).
The requested property for the 0-ary push-forward is easier and is left to the reader.

Proposition 4.7.29. The functor D(I) → S(I) defined in 4.7.2 is a bifibration of mul-
ticategories whose fibers are equivalent to DF [W−1

F ]. The pull-back and push-forward
functors are given by the left derived functors of f●, and by the right derived functors of
f●,j, respectively.

Proof. We have seen in 4.7.28 that the fibers of Fun(I,D) → S(I) are a bifibration of
multi-model-categories in the sense of 4.7.3. Therefore by Proposition 4.7.9 we get that
D(I) → S(I) are bifibered multicategories with the requested properties.

Proof of Theorem 4.7.5. (Der1) and (Der2) for D and S are obvious.
(FDer0 left) and the first part of (FDer0 right) follow from Theorem 4.7.29.
(FDer3 left) follows from 4.7.26.
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(FDer4 left): By construction of α! the natural base-change

colimS(µ)●ι∗jG→ j∗α!G (33)

is an isomorphism for the non-derived functors. For the derived functors the same follows
because all functors in the equation respect cofibrations and trivial cofibrations and all
functors which have to be derived in (33) are left Quillen functors and hence can be
derived by composing them with cofibrant replacement.
(FDer3 right) and (FDer4 right) are shown precisely the same way.
(FDer5 left): Fixing a morphism f ∈ Hom(S1, . . . , Sn;T ) in S and objects E2, . . . ,En over
S2, . . . , Sn we have by Theorem 4.7.29 a push-forward functor

D(I × J)p∗S1 → D(I × J)p∗T
E1 ↦ (p∗f)●(E1, p

∗E2, . . . , p
∗En)

(we denote it with the same letter as the underived version) which, by (FDer0 left),
defines a morphism of pre-derivators

DS1 → DT .

We first show that it preserves colimits, i.e. that for p ∶ J → ⋅ we have that for all
E1 ∈ Dp∗S1(I × J) the natural morphism

f●(p∗E1,E2,⋯,En) → p∗(p∗f)●(E1, p
∗E2,⋯, p∗En)

(where we wrote p also for the projection p ∶ I × J → I) is an isomorphism. This is the
same as showing that

p∗f1,●(E1, . . . ,En) → (p∗f)1,●(p∗E1, . . . , p
∗En)

is an isomorphism. This follows from Lemma 4.7.8 because it suffices to check this for
the underived functors. Now let α ∶ I → J be an opfibration. To show that

f●(α∗E1,E2, . . . ,En) → α∗(α∗f)●(E1, α
∗E2, . . . , α

∗En)

is an isomorphism we may show this point-wise. Indeed, after applying j∗ we get

(j∗f)●(j∗α∗E1, j
∗E2, . . . , j

∗En) → j∗α∗(α∗f)●(E1, α
∗E2, . . . , α

∗En)

(j∗f)●(p∗ι∗j E1, j
∗E2, . . . , j

∗En) → p∗ι
∗
j (α∗f)●(E1, α

∗E2, . . . , α
∗En)

where ιj ∶ Ij → I is the inclusion of the fiber. Note that the commutative diagram

Ij
ιj //

p

��

I

α

��
j // J
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is homotopy exact by Lemma 4.3.23, 2. because α is an opfibration. Finally we get the
morphism

(j∗f)●(p∗ι∗j E1, j
∗E2, . . . , j

∗En) → p∗(j∗f)●(ι∗j E1, p
∗j∗E2, . . . , p

∗j∗En)

which is an isomorphism by the above reasoning.
By Lemma 4.3.8 the full content of (FDer0 right) follows from (FDer5 left) while (FDer5
right) follows from (FDer0 left).

5 Fibered (2-)multiderivators as (op)fibrations
of 2-multicategories

The purpose of this chapter is twofold. Firstly, we explain how a fibered derivator can
alternatively also be seen as a certain fibration of 2-multicategories (more precisely as
a kind of Wirthmüller context). Secondly, we will define 2-pre-multiderivators, a
2-categorical analogue of pre-multiderivators, and fibered derivators over such. This will
be essential to define derivator six-functor-formalisms. In contrast to the articles
underlying this thesis, we will work with the 2-categorical version from the beginning
for efficiency.

5.1 2-pre-multiderivators

We fix a diagram category Dia (cf. Definition 4.1.1) once and for all. If one wants to
specify Dia, one would speak about e.g. 2-pre-multiderivators, or fibered multiderivators,
with domain Dia. For better readability we omit this. This is justified because all
arguments of this chapter are completely formal, not depending on the choice of Dia at
all.

Definition 5.1.1. A 2-pre-multiderivator is a functor S ∶ Dia1−op → 2-MCAT which
is strict in 1-morphisms (functors) and pseudo-functorial in 2-morphisms (natural trans-
formations). More precisely, it associates with a diagram I a 2-multicategory S(I), with
a functor α ∶ I → J a strict functor

S(α) ∶ S(J) → S(I)

denoted also α∗, if S is understood, and with a natural transformation µ ∶ α ⇒ α′ a
pseudo-natural transformation

S(η) ∶ α∗ ⇒ (α′)∗

such that the following holds:

1. The association
Fun(I, J) → Fun(S(J),S(I))

given by α ↦ α∗, resp. µ↦ S(µ), is a pseudo-functor (this involves, of course, the
choice of further data). Here Fun(S(J),S(I)) is the 2-category of strict 2-functors,
pseudo-natural transformations, and modifications.
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2. (Strict functoriality w.r.t. compositons of 1-morphisms) For functors α ∶ I → J and
β ∶ J →K, we have an equality of pseudo-functors Fun(I, J) → Fun(S(I),S(K))

β∗ ○ S(−) = S(β ○ −).

A symmetric, resp. braided 2-pre-multiderivator is given by the structure of
strictly symmetric (resp. braided) 2-multicategory on S(I) such that the strict functors
α∗ are equivariant w.r.t. the action of the symmetric groups (resp. braid groups).
Similarly we define a lax, resp. oplax, 2-pre-multiderivator where the same as before
holds but where the

S(η) ∶ α∗ ⇒ (α′)∗

are lax (resp. oplax) natural transformations and in 1. “pseudo-natural transformations”
is replaced by “lax (resp. oplax) natural transformations”.

Definition 5.1.2. A strict morphism p ∶ D→ S of 2-pre-multiderivators (resp. lax/oplax
2-pre-multiderivators) is given by a collection of strict 2-functors

p(I) ∶ D(I) → S(I)

for each I ∈ Dia such that we have S(α)○p(J) = p(I)○D(α) and S(µ)∗p(J) = p(I)∗D(µ)
for all functors α ∶ I → J , α′ ∶ I → J and natural transformations µ ∶ α⇒ α′ as illustrated
by the following diagram:

D(J) p(J) //

D(α) D(µ)
⇒

��

D(α′)

��

S(J)

S(α) S(µ)
⇒

��

S(α′)

��
D(I) p(I) // S(I)

Definition 5.1.3. Given a (lax/oplax) 2-pre-derivator S, we define

S1−op ∶ I ↦ S(Iop)1−op

and given a (lax/oplax) 2-pre-multiderivator S, we define

S2−op ∶ I ↦ S(I)2−op

reversing the arrow in the (lax/oplax) pseudo-natural transformations. I.e. the second
operation interchanges lax and oplax 2-pre-multiderivators.

5.1.4. As with usual pre-multiderivators we consider the following axioms:

(Der1) For I, J ∈ Dia, the natural functor D(I∐J) → D(I) × D(J) is an equivalence of
2-multicategories. Moreover D(∅) is not empty.
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(Der2) For I ∈ Dia the ‘underlying diagram’ functor

dia ∶ D(I) → Fun(I,D(⋅)) resp. Funlax(I,D(⋅)) resp. Funoplax(I,D(⋅))

is 2-conservative (this means that it is conservative on 2-morphisms and that a
1-morphism α is an equivalence if dia(α) is an equivalence).

5.1.5. Let D be a 2-multicategory. We define some (lax/oplax) 2-pre-multiderivators
which are called representable.
We define a 2-pre-multiderivator associated with D as

D ∶ Dia → 2-MCAT
I ↦ Fun(I,D)

where Fun(I,D) is the 2-multicategory of pseudo-functors, pseudo-natural transforma-
tions, and modifications. This is usually considered only if all 2-morphisms in D are
invertible.
We define a lax 2-pre-multiderivator as

Dlax ∶ Dia → 2-MCAT
I ↦ Funlax(I,D)

where Funlax(I,D) is the 2-multicategory of pseudo-functors, lax natural transforma-
tions, and modifications.
We similarly define an oplax 2-pre-multiderivator Doplax.

Proposition 5.1.6. 1. If D → S is a 1-fibration (resp. 1-opfibration, resp. 2-fibration,
resp. 2-opfibration) of 2-categories then D(I) → S(I) is a 1-fibration (resp. 1-
opfibration, resp. 2-fibration, resp. 2-opfibration) of 2-categories.

2. If D → S is a 1-fibration and 2-opfibration of 2-categories then Dlax(I) → Slax(I)
is a 1-fibration and 2-opfibration of 2-categories. If D → S is a 1-opfibration and
2-fibration of 2-multicategories then Dlax(I) → Slax(I) is a 1-opfibration and 2-
fibration of 2-multicategories.

If D → S is a 1-fibration and 2-fibration of 2-categories then Doplax(I) → Soplax(I)
is a 1-fibration and 2-fibration of 2-categories. If D → S is a 1-opfibration and
2-opfibration of 2-multicategories then Doplax(I) → Soplax(I) is a 1-opfibration and
2-opfibration of 2-multicategories.

3. If D → S is a 1-bifibration and 2-isofibration of 2-multicategories with complete
1-categorical fibers then D(I) → S(I) is a 1-bifibration and 2-isofibration of 2-
multicategories.

The proof will be sketched in section 5.6.
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5.2 Fibered (2-)multiderivators as (op)fibrations of 2-multicategories

Let Dia be a diagram category (cf. Definition 4.1.1). Assume that strictly associative
fiber products have been chosen in Dia. Assume also for this section that Dia permits
arbitrary Grothendieck constructions, i.e. if I is in Dia and F ∶ I → Dia is a pseudo-
functor, then ∫ F is in Dia.
In this section we will define a category Diacor of correspondences in Dia similarly to the
category of correspondences in a usual category considered in Section 3.1. A Wirthmüller
context over Diacor in a similar way as defined in Section 3.1 will be essentially equivalent
to a closed monoidal derivator with domain Dia (without the axioms (Der1) and (Der2)).
Also the more general notion of fibered multiderivator developed in Chapter 4 can be
easily encoded as a certain (op)fibration of 2-multicategories. Since Dia is a 2-category,
the definition of Diacor is a bit more involved.

Definition 5.2.1. Let I1, . . . , In, J be diagrams in Dia. Define Cor(I1, . . . , In;J) to be
the following strict 2-category:

1. The objects are diagrams of the form

A
α1

tt
αn��

β

��
I1 ⋯ In ; J

with A ∈ Dia.

2. The 1-morphisms (A,α1, . . . , αn, β) ⇒ (A′, α′1, . . . , α
′
n, β

′) are functors γ ∶ A → A′

and natural transformations ν1, . . . , νn, µ:

A

αi ��

γ //

⇒νi

A′

α′i��
Ii

A

β ��

γ //

⇐µ

A′

β′��
J

3. The 2-morphisms are natural transformations η ∶ γ ⇒ γ′ such that (α′i ∗ η) ○ νi = ν′i
and (β′ ∗ η) ○ µ′ = µ hold.

We define also the full subcategory CorF (I1, . . . , In;J) of those objects for which α1 ×
⋯×αn ∶ A→ I1 ×⋯× In is a fibration and β is an opfibration. The γ’s do not need to be
morphisms of fibrations, respectively of opfibrations.

5.2.2. For a 2-category C, denote by τ1(C) the 1-category in which the morphism sets or
classes are the π0 (sets or classes of connected components) of the respective categories
of 1-morphisms in C.

Definition 5.2.3. We define the 2-multicategory of correspondences of diagrams
Diacor as the following 2-multicategory:

120



1. The objects are diagrams I ∈ Dia.

2. For every I1, . . . , In, J diagrams in Dia, the category HomDiacor(I1, . . . , In;J) of
1-morphisms of Diacor is the truncated category τ1(CorF (I1, . . . , In;J)).

Composition is defined by taking fiber products. The diagram (forgetting the functor to
Ji)

A ×Ji B

vv ((
A

tt ��

βA

++

B

ss
αB,i��   **I1 ⋯ In ; J1 ⋯ Ji ⋯ Jm ; K

is defined to be the composition of the left hand side correspondence in Hom(I1, . . . , In;Ji)
with the right hand side correspondence in Hom(J1, . . . , Jm;K). One checks that A ×Ji
B → J1×⋯×Ji−1×I1×⋯×In×Ji+1×⋯×Jm is again a opfibration and that A×JiB →K is
again a fibration. It remains to be seen that the composition is functorial in 2-morphisms
and that the relations in π0 are respected. This follows from the following

Lemma 5.2.4. The fiber product construction above defines a pseudo-functor of 2-
categories

CorF (I1, . . . , In;Ji)×CorF (J1, . . . , Jm;K) → CorF (J1, . . . , Ji−1, I1, . . . , In, Ji+1, . . . , Jm;K)

Proof. By assumption the functor βA is an opfibration and the functor αB,1 ×⋯×αB,m
is a fibration for all objects (A,αA,1, . . . , αA,n, βA)×(B,αB,1, . . . , αB,m, βB) of the source
2-category. We choose associated pseudo-functors denoted by − ↦ (−)●, resp. − ↦ (−)●.
A 1-morphism (γA, νA,1, . . . , νA,n, µA) × (γB, νB,1, . . . , νB,n, µB) is sent to the following
1-morphism: We have a well-defined coCartesian morphism (in the first row lying over
the second row) w.r.t. βA ∶ A→ Ji

γA(a) //
_

��

µA(a)●γA(a)_

��
βA′(γA(a))

µA(a) // βA(a) = αB,i(b)

and a well-defined Cartesian morphism (in the first row lying over the second row) w.r.t.
(αB,1, . . . , αB,m) ∶ B → J1 ×⋯ × Jm:

(id, . . . , νB,i(b), . . . , id)●γB(b) //
_

��

γB(b)
_

��
αB′,1(b)γB(b), . . . , αB,i(b), . . . , αB′,m(b)γB(b)

id,...,νB,i(b),...,id// αB′,1(b)γB(b), . . . , αB′,m(b)γB(b)
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Using these (co)Cartesian morphisms we define a functor

γA × γB ∶ A ×Ji B → A′ ×Ji B′

given by
(a, b) ↦ (µA(a)●γA(a), (id, . . . , νB,i(b), . . . , id)●γB(b)).

The required natural transformations ν1, . . . , νm+n−1, µ are given as follows: We have a
2-commutative diagram

A ×Jj B //

γA×γB

��

A
αA,j

��
⇓ Ij

A′ ×Jj B′ // A′

αA′,j

@@

where the 2-morphism is given by the composition

αA,i(a) → αA′,i(γA(a)) → αA′,j(µA(a)●γA(a))

We have a 2-commutative diagram for j /= i:

A ×Ji B //

γA×γB

��

B
αB,j

��
⇓ Jj

A′ ×Ji B′ // B′

αB′,j

??

where the 2-morphism is given by

αB,j(b) → αB′,j(γB(b)) = αB′,j((id, . . . , νB,i(b), . . . , id)●γB(b))

We have a 2-commutative diagram:

A ×Ji B //

γA×γB

��

B
βB′

  
⇑ K

A′ ×Ji B′ // B′

βB′

>>

where the 2-morphism is given by the composition

βB′((id, . . . , νB,i(b), . . . , id)●γB(b)) → βB′(γB(b)) → βB(b).
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A 2-morphism given by a pair κA ∶ γA ⇒ γ′A and κB ∶ γB ⇒ γ′B is sent to the natural
transformation

γA × γB ⇒ γ′A × γ′B
given by the dotted maps in the commuting diagrams

γA(a) //

κA(a)

��

µA(a)●γA(a)

��
κA(a)●µA(a)●γA(a)

∼

��
µ′A(a)●γA(a)

��
γ′A(a) // µ′A(a)●γ′A(a)

γB(b) oo

κB(b)

��

(id, . . . , νB,i(b), . . . , id)●γB(b)
OO

(id, . . . , κB(b), . . . , id)●(id, . . . , νB,i(b), . . . , id)●γB(b)
OO
∼

(id, . . . , ν′B,i(b), . . . , id)●γB(b)

��
γ′B(b) oo (id, . . . , ν′B,i(b), . . . , id)●γ′B(b)

We leave it to the reader to check that this defines indeed a pseudo-functor (this follows
easily because the used push-forward and pull-back functors form a pseudo-functor with
source Ji, resp. J1 ×⋯ × Jm) and that all relevant diagrams commute.

We could also have used τ1(Cor(I1, . . . , In;J)) (without the restriction F ) in the defini-
tion of Diacor and defined composition involving the comma category. This leads only to
a bicategory which, however, is equivalent to the present strict one (cf. Corollary 5.2.7
and the discussion thereafter). The composition pseudo-functor is a bit easier to describe
in that case.

5.2.5. Recall the procedure from [Cis03, §1.3.1] to associate with a pseudo-functor
F ∶ Iop × J → Dia, a category

∫ ∇F = ∇∫ F
α

yy

β

%%
I J

such that α is a fibration and β is an opfibration. This is done by applying the
Grothendieck construction, and its dual, respectively, to the two variables separately
(cf. 2.4.14, 2.4.15). Explicitly, the category ∫ ∇F has the objects (i, j,X ∈ F (i, j))
and the morphisms (i, j,X ∈ F (i, j)) → (i′, j′,X ′ ∈ F (i′, j′)) are triples consisting of
morphisms a ∶ i → i′ and b ∶ j → j′ and a morphism F (idi, b)X → F (a, idj)X ′. The
pseudo-functors F ∶ Iop × J → Dia form a 2-category Fun(Iop × J,Dia) consisting of
pseudo-functors, pseudo-natural transformations and modifications.

Proposition 5.2.6. There is a pair of pseudo-functors

Fun(Iop
1 ×⋯ × Iop

n × J,Dia)
Ξ //

Cor(I1, . . . , In;J)
Π

oo
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such that there are morphisms in the 2-category of endofunctors of Cor(I1, . . . , In;J)

Ξ ○Π
//
idCor(I1,...,In;J)oo

which are inverse to each other up to chains of 2-morphisms, and such that there are
morphisms in the 2-category of endofunctors of Fun(Iop

1 ×⋯ × Iop
n × J,Dia)

Π ○Ξ
//
idFun(Iop

1 ×⋯×Iop
n ×J,Dia)oo

which are inverse to each other up to chains of 2-morphisms.

Proof. The pseudo-functor Ξ is defined as follows: A pseudo-functor F ∈ Fun(Iop
1 ×⋯ ×

Iop
n × J,Dia) is sent to the category ∫ ∇F defined above, which comes equipped with a

fibration to I1 × ⋅ ⋅ ⋅ × In and an opfibration to J . The fact that these are a fibration,
and an opfibration, respectively, does not play any role for this proposition, however. A
natural transformation µ ∶ F → G is sent to the obvious functor µ̃ ∶ ∫ ∇F → ∫ ∇G. A
modification µ⇒ µ′ induces a natural transformation µ̃⇒ µ̃′ which whiskered with any
of the projections to the Ik or to J gives an identity.
Π is defined as follows: A correspondence (A,α1, . . . , αn, β) in Cor(I1, . . . , In;J) is sent
to the following functor:

Iop
1 ×⋯ × Iop

n × J → Dia

(i1, . . . , in, j) ↦ {(i1, . . . , in)} ×/(I1×⋅⋅⋅×In) A ×/J {j}

A 1-morphism given by γ ∶ A→ A′ and ν1, . . . , νn, µ, respectively, induces functors

γ̃(i1, . . . , in; j) ∶ {(i1, . . . , in)} ×/(I1×⋅⋅⋅×In) A ×/J {j} → {(i1, . . . , in)} ×/(I1×⋅⋅⋅×In) A
′ ×/J {j}

which assemble to a pseudo-natural transformation. A 2-morphism µ ∶ γ ⇒ γ′ in-
duces a natural transformation between the corresponding functors γ̃(i1, . . . , in; j) ⇒
γ̃(i1, . . . , in; j) which assemble to a modification.
We now proceed to construct the required 1-morphisms: Π ○Ξ maps a functor F to the
functor

F ∶ (i1, . . . , in, j) ↦ {(i1, . . . , in)} ×/(I1×⋅⋅⋅×In) (∫ ∇F ) ×/J {j}.

Pointwise the required natural transformation id → Π ○ Ξ is given by sending an object
X of F (i1, . . . , in; j) to the object (i1, . . . , in, j,X) of ∫ ∇F together with the various
identities idi1 , . . . , idin , idj . Pointwise the required natural transformation Π ○ Ξ → id
is given by sending an object (i′1, . . . , i′n, j′,X ∈ F (i′1, . . . , i′n, j′)) of ∫ ∇F together with
αk ∶ ik → i′k and β ∶ j′ → j to F (α1, . . . , αn;β)X ∈ F (i1, . . . , in; j). One easily checks
that these natural transformations even constitute an adjunction in the 2-category of
endofunctors of Fun(Iop

1 × . . . × Iop
n × J,Dia).

The pseudo-functor Ξ ○Π is given by

(A,α1, . . . , αn, β) ↦ (I1 ×⋯ × In ×/(I1×⋯×In) A ×/J J ; prI1 , . . . ,prIn ,prJ)
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together with the various projections. First we will construct an adjunction of Ξ ○ Π
with the pseudo-functor

(A,α1, . . . , αn, β) ↦ (I1 ×⋯ × In ×/(I1×⋯×In) A; prI1 , . . . ,prIn , β).

In one direction we have the functor which complements an object (a, . . . ) by the identity
idβ(a). In the other direction we have the forgetful functor, forgetting β(a) → j. Those
two functors form an adjunction in the 2-category of endofunctors of Cor(I1, . . . , In;J).
Similarly we have an adjunction between

(A,α1, . . . , αn, β) ↦ (I1 ×⋯ × In ×/(I1×⋯×In) A; prI1 , . . . ,prIn , β)

and the identity
(A,α1, . . . , αn, β) ↦ (A,α1, . . . , αn, β).

Observe that the functor Ξ actually has values in the full subcategory CorF (I1, . . . , In;J).

Corollary 5.2.7. We have equivalences of categories (cf. 5.2.2):

τ1(Fun(Iop
1 ×⋯ × Iop

n × J,Dia)) ≅ τ1(Cor(I1, . . . , In;J)) ≅ τ1(CorF (I1, . . . , In;J)),

Hence we could have defined the 2-multicategory Diacor (as a bimulticategory) using any
of these three models for the categories of 1-morphisms. The composition of 1-morphisms
looks as follows in these three models:

1. Using τ1(CorF (I1, . . . , In;J)) we get the composition as defined before:

A

tt �� ��
I1 ⋯ In ; Ji

○i

B

tt ~~ ��
J1 ⋯ Jm ; K

=

A ×Ji B

{{ttrr
## **J1 ⋯ I1 . . . In . . . Jm ; K

2. Using τ1(Cor(I1, . . . , In;J)) the composition involves the comma category:

A

tt �� ��
I1 ⋯ In ; Ji

○i

B

tt ~~ ��
J1 ⋯ Jm ; K

=

A ×/Ji B

{{ttrr
$$ **J1 ⋯ I1 . . . In . . . Jm ; K
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3. Using τ1(Fun(Iop
1 ×⋯ × Iop

n × J,Dia)) we get for pseudo-functors

F ∶ Iop
1 ×⋯ × Iop

n × Ji → Dia G ∶ Jop
1 ×⋯ × Jop

m ×K → Dia

that
G ○i F = hocoendJiG × F,

where hocoend is defined in Definition 5.2.8 below.

All these compositions are compatible with the equivalences of Corollary 5.2.7. However,
only using the model CorF (I1, . . . , In;J) we get strict associativity and the existence of
identities.

Definition 5.2.8. Let J be a diagram and let F ∶ Jop × J → Dia be a pseudo-functor.
We define the diagram hocoendJF as the category whose objects are the pairs (j, x)
with j ∈ J and x ∈ F (j, j) and whose morphisms (α, γ); (j, x) → (j′, x′) are the pairs
consisting of a morphisms α ∶ j → j′ and a morphism γ ∶ F (idj , α)x→ F (α, idj′)x′. The
composition of two morphisms (α, γ); (j, x) → (j′, x′) and (α′, γ′); (j′, x′) → (j′′, x′′) is
defined by (α′, γ′) ○ (α, γ) = (α′α, (F (α, idj′′)γ′) ○ (F (idj , α′)γ)).

Proposition 5.2.9. 1. There is a pseudo-functor of 2-multicategories

Dia2−op → Diacor

where Dia2−op is turned into a 2-multicategory by setting

HomDia2−op(I1, . . . , In;J) ∶= Hom(I1 ×⋯ × In, J)op.

2. There is a pseudo-functor of 2-multicategories

Dia1−op → Diacor

where Dia1−op is turned into a 2-multicategory by setting

HomDia1−op(I1, . . . , In;J) ∶= Fun(J, I1) ×⋯ × Fun(J, In).

In particular for any I ∈ Dia there is a natural pseudofunctor of 2-multicategories

{⋅} → Diacor

with value I.

Proof. The functor
Dia2−op → Diacor

is the identity on objects. A 1-morphism α ∈ Hom(I1 × ⋯ × In, J) is mapped to the
correspondence

I1 ×⋯ × In ×/J J

uu �� ))I1 ⋯ In ; J
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and a 2-morphism µ ∶ α → α′ to the morphism (I1×⋯×In)×/α′,J J → (I1×⋯×In)×/α,J J
induced by µ. Note that the projections from I1 ×⋯× In ×/J J to I1 ×⋯× In, and to J ,
are respectively an opfibration, and a fibration.
To establish the pseudo-functoriality, we have to show that there is a natural isomorphism
of correspondences between

(I1 ×⋯ × In) ×/Ji Ji ×Ji (J1 ×⋯ × Jm) ×/K K

= (I1 ×⋯ × In) ×/Ji (J1 ×⋯ × Jm) ×/K K

and
(J1 ×⋯ × Ji−1 × I1 ×⋯ × In × Ji+1 ×⋯ × Jm) ×/K K

in τ1(CorF (J1, . . . , Ji−1, I1, . . . , In, Ji+1, . . . , Jm;K)). One checks that there is even an
adjunction between the two categories which establishes this isomorphism.
The pseudo-functor

Dia1−op → Diacor

sends a multimorphism given by {αk ∶ J → Ik} to the correspondence

I1 ×⋯ × In ×/(I1×⋯×In) J

tt ��
**I1 ⋯ In ; J

To establish the pseudo-functoriality, we have to show that there is a natural isomorphism
of correspondences between

(I1 ×⋯ × In) ×/(I1×⋯×In) Ji ×Ji (J1 ×⋯ × Jm) ×/(J1×⋯×Jm)K

= (I1 ×⋯ × In) ×/(I1×⋯×In) (J1 ×⋯ × Jm) ×/(J1×⋯×Jm)K

and

(J1 ×⋯ × Ji−1 × I1 ×⋯ × In × Ji+1 ×⋯ × Jm) ×(J1×⋯×Ji−1×I1×⋯×In×Ji+1×⋯×Jm)K

in τ1(CorF (J1, . . . , Ji−1, I1, . . . , In, Ji+1, . . . , Jm;K)). One checks that there is even an
adjunction between the two categories which establishes this isomorphism.
The requested pseudo-functor

{⋅} → Dia2−op

with value I is given by the composition of the obvious pseudo-functor {⋅} → Dia1−op,
sending the unique multimorphism in Hom(⋅, . . . , ⋅ ; ⋅) to {idI}i=1..n, with the previous
pseudo-functor Dia1−op → Diacor.

127



Proposition 5.2.10. The 2-multicategory Diacor is (strictly symmetric) 1-bifibered and
(trivially) 2-bifibered over {⋅} hence it is a (strictly symmetric) monoidal 2-category with
monoidal structure represented by

I ⊗ J = I × J

and internal hom
HOM(I, J) = Iop × J

with unit given by the final diagram {⋅}. In particular every object is dualizable w.r.t. the
final diagram and the duality functor is I ↦ Iop on the objects, while on the morphism
categories it is given by the composition of equivalences:

HomDiacor(Jop, Iop) ≅ τ1(Fun(J × Iop,Dia)) = τ1(Fun(Iop × J,Dia)) ≅ HomDiacor(I, J).

Proof. By Corollary 5.2.7 we have equivalences

τ1(Cor(I1, I2;J)) ≅ τ1(Fun(Iop
1 × Iop

2 × J,Dia)) (34)

and also
τ1(Cor(I1 × I2;J)) ≅ τ1(Fun(Iop

1 × Iop
2 × J,Dia)). (35)

Obviously the composition of (34) with the inverse of (35) is isomorphic to the canonical
equivalence

τ1(Cor(I1, I2;J)) → τ1(Cor(I1 × I2;J))
given by

⎛
⎜⎜⎜
⎝

A
α1

ww
α2��

β

��
I1 I2 ; J

⎞
⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜
⎝

A
(α1,α2)

||

β

��
I1 × I2 ; J

⎞
⎟⎟⎟
⎠
.

Furthermore this canonical equivalence preserves the CorF -subcategories and is compat-
ible with composition, by definition of the composition by fiber products.
Similarly, by Corollary 5.2.7 again, we have an equivalence

τ1(Hom(I1; Iop
2 × J)) ≅ τ1(Fun(Iop

1 × Iop
2 × J,Dia)). (36)

Explicitly the equivalence (34) maps a correspondence

A
α1

ww
α2��

β

��
I1 I2 ; J

to the functor

Fξ ∶ Iop
1 × Iop

2 × J → Dia

(i1, i2, j) ↦ (i1, i2) ×/I1×I2 A ×/J j

128



and the inverse of (36) maps this to

∫ ∇Fξ

}} $$
I1 ; Iop

2 × J

Explicitly the category

∫ ∇Fξ
has objects (i1, i2, j, a, µ1, µ2, ν) where µ1 ∶ i1 → α1(a), µ2 ∶ i2 → α2(a), ν ∶ β(a) → j.
Morphisms (i1, i2, j, a, µ1, µ2, ν) → (i′1, i′2, j′, a′, µ′1, µ′2, ν′) are morphisms i1 → i′1, i

′
2 →

i2, j → j′, a → a′ such that the obvious diagrams commute. This again preserves the
CorF -subcategories and is compatible with composition.

5.2.11. We can also investigate how the corresponding Cartesian resp. coCartesian
morphisms look like: The trivial correspondence

I1 × I2

I1 × I2 ; I1 × I2

corresponds, by the explicit description given in the proof, to the morphism

I1 × I2

|| ��
I1 I2 ; I1 × I2

which therefore constitutes the corresponding coCartesian morphism.
The trivial correspondence

Iop
1 × I2

Iop
1 × I2 ; Iop

1 × I2

corresponds (up to 2-isomorphism) to the functor

I1 × Iop
2 × Iop

1 × I2 → Dia

(i1, i′2, i′1, i2) ↦ Hom(i′1, i1) ×Hom(i′2, i2)
where the image consists of discrete categories. It corresponds (up to 2-isomorphism) to
the 1-morphism

tw(Iop
1 ) × I2 ×/I2 I2

xx ��
))

I1 I2 × Iop
1 ; I2
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or simply to the 1-morphism

tw(Iop
1 ) × I2

zz ��
((

I1 I2 × Iop
1 ; I2

which therefore is the corresponding Cartesian morphism. Here for a category I, the
category tw(I) = ∫ HomI(−,−) is the twisted arrow category. In particular, the duality
morphism in Hom(I, Iop; ⋅) is given by the multicorrespondence of diagrams:

tw(Iop
1 )

|| �� ''
I1 Iop

1 ; {⋅}

5.3 Correspondences of diagrams in a (2-)pre-multiderivator

In the next two sections it is proven that the axioms of a fibered multiderivator can
be encoded as a fibration over the category Diacor defined in Section 5.2, and at the
same time the notion of fibered multiderivator is extended to bases which are 2-pre-
multiderivators instead of pre-multiderivators.
Recall Definition 5.2.1, where Cor(I1, . . . , In;J) was defined.

Definition 5.3.1. Let S be a (lax/oplax) 2-pre-multiderivator (cf. Definition 5.1.1).
For each collection (I1, S1), . . . , (In, Sn); (J,T ), where I1, . . . , In, J are diagrams in Dia
and Si ∈ S(Ii), T ∈ S(J) are objects, we define a pseudo-functor

CorS ∶ Cor(I1, . . . , In;J)1−op → CAT

in the oplax case and

CorS ∶ Cor(I1, . . . , In;J)1−op,2−op → CAT

in the lax case. CorS maps a multicorrespondence of diagrams in Dia

A
α1

tt
αn��

β

��
I1 ⋯ In J

to the category
HomS(A)(α∗1S1, . . . , α

∗
nSn;β∗T ),

maps a 1-morphism (γ, ν1, . . . , νn, µ) to the functor

ρ↦ S(µ)(T ) ○ (γ∗ρ) ○ (S(ν1)(S1), . . . ,S(νn)(Sn))
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and maps a 2-morphism represented by η ∶ γ ⇒ γ′ (and such that (α′i ∗ η) ○ νi = ν′i and
µ′ ○ (β′ ∗ η) = µ) to the morphism

S(µ)(T )○(γ∗ρ)○(S(ν1)(S1), . . . ,S(νn)(Sn)) ↔ S(µ′)○((γ′)∗ρ)○(S(ν1)(S1), . . . ,S(νn)(Sn))
(37)

given as the composition of the isomorphisms

S(µ)(T ) ∼Ð→ S(µ′)(T ) ○ S(β′ ∗ η)(T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=S(η)((β′)∗T )

S(νi)(Si)
∼Ð→ S(α′i ∗ η)(Si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=S(η)((α′i)∗Si)

○S(νi)(Si)

with the morphism

S(η)((β′)∗T ) ○ (γ∗ρ) ↔ ((γ′)∗ρ) ○ (S(η)((α′1)∗S1), . . . ,S(η)((α′n)∗Sn)) (38)

coming from the fact that S(η) is a (lax/oplax) pseudo-natural transformation γ∗ ⇒
(γ′)∗. The morphisms (37) and (38) point to the left in the lax case and to the right in
the oplax case.

Definition 5.3.2. Let S be a (lax/oplax) 2-pre-multiderivator. Let Si ∈ S(Ii), for i =
1, . . . , n and T ∈ S(J) be objects. Let

CorS((I1, S1), . . . , (In, Sn); (J,T ))

be the strict 2-category obtained from the pseudo-functor CorS defined in 5.3.1 by the
2-categorical Grothendieck construction (Definition 2.4.14).

Both definitions depend on the choice of Dia, but we do not specify it explicitly.

5.3.3. The category CorS((I1, S1), . . . , (In, Sn); (J,T )) defined in 5.3.2 is very important
to understand fibered multiderivators. Therefore we explicitly spell out the definition in
detail:

1. Objects are a multicorrespondence of diagrams in Dia

A
α1

tt
αn��

β

��
I1 ⋯ In J

together with a 1-morphism

ρ ∈ Hom(α∗1S1, . . . , α
∗
nSn;β∗T )

in S(A).
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2. The 1-morphisms (A,α1, . . . , αn, β, ρ) → (A′, α′1, . . . , α
′
n, β

′, ρ′)
are tuples (γ, ν1, . . . , νn, µ,Ξ), where γ ∶ A → A′ is a functor, νi is a natural trans-
formation in

A

αi ��

γ //

νi
⇒

A′

α′i��
Ii

and µ is a natural transformation in

A

β ��

γ //

µ
⇐

A′

β′��
J

and Ξ is a 2-morphism in

γ∗(α′)∗S γ∗ρ′ // γ∗(β′)∗T

S(µ)

��

⇑Ξ

α∗S

S(ν)

OO

ρ // β∗T

3. The 2-morphisms are the natural transformations η ∶ γ ⇒ γ′ such that (α′i∗η)○νi =
ν′i and (β′ ∗ η) ○ µ′ = µ and such that following prism-shaped diagram

γ∗(α′)∗S γ∗ρ′ //

S(α′∗η)(S)=S(η)((α′)∗S)

&&

γ∗(β′)∗T

S(µ)(T )

��

S(η)((β′)∗T )=S(β′∗η)(T )

ww

⇕S(α
′
∗η)(ρ′)

Sη,ν(S)⇒ (γ′)∗(α′)∗S (γ′)∗ρ′// (γ′)∗(β′)∗T

S(µ′)(T )

''

Sµ′,η(T )

⇒

⇑Ξ
′

α∗S

S(ν)(S)

OO

ρ //

S(ν′)(S)

88

β∗T

is 2-commutative, where the 2-morphism in the front face (not depicted) points
upwards and is Ξ. We assumed here n = 1 for simplicity. Note that we have
S(α′ ∗ η)(S) = S(η)((α′)∗S) because S is strictly compatible with composition of
1-morphisms (cf. Definition 5.1.1). Note that the 2-morphism denoted ⇕ goes up
in the lax case and down in the oplax (and plain) case while the two ‘horizontal’
2-morphisms are invertible.
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We again define the full subcategory CorFS insisting that α1 ×⋯×αn ∶ A→ I1 ×⋯× In is
a fibration and β is an opfibration.

Lemma 5.3.4. Let D → S be a 1-fibration and 2-(op)fibration of 2-categories with 1-
categorical fibers. Given an adjunction in S

S

F
((
T

G

gg

with counit G ○ F = idS being the identity and unit F ○G⇒ idT , for any object E ∈ DS
there is an adjunction

E
F̃

(( F
G̃

gg

in D, lying over the previous one, where F̃ and G̃ are Cartesian.

Proof. We concentrate on the 2-opfibered case and may assume by Proposition 2.4.16
that D is equal to the Grothendieck construction applied to a pseudo-functor Ψ ∶ S1−op →
CAT . We then have corresponding pullback functors F ● ∶= Ψ(F ), G● ∶= Ψ(G) and a
2-isomorphism η ∶ idΨ(S) ≅ F ● ○G● and a 2-morphism µ ∶ G● ○ F ● ⇒ idΨ(T ) given by the
pseudo-functoriality and the contravariant functoriality on 2-morphisms.
We define G̃ ∶= (G, idG●E) ∶ G●E → E , the canonical Cartesian morphism, and F̃ ∶=
(F, η(E)) ∶ E → G●E , which is Cartesian as well, η(E) being an isomorphism. There is
a 2-isomorphism G̃ ○ F̃ ≅ idE , and a 2-morphism F̃ ○ G̃ → idG●E given by µ(G●E). One
checks that those define unit and counit of an adjunction again.
In the 2-fibered case we set F̃ ∶= (F, η(E)−1) ∶ E → G●E and may reason analogously.

Lemma 5.3.5. Let p ∶ D → S be a strict morphism of (lax/oplax) 2-pre-multiderivators
(cf. Definition 5.1.2).
Consider the strictly commuting diagram of 2-categories and strict 2-functors

CorFD((I1,E1), . . . , (In,En); (J,F)) � � //

��

CorD((I1,E1), . . . , (In,En); (J,F))

��
CorFS ((I1, S1), . . . , (In, Sn); (J,T ))) � � //

��

CorS((I1, S1), . . . , (In, Sn); (J,T ))

��
CorF (I1, . . . , In;J) � � // Cor(I1, . . . , In;J)

1. If the functors HomD(I)(−,−) → HomS(I)(−,−) induced by p are fibrations, the
vertical 2-functors are 1-fibrations with 1-categorical fibers. They are 2-fibrations
in the lax case and 2-opfibrations in the oplax case.
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2. If the functors HomD(I)(−,−) → HomS(I)(−,−) induced by p are fibrations with
discrete fibers, then the upper vertical 2-functors have discrete fibers.

3. Every object in a 2-category on the right hand side is in the image of the corre-
sponding horizontal 2-functor up to a chain of adjunctions.

Proof. 1. and 2. follow directly from the definition.
3. We first embed the left hand side category, say CorFS ((I1, S1), . . . , (In, Sn); (J,T )),
into the full subcategory of CorS((I1, S1), . . . , (In, Sn); (J,T )) consisting of those objects
(A,α1, . . . , αn, β, ρ), in which β is an opfibration but the αi are arbitrary. We will show
that every object is connected by an adjunction with an object of this bigger subcategory.
By a similar argument one shows that this holds also for the second inclusion.
Consider an arbitrary correspondence ξ′ of diagrams in Dia

A
β

��
αn��

α1

ttI1 ⋯ In J

and the 1-morphisms in Cor(I1, . . . , In;J)

A ×/J J
pr2

""
αn pr1

{{

α1 pr1

tt pr1

��

I1 ⋯ In ⇒µ J

A
β

;;
αn

cc

α1

jj

A
β

##
αn

{{

α1

tt
∆

��

I1 ⋯ In J

A ×/J J

pr2

<<
αn pr1

cc

α1 pr1

jj

One easily checks that pr1 ○∆ = idA and that the obvious 2-morphism ∆ ○ pr1 ⇒
idA×/JJ induced by µ define an adjunction in the 2-category Cor(I1, . . . , In;J). Using
Lemma 5.3.4, we get a corresponding adjunction also in the 2-category

CorS((I1, S1), . . . , (In, Sn); (J,T )).

Lemma 5.3.6. Let p ∶ D→ S be a morphism of (lax/oplax) 2-pre-multiderivators. Con-
sider the following strictly commuting diagram of functors obtained from the one of
Lemma 5.3.5 by 1-truncation (cf. 5.2.2):

τ1(CorFD((I1,E1), . . . , (In,En); (J,F))) � � //

��

τ1(CorD((I1,E1), . . . , (In,En); (J,F)))

��
τ1(CorFS ((I1, S1), . . . , (In, Sn); (J,T ))) � � //

��

τ1(CorS((I1, S1), . . . , (In, Sn); (J,T )))

��
τ1(CorF (I1, . . . , In;J)) � � // τ1(Cor(I1, . . . , In;J))
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1. The horizontal functors are equivalences.

2. If the functors HomD(I)(−,−) → HomS(I)(−,−) induced by p are fibrations with dis-
crete fibers, then the upper vertical morphisms are fibrations with discrete fibers.
Furthermore the top-most horizontal functor maps Cartesian morphisms to Carte-
sian morphisms.

Proof. That the horizontal morphisms are equivalences follows from the definition of the
truncation and Lemma 5.3.5, 3. If we have a 1-fibration and 2-fibration of 2-categories
D → C with discrete fibers then the truncation τ1(D) → τ1(C) is again fibered (in the
1-categorical sense). Hence the second assertion follows from Lemma 5.3.5, 2.

Definition 5.3.7. Let S be a 2-pre-multiderivator. We define a 2-multicategory Diacor(S)
equipped with a strict functor

Diacor(S) → Diacor

as follows

1. The objects of Diacor(S) are pairs (I, S) consisting of I ∈ Dia and S ∈ S(I).

2. The category HomDiacor(S)((I1, S1), . . . , (In, Sn); (J,T )) of 1-morphisms of Diacor(S)
is the truncated category τ1(CorFS ((I1, S1), . . . , (In, Sn); (J,T ))).

Composition is given by the composition of correspondences of diagrams

A ×Ji B
pr1

vv

pr2

((
A

tt ��

βA

++

B

ss
αB,i��   **I1 ⋯ In ; J1 ⋯ Ji ⋯ Jm ; K

and composing ρA ∈ Hom(α∗A,1S1, . . . , α
∗
A,nSn;β∗ATi) with ρB ∈ Hom(α∗B,1T1, . . . , α

∗
B,mTm;β∗BU)

to
(pr∗2 ρB) ○i (pr∗1 ρA).

If S is symmetric or braided, then there is a natural action of the symmetric, resp. braid
groups:

HomDiacor(S)((I1, S1), . . . , (In, Sn); (J,T )) → HomDiacor(S)((Iσ(1), Sσ(1)), . . . , (Iσ(n), Sσ(n)); (J,T ))

involving the corresponding action in S. This turns Diacor(S) into a symmetric, resp.
braided 2-multicategory.

Note that because of the brute-force truncation this category is in general not 2-fibered
anymore over Diacor.
For any strict morphism of 2-pre-multiderivators p ∶ D → S we get an induced strict
functor

Diacor(p) ∶ Diacor(D) → Diacor(S).
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5.3.8. Let S be a pre-multiderivator (not a 2-pre-multiderivator). Recall the definition
of Dia(S) from 4.6.1:

1. The objects of Dia(S) are the pairs (I, S) where I ∈ Dia and S ∈ S(S).

2. The 1-morphisms in HomDia(S)((I, S); (J,T )) are pairs (α, f), where α ∶ I → J is
a functor in Dia together with a morphism

f ∶ S → α∗T.

3. The 2-morphisms (α, f) ⇒ (α′, f ′) are given by natural transformations δ ∶ α → α′

such that the diagram

α∗S
f //

S(δ)
��

T

(α′)∗S
f ′

<<

commutes.

This category is 1-fibered and 2-fibered over Dia. There is a commutative diagram of
pseudo-functors of 2-categories (not of 2-multicategories)

Dia(S)2−op //

��

Diacor(S)

��
Dia2−op // Diacor

where the bottom horizontal pseudo-functor is the one of Proposition 5.2.9, 1.

5.3.9. Let S be a pre-multiderivator (not a 2-pre-multiderivator). Recall the definition of
Diaop(S) from 4.6.2. We define here the category Diaop(S)1−op even as a 2-multicategory:

1. The objects of Diaop(S)1−op are the pairs (I, S) where I ∈ Dia and S ∈ S(S).

2. The 1-morphisms in HomDiaop(S)1−op((I1, S1), . . . , (In, Sn); (J,T )) are collections
{αi ∶ J → Ii} together with a morphism

f ∈ HomS(J)(α∗1S1, . . . , α
∗
nSn;T ).

3. The 2-morphisms are given by collections {δi ∶ αi → α′i} such that the diagram

(α∗1S1, . . . , α
∗
nSn) //

��

T

((α′1)∗S1, . . . , (α′n)∗Sn)

66

commutes.
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There is a commutative diagram of pseudo-functors of 2-multicategories

Diaop(S)1−op //

��

Diacor(S)

��
Dia1−op // Diacor

where the bottom horizontal pseudo-functor is the one of Proposition 5.2.9, 2.

5.4 Fibered multiderivators over 2-pre-multiderivators

The definition of a fibered multiderivator over 2-pre-multiderivators is a straightforward
generalization of the notion of fibered multiderivator from chapter 4. In this section we
give a much slicker definition which comprises the previous Definition 4.3.6 of fibered
multiderivator. See Corollary 5.4.3 for the equivalence of the two formulations for fibered
multiderivator over usual pre-multiderivators.

Definition 5.4.1. A strict morphism D→ S of (lax/oplax) 2-pre-multiderivators (Defi-
nition 5.1.2) such that D and S each satisfy (Der1) and (Der2) (cf. 5.1.4) is a

1. lax left (resp. oplax right) fibered multiderivator if the corresponding strict
functor of 2-multicategories

Diacor(p) ∶ Diacor(D) → Diacor(S)

of Definition 5.3.7 is a 1-opfibration (resp. 1-fibration) and 2-fibration with 1-
categorical fibers.

2. oplax left (resp. lax right) fibered multiderivator if the corresponding strict
functor of 2-multicategories

Diacor(p) ∶ Diacor(D2−op) → Diacor(S2−op)

of Definition 5.3.7 is a 1-opfibration (resp. 1-fibration) and 2-fibration with 1-
categorical fibers.

Similarly, we define symmetric, resp. braided fibered multiderivators where everything
is, in addition, equipped in a compatible way with the action of the symmetric, resp. braid
groups.

If in S all 2-morphisms are invertible then left oplax=left lax and right oplax=right lax.
In that case we omit the adjectives “lax” and “oplax”.
It seems that, in the definition, one could release the assumption on 1-categorical fibers,
to get an apparently more general definition. However, then the 1-truncation involved
in the definition of Diacor(S) is probably not the right thing to work with. In particular
one does not get any generalized definition of a 2-derivator (or monoidal 2-derivator) as
2-fibered (multi)derivator over {⋅}.
The following Theorem 5.4.2 gives an alternative definition of a left/right fibered multi-
derivator over a 2-pre-multiderivator S more in the spirit of the original (1-categorical)
Definition 4.3.6.

137



Theorem 5.4.2. A strict morphism p ∶ D→ S of (lax/oplax) 2-pre-multiderivators such
that D and S both satisfy (Der1) and (Der2) is a left (resp. right) fibered multiderivator if
and only if the following axioms (FDer0 left/right) and (FDer3–5 left/right) hold true21.
Here (FDer3–4 left/right) can be replaced by the weaker (FDer3–4 left/right’).

(FDer0 left) For each I in Dia the morphism p specializes to an 1-opfibered 2-multicategory with
1-categorical fibers. It is, in addition, 2-fibered in the lax case and 2-opfibered in
the oplax case. Moreover any functor α ∶ I → J in Dia induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of 1-opfibered and 2-(op)fibered 2-multicategories, i.e. the top horizontal functor
maps coCartesian 1-morphisms to coCartesian 1-morphisms and (co)Cartesian 2-
morphisms to (co)Cartesian 2-morphisms.

(FDer3 left) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers
(which are 1-categories by (FDer0 left))

D(J)S → D(I)α∗S

has a left adjoint α
(S)
! .

(FDer4 left) For each functor α ∶ I → J in Dia, and for any object j ∈ J , and for the 2-
commutative square

I ×/J j
ι //

αj

��
⇙µ

I

α

��
{j} � � j // J

the induced natural transformation of functors αj !(S(µ))●ι∗ → j∗α! is an isomor-
phism22.

(FDer5 left) For any opfibration α ∶ I → J in Dia, and for any 1-morphism ξ ∈ Hom(S1, . . . , Sn;T )
in S(⋅) for some n ≥ 1, the natural transformations of functors

α!(α∗ξ)●(α∗−,⋯, α∗−, −®
at i

, α∗−,⋯, α∗−) ≅ ξ●(−,⋯,−, α!−°
at i

,−,⋯,−)

are isomorphisms for all i = 1, . . . , n.

21where (FDer3–5 left), resp. (FDer3–5 right), only make sense in the presence of (FDer3–5 left), resp.
(FDer0 right)

22This is meant to hold w.r.t. all bases S ∈ S(J).
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Instead of (FDer3/4 left) the following axioms are sufficient:

(FDer3 left’) For each opfibration α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers
(which are 1-categories by (FDer0 left))

D(J)S → D(I)α∗S

has a left-adjoint α
(S)
! .

(FDer4 left’) For each opfibration α ∶ I → J in Dia, and for any object j ∈ J , the induced natural
transformation of functors pr2,! pr∗1 → j∗α! is an isomorphism for any base. Here
pr1 and pr2 are defined by the Cartesian square

I ×J j
pr1 //

pr2

��

I

α

��
{j} � � j // J.

We use the same notation for the axioms as in the case of usual fibered multiderivators
because, in case that S is a usual 1-pre-multiderivator they specialize to the familiar
ones. Dually, we have the following axioms:

(FDer0 right) For each I in Dia the morphism p specializes to a 1-fibered multicategory with
1-categorical fibers. It is, in addition, 2-fibered in the lax case and 2-opfibered in
the oplax case. Furthermore, any opfibration α ∶ I → J in Dia induces a diagram

D(J) α∗ //

��

D(I)

��
S(J) α∗ // S(I)

of 1-fibered and 2-(op)fibered multicategories, i.e. the top horizontal functor maps
Cartesian 1-morphisms w.r.t. the i-th slot to Cartesian 1-morphisms w.r.t. the i-th
slot for any i and maps (co)Cartesian 2-morphisms to (co)Cartesian 2-morphisms.

(FDer3 right) For each functor α ∶ I → J in Dia and S ∈ S(J) the functor α∗ between fibers
(which are 1-categories by (FDer0 right))

D(J)S → D(I)α∗S

has a right adjoint α
(S)
∗ .

(FDer4 right) For each morphism α ∶ I → J in Dia, and for any object j ∈ J , and for the 2-
commutative square

j ×/J I
ι //

αj

��
⇗µ

I

α

��
{j} � � j // J
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the induced natural transformation of functors j∗α∗ → αj∗(S(µ))●ι∗ is an isomor-
phism23.

(FDer5 right) For any functor α ∶ I → J in Dia, and for any 1-morphism ξ ∈ Hom(S1, . . . , Sn;T )
in S(⋅) for some n ≥ 1, the natural transformations of functors

α∗(α∗ξ)●,i(α∗−, î⋯, α∗− ; −) ≅ ξ●,i(−, î⋯,− ; α∗−)

are isomorphisms for all i = 1, . . . , n.

There is similarly a weaker version of (FDer3/4 right) in which α has to be a fibration.
In particular Theorem 5.4.2 shows that the new Definition 5.4.1 agrees with the old
Definiton 4.3.6 in case that the base 2-pre-multiderivator is a usual pre-multiderivator:

Corollary 5.4.3. Let D and S be pre-multiderivators (not 2-pre-multiderivators) satis-
fying (Der1) and (Der2) (cf. Definition 4.3.5). A strict morphism of pre-multiderivators
D→ S is a left (resp. right) fibered multiderivator (in the sense of Definition 4.3.6) if and
only if Diacor(D) → Diacor(S) is a 1-opfibration (resp. 1-fibration) of 2-multicategories.

The proof of Theorem 5.4.2 will be given in the next section.
For representable 2-pre-multiderivators we have the following:

Proposition 5.4.4. If D → S is a 1-bifibration and 2-fibration of 2-multicategories with
1-categorical and bicomplete fibers then

1. Diacor(Dlax) → Diacor(Slax) is a 1-opfibration and 2-fibration,

2. Diacor(Doplax) → Diacor(Soplax) is a 1-fibration and 2-fibration.

If D → S is a 1-bifibration and 2-opfibration of 2-multicategories with 1-categorical and
bicomplete fibers then

1. Diacor(Dlax,2−op) → Diacor(Slax,2−op) is a 1-fibration and 2-fibration.

2. Diacor(Doplax,2−op) → Diacor(Soplax,2−op) is a 1-opfibration and 2-fibration.

Proof. This follows from Proposition 5.1.6 doing the same constructions as Proposi-
tion 4.7.26.

Definition 5.4.5. For (lax/oplax) fibered derivators over an (lax/oplax) 2-pre-derivator
p ∶ D→ S and an object S ∈ S(I) we have that

DI,S ∶ J ↦ D(I × J)pr∗2 S

is a usual derivator. We call p stable if DI,S is stable for all S ∈ S(I) and for all I.

23This is meant to hold w.r.t. all bases S ∈ S(J).
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5.5 Yoga of correspondences of diagrams in a (2-)pre-multiderivator

To prove Theorem 5.4.2 we need some preparation to improve our understanding of the
category Diacor(S). Let S be a 2-pre-multiderivator. The constructions in this section are
already interesting if S is a usual pre-multiderivator. In fact, the 2-categorical structure
of S hardly influences the constructions.
We will define three types of generating 1-morphisms in Diacor(S). We first define them
as objects in the categories CorS(. . . ) (without the restriction F ).

[β(S)] for a functor β ∶ I → J in Dia and an object S ∈ S(J), consists of the correspondence
of diagrams

I
β

��
I J

and over it in τ1(CorS((I, β∗S); (J,S))) the canonical correspondence given by the
identity idβ∗S .

[α(S)]′ for a functor α ∶ I → J in Dia and an object S ∈ S(J), consists of the correspondence
of diagrams

I
α

��
J I

and over it in τ1(CorS((J,S); (I,α∗S))) the canonical correspondence given by the
identity idα∗S .

[f] for a morphism f ∈ HomS(A)(S1, . . . , Sn;T ), where A is any diagram in Dia, and
S1, . . . , Sn, T are objects in S(A), is defined by the trivial correspondence of dia-
grams

A

A A A

together with f .

5.5.1. Note that the correspondences of the last paragraph do not define 1-morphisms
in Diacor(S) yet, as we defined it, because they are not always objects in the CorF

subcategory ([α(S)]′ is already, if α is a fibration; [β(S)] is, if β is an opfibration; and
[f] is, if n = 0,1, respectively).
From now on, we denote by the same symbols [α(S)], [β(S)]′, [f] morphisms in Diacor(S)
which are isomorphic to those defined above in the τ1-categories (cf. Lemma 5.3.6). Those
are are determined only up to 2-isomorphism in Diacor(S).

141



For definiteness, we choose [β(S)] to be the correspondence

I ×/J J
pr2

""

pr1

||
I J

and over it in τ1(CorS((I, β∗S); (J,S))) the 1-morphism pr∗1 β
∗S → pr∗2 S given by the

natural transformation µβ ∶ β ○ pr1 ⇒ pr2. Similarly, we choose [α(S)]′ to be the corre-
spondence

J ×/J I
pr2

""

pr1

||
J I

and over it in τ1(CorS((J,S); (I,α∗S))) the 1-morphism pr∗1 S → pr∗2 α
∗S given by the

natural transformation µα ∶ pr1 ⇒ α ○ pr2.

5.5.2. For any α ∶ I → J , we define a 2-morphism

ε ∶ id⇒ [α(S)] ○ [α(S)]′

given by the diagrams

I

∆

��

I I

I ×/J J ×/J I

pr3

99

pr1

ee

∆∗ pr∗1 α
∗S

∆∗(S(µ2○µ1)(S))=idα∗S
∆∗ pr∗3 α

∗S

α∗S α∗S

and we define a 2-morphism

µ ∶ [α(S)]′ ○ [α(S)] ⇒ id

given by the diagrams

J ×/J I ×/J J

αpr2

��

pr3

%%

pr1

yy
J µ2

⇒
µ1
⇒ J

J

pr∗2 α
∗S

⇑

pr∗2 α
∗S

S(µ1)(S)

��
pr∗1 S S(µ2○µ1)(S)

//

S(µ2)(S)

OO

pr∗3 S

where the 2-isomorphism from the pseudo-functoriality of S is taken.

142



5.5.3. A natural transformation ν ∶ α⇒ β establishes a morphism

[ν] ∶ [S(ν)(S)] ○ [α(S)] ⇒ [β(S)]

given by the diagrams:

J ×/J,β I
pr′2

##

pr′1

{{
ν̃

��

J I

J ×/J,α I

pr2

;;

pr1

cc

(ν̃)∗ pr∗1 S

⇑

ν̃∗S(µα) // (ν̃)∗ pr∗2 α
∗S

ν̃∗ pr∗2 S(ν)
// ν̃∗ pr∗2 β

∗S

(pr′1)∗S S(µβ)(S)
// (pr′2)∗β∗S

where the 2-isomorphism from the pseudo-functoriality of S is taken. Note that we have
the equation of natural transformations (ν ∗ pr′2) ○ (µα ∗ ν̃) = µβ. Here µα and µβ are as
in 5.5.1.
Similarly, a natural transformation ν ∶ α⇒ β establishes a morphism

[ν] ∶ [β(S)]′ ○ [S(ν)(S)] ⇒ [α(S)]′.

5.5.4. Consider the diagrams from axiom (FDer3 left/right)

I ×/J j
ι //

p

��
⇙µ

I

α

��
j �
� // J

j ×/J I
ι //

p

��
⇗µ

I

α

��
j �
� // J

By the constructions in 5.5.3, we get a canonical 2-morphism

[S(µ)(S)] ○ [ι(α∗S)] ○ [α(S)] ⇒ [p(Sj)] ○ [j(S)]. (39)

and a canonical 2-morphism

[α(S)]′ ○ [ι(α∗S)]′ ○ [S(µ)(S)] ⇒ [j(S)]′ ○ [p(Sj)]′. (40)

respectively. Here Sj denotes j∗S where j, by abuse of notation, also denotes the
inclusion of the one-element category j into J .

5.5.5. Let ξ be any 1-morphism Diacor(S) given by

A
β

��
αn��

α1

ttI1 ⋯ In J

and a 1-morphism
fξ ∈ HomS(A)(α∗1S1, . . . , α

∗
nSn;β∗T ).

143



We define a 1-morphism ξ ×K in Diacor(S) by

A ×K
β×id

%%αn×idyy

α1×id

ss
I1 ×K ⋯ In ×K J ×K

and
fξ×K ∶= pr∗1 fξ ∈ HomS(A)(pr∗1 α

∗
1S1, . . . ,pr∗1 α

∗
nSn; pr∗1 β

∗T ).

Note that the here defined ξ × K does not necessarily lie in the category CorFS (. . . ).
Hence we denote by ξ ×K any isomorphic correspondence which does lie in CorFS (. . . ).
We also define a correspondence ξ ×j K in Diacor(S) by

A ×K
β×id

$$αn pr1||αj×id
tt

α1 pr1

rrI1 ⋯ Ij ×K ⋯ In J ×K

and
fξ×jK ∶= pr∗1 ξ ∈ HomS(A)(pr∗1 α

∗
1S1, . . . ,pr∗1 α

∗
nSn; pr∗1 β

∗T ).

The here defined ξ ×j K does already lie in the category CorFS (. . . ).

Lemma 5.5.6. 1. The 2-morphisms of 5.5.2

ε ∶ id⇒ [α(S)] ○ [α(S)]′ µ ∶ [α(S)]′ ○ [α(S)] ⇒ id

establish an adjunction between [α(S)] and [α(S)]′ in the 2-category Diacor(S).

2. The exchange 2-morphisms of (39) and and of (40) w.r.t. the adjunction of 1.,
namely

[p(Sj)]′ ○ [S(µ)(S)] ○ [ι(α∗S)] ⇒ [j(S)] ○ [α(S)]′

and
[ι(α∗S)]′ ○ [S(µ)(S)] ○ [p(Sj)] ⇒ [α(S)] ○ [j(S)]′

are 2-isomorphisms.

3. For any α ∶K → L there are natural isomorphisms

[α(pr∗1 T )] ○ (ξ ×L) ≅ (ξ ×K) ○ ([α(pr∗1 S1)], . . . , [α(pr∗1 Sn)]) (41)

and
[α(pr∗1 T )] ○ (ξ ×j L) ≅ (ξ ×j K) ○j [α(pr∗1 Sj)] (42)
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4. The exchange of (41) w.r.t. the adjunction of 1., namely

[α(pr∗1 T )]′ ○ (ξ ×K) ○ ([α(pr∗1 S1)], . . . , id, . . . , [α(pr∗1 Sn)]) ≅ (ξ ×L) ○j [α(pr∗1 Sj)]′

is an isomorphism if α is an opfibration. The exchange of (42) w.r.t. the adjunction
of 1., namely

[α(pr∗1 T )]′ ○ (ξ ×j K) ≅ (ξ ×j L) ○j [α(pr∗1 Sj)]′

is an isomorphism for any α.

5. For any f ∈ HomS(J)(S1, . . . , Sn;T ) and α ∶ I → J there is a natural isomorphism

[α(T )] ○ [f] ≅ [α∗f] ○ ([α(S1)], . . . , [α(Sn)]) (43)

6. The exchange of (43) w.r.t. the adjunction of 1., namely

[α(T )]′ ○ [α∗f] ○ ([α(S1)], . . . , id, . . . , [α(Sn)]) ≅ [f] ○j [α(Sj)]′

is an isomorphism if α is an opfibration.

Proof. A purely algebraic manipulation that we leave to the reader.

5.5.7. Let D → S be a morphism of (lax/oplax) 2-pre-multiderivators satisfying (Der1)
and (Der2). Consider the strict 2-functor

Diacor(D) → Diacor(S) resp. Diacor(D2−op) → Diacor(S2−op)

and assume that it is a 1-opfibration, and 2-fibration with 1-categorical fibers. The
fiber over a pair (I, S) is just the fiber D(I)S of the strict 2-functor D(I) → S(I) over
S and hence this is a 1-category. The 1-opfibration and 2-fibration can be seen (via the
construction of Proposition 2.4.16) as a pseudo-functor of 2-multicategories

Ψ ∶ Diacor(S(2−op)) → CAT .

5.5.8. If

Diacor(D) → Diacor(S) resp. Diacor(D2−op) → Diacor(S2−op)

is a 1-fibration, and 2-fibration with 1-categorical fibers there is still an associated pseudo-
functor of 2-categories (not 2-multicategories)

Ψ′ ∶ Diacor(S(2−op))1−op,2−op → CAT .

Proposition 5.5.9. 1. Assume that

Diacor(D) → Diacor(S) resp. Diacor(D2−op) → Diacor(S2−op)
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is a 1-opfibration, and 2-fibration with 1-categorical fibers. Then the functor Ψ of
5.5.7 maps (up to isomorphism of functors)

[α(S)] ↦ (αS)∗

[β(S)]′ ↦ βS!

[f] ↦ f●

where βS! is a left adjoint of (βS)∗ and f● is a functor determined by

HomD(I),f(E1, . . . ,En;F) ≅ HomD(I)T (f●(E1, . . . ,En),F).

2. Assume that

Diacor(D) → Diacor(S) resp. Diacor(D2−op) → Diacor(S2−op)

is a 1-fibration, and 2-fibration with 1-categorical fibers.

Then pullback functors24 w.r.t. the following 1-morphisms in Diacor(S) are given
by

[α(S)] ↦ αS∗

[β(S)]′ ↦ (βS)∗

[f] ↦ f●,j pullback w.r.t. the j-th slot.

where αS∗ is a right adjoint of (αS)∗ and f●,j is a functor determined by

HomD(I),f(E1, . . . ,En;F) ≅ HomD(I)T (Ej , f
●,j(E1,

ĵ. . .,En;F)).

Proof. 1. We have an isomorphism of sets25

HomDiacor(D),[α(S)]((J,E), (I,F)) ≅ HomDiacor(D)(I,S)
(Ψ([α(S)])E ,F).

On the other hand, by definition and by Lemma 5.3.6, the left hand side is isomorphic
to the set

HomD(I)S(α
∗E ,F).

The first assertion follows from the fact that Diacor(D)(I,S) = D(I)S .
The second assertion follows from the first because by Lemma 5.5.6, 1. the 1-morphisms
[α(S)] and [α(S)]′ are adjoint in the 2-category Diacor(S). Note that a pseudo-functor
like Ψ preserves adjunctions.
We have an isomorphism of sets

HomDiacor(D),[f]((A,E1), . . . , (A,En); (A,F)) ≅ HomDiacor(D)(A,T )
(Ψ([f])(E1, . . . ,En),F).

24In the case of [α(S)] and [β(S)]′ these are Ψ′
([α(S)]) and Ψ′

([β(S)]′).
25We identify a discrete category with its set of isomorphism classes.
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On the other hand, by definition and by Lemma 5.3.6, the left hand side is isomorphic
to the set

HomD(I),f(E1, . . . ,En;F)
and the third assertion follows from the fact that Diacor(D)(A,T ) = D(A)T .
The proof of 2. is completely analogous.

Corollary 5.5.10. Assuming the conditions of 5.5.7, consider any correspondence

ξ′ ∈ CorS((I1, S1), . . . , (In, Sn); (J,T ))

consisting of
A

α1

tt
αn��

β

��
I1 ⋯ In J

and a 1-morphism
f ∈ Hom(α∗1S1, . . . , α

∗
nSn;β∗T )

in S(A).

1. Over any 1-morphism ξ in Diacor(S), which is isomorphic to ξ′, a corresponding
push-forward functor between fibers (which is Ψ(ξ′) in the discussion 5.5.7) is given
(up to isomorphism) by the composition:

βT! ○ f● ○ (α∗1 , . . . , α∗n).

2. Over any 1-morphism ξ in Diacor(S), which is isomorphic to ξ′, a pull-back functor
w.r.t. any slot j between fibers (which is Ψ′(ξ′) in the discussion 5.5.8 if ξ is a
1-ary 1-morphism) is given (up to isomorphism) by the composition:

α
Sj
j,∗ ○ f

●,j ○ (α∗1 , ĵ. . ., α∗n;β∗).

Proof. Because of Proposition 5.5.9, in both cases, we only have to show that there is
an isomorphism

ξ ≅ [β(T )]′ ○ [f] ○ ([α(S1)

1 ], . . . , [α(Sn)
n ])

in Diacor(S), which is an easy and purely algebraic manipulation.

We are now ready to give the

Proof of Theorem 5.4.2. We concentrate on the lax left case, the other cases are shown
completely analogously.
We first show that Diacor(D) → Diacor(S) is a 1-opfibration and a 2-fibration, if D → S
satisfies (FDer0 left), (FDer3–4 left’), and (FDer5 left). By (FDer0 left) D(I) → S(I) is
a 1-opfibration and 2-fibration with 1-categorical fibers and we have already seen that
this implies that Diacor(D) → Diacor(S) is 2-fibered as well (cf. Lemma 5.3.6).
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Let x = (A;αA,1, . . . , αA,n;βA) be a correspondence in CorF (I1, . . . , In;J) and let

f ∈ Hom(α∗1S1, . . . , α
∗
nSn;β∗T )

be a 1-morphism in Diacor(S) lying over x. In Diacor(D) we have the following compo-
sition of isomorphisms of sets (because of Lemma 5.3.6, 2.)26:

HomDiacor(D),f((I1,E1), . . . , (In,En); (J,F))
≅ HomD(A),f(α∗1E1, . . . , α

∗
nEn;β∗F)

≅ HomD(A),idβ∗T
(f●(α∗1E1, . . . , α

∗
nEn);β∗F)

≅ HomD(A),idT (β!f●(α∗1E1, . . . , α
∗
nEn);F)

≅ HomDiacor(D),id(J,T )
((J, β!f●(α∗1E1, . . . , α

∗
nEn)); (J,F))

using (FDer0 left) and (FDer3 left’). One checks that this composition is induced by
the composition in Diacor(D) with a 1-morphism in

Homf ((I1,E1), . . . , (In,En); (J, β!f●(α∗1E1, . . . , α
∗
nEn)))

which is thus weakly coCartesian.
Note that we write HomDiacor(D),f for the category of 1-morphisms which map to f in
Diacor(S) and those 2-morphisms that map to idf in Diacor(S).
By Proposition 2.4.6, it remains to be shown that the composition of weakly coCartesian
1-morphisms is weakly coCartesian. Let

g ∈ Hom(α∗B,1T1, . . . , α
∗
B,mTm;β∗BU)

be another 1-morphism in S(B), composable with f , and lying over a correspondence
y = (B;αB,1, . . . , αB,m;βB) in CorF (J1, . . . , Jm;K). Setting Ji ∶= J and Ti ∶= T , the
composition of x and y w.r.t. the i-th slot is the correspondence

A ×Ji B
pr1

vv

pr2

((
A

tt ��

βA

++

B

ss

αB,i

��   **I1 ⋯ In ; J1 ⋯ Ji ⋯ Jm ; K

The composition of g and f is determined by the morphism

pr∗2 g ○i pr∗1 f

lying in

Hom(pr∗2 α
∗
B,1T1, . . . ,pr∗1 α

∗
A,1S1, . . . ,pr∗1 α

∗
A,nSn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . ,pr∗2 α
∗
B,mTm; pr∗2 β

∗
BU).

26We identify a discrete category with its set of isomorphism classes.
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We have to show that the natural map

βB,!g●(α∗B,1F1, . . . , α
∗
B,iβA,!f●(α∗A,1E1, . . . , α

∗
A,nEn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . α∗B,mFm)

→ βB,! pr2,!(pr∗2 g ○i pr∗1 f)●(pr∗2 α
∗
B,1F1, . . . ,pr∗1 α

∗
A,1E1, . . . ,pr∗1 α

∗
A,nEn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . .pr∗2 α
∗
B,mFm)

is an isomorphism. It is the composition of the following morphisms which are all isomor-
phisms respectively by (FDer4 left’), (FDer5 left) observing that pr2 is an opfibration,
the second part of (FDer0 left) for pr1, and the first part of (FDer0 left) in the form
that the composition of coCartesian morphisms is coCartesian:

βB,!g●(α∗B,1F1, . . . , α
∗
B,iβA,!f●(α∗A,1E1, . . . , α

∗
A,nEn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . , α∗B,mFm)

→ βB,!g●(α∗B,1F1, . . . ,pr2,! pr∗1 f●(α∗A,1E1, . . . , α
∗
A,nEn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . , α∗B,mFm)

→ βB,! pr2,!(pr∗2 g)●(pr∗2 α
∗
B,1F1, . . . ,pr∗1 f●(α∗A,1E1, . . . , α

∗
A,nEn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . ,pr∗2 α
∗
B,mFm)

→ βB,! pr2,!(pr∗2 g)●(pr∗2 α
∗
B,1F1, . . . , (pr∗1 f)●(pr∗1 α

∗
A,1E1, . . . ,pr∗1 α

∗
A,nEn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . ,pr∗2 α
∗
B,mFm)

→ βB,! pr2,!(pr∗2 g ○i pr∗1 f)●(pr∗2 α
∗
B,1F1, . . . ,pr∗1 α

∗
A,1E1, . . . ,pr∗1 α

∗
A,nEn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
at i

, . . . ,pr∗2 α
∗
B,mFm).

Now we proceed to prove the converse, hence we assume that Diacor(D) → Diacor(S) is
a 1-opfibration and show that the axioms (FDer0 left, FDer3–5 left) are satisfied.
(FDer0 left) First we have an obvious pseudo-functor of 2-multicategories

F ∶ S(A) ↪ Diacor(S)
S ↦ (A,S)
f ↦ [f]

By Proposition 2.4.24 the pull-back F ∗ Diacor(D) → S(A) in the sense of 2.4.23 is 1-
opfibered and 2-fibered if Diacor(D) → Diacor(S) is 1-opfibered and 2-fibered. To show
that D(I) → S(I) is a 1-opfibration and 2-fibration of multicategories, it thus suffices
to show that the pull-back F ∗ Diacor(D) is equivalent to D(I) over S(I). The class
of objects of F ∗ Diacor(D) is by definition isomorphic to the class of objects of D(I).
Therefore we are left to show that there are equivalences of categories (compatible with
composition)

HomD(I),f(E1, . . . ,En;F) → HomF ∗ Diacor(D),f(E1, . . . ,En;F)

for any 1-morphism f ∈ HomS(I)(S1, . . . , Sn;T ), where Ei is an object of D(I) over Si
and F is an object over T . Note that the left-hand side is a discrete category. We have

149



a 2-Cartesian diagram of categories

HomF ∗ Diacor(D),f(E1, . . . ,En;F) //

��

HomDiacor(D)((I,E1), . . . , (I,En); (I,F))

��
{f} F // HomDiacor(S)((I, S1), . . . , (I, Sn); (I, T ))

Since the right vertical morphism is a fibration (cf. Lemma 5.3.6) the diagram is also
Cartesian (cf. Lemma 2.4.2). Futhermore by Lemma 5.3.6 the right vertical morphism
is equivalent to

τ1(CorD((I,E1), . . . , (I,En); (I,F)))

��
τ1(CorS((I, S1), . . . , (I, Sn); (I, T )))

(Here CorFD(. . . ) was changed to CorD(. . . ) and similarly for CorFS (. . . ).)
In τ1(CorS((I1, S1), . . . , (In, Sn); (J,T ))), the object F (f) is isomorphic to f over the
trivial correspondence (idI , . . . , idI ; idI) whose fiber in τ1(CorD((I,E1), . . . , (I,En); (I,F)))
is precisely the discrete category HomD(I),f(E1, . . . ,En;F). The remaining part of (FDer0
left) will be shown below.
Since we have a 1-opfibration and 2-fibration we can equivalently see the given datum
as a pseudo-functor

Ψ ∶ Diacor(S) → CAT
and we have seen by Proposition 5.5.9 that this morphism maps [α(S)] to a functor
which is isomorphic to the functor α∗ ∶ D(J)S → D(I)α∗S . We have the freedom to
choose Ψ in such a way that it maps [α(S)] precisely to α∗.
Axiom (FDer3 left) follows from Lemma 5.5.6, 1. stating that [α(S)] has a left adjoint
[α(S)]′ in the category Diacor(S) (cf. also Proposition 5.5.9).
Axiom (FDer4 left) follows by applying Ψ to the (first) 2-isomorphism of Lemma 5.5.6,
2.
Axiom (FDer5 left) follows by applying Ψ to the 2-isomorphism of Lemma 5.5.6, 4.
The remaining part of (FDer0 left), i.e. that α∗ maps coCartesian arrows to coCartesian
arrows follows by applying Ψ to the 2-isomorphism of Lemma 5.5.6, 3.

5.6 Representable 2-pre-multiderivators

Proof (sketch) of Proposition 5.1.6: We show exemplarily 1. for 1-fibrations of 2-categories
and 2. for 1-fibrations of 2-categories. The same proof works for 1-opfibrations (even
of 2-multicategories). If we have a 1-bifibration of 2-multicategories with 1-categorical
fibers then a slight extension of the proof of Proposition 4.7.6 shows 3. For 1-opfibrations
and 2-fibrations of 2-multicategories with 1-categorical fibers this is actually easier to
prove using the encoding by a pseudo-functor as follows: The 1-opfibration D → S with
1-categorical fibers is encoded in a pseudo-functor

S →MCAT
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The category D(I) → S(I) is encoded in the pseudo-functor

S(I) →MCAT

which maps a pseudo-functor F ∶ I → S to the multicategory of natural transformations
and modifications

HomFun(I,MCAT )(⋅, F ),

where ⋅ is the constant functor with value the 1-point category.
This construction may be adapted to 2-categorical fibers by using “pseudo-functors” of
3-categories.
The problem with 1-fibrations of (1- or 2-)multi categories comes from the fact that
the internal Hom cannot be computed point-wise but involves a limit construction (cf.
Proposition 4.7.6). The difference between external and internal monoidal product in
Diacor(D) gives a theoretical explanation of this phenomenon (cf. Example 6.1.5).
1-fibration of 2-categories D → S implies 1-fibration of 2-categories D(I) → S(I):
Let I be a diagram in Dia. Let Y,Z ∶ I → S be pseudo-functors, f ∶ Y ⇒ Z be a pseudo-
natural transformation and E ∶ I → D be a pseudo-functor over Z. For each morphism
α ∶ i→ i′ we are given a 2-commutative diagram

Y (i) f(i) //

Y (α)
��

⇗fα

Z(i)
Z(α)
��

Y (i′) f(i′) // Z(i′)

Since f is assumed to be a pseudo-functor, the morphism fα is invertible. We will
construct a pseudo-functor G ∶ I → D over Y and a 1-coCartesian morphism ξ ∶ G → E
over f . For each i, we choose a 1-coCartesian morphism

ξ(i) ∶ G(i) → E(i)

over f(i) ∶ Y (i) → Z(i). For each α, we look at the 2-Cartesian diagram

HomD(G(i),G(i′))
ξ(i′)○ //

��

HomD(G(i),E(i′))

��
HomS(Y (i), Y (i′)) f(i′)○ // HomS(Y (i), Z(i′))

The triple (Eα ○ ξ(i), fα, Yα) is an object in the category

HomD(G(i),E(i′)) ×∼/HomS(Y (i),Z(i′)) HomS(Y (i), Y (i′))

Define G(α) to be an object in HomD(G(i),G(i′)) such that there exists a 2-isomorphism

Ξα ∶ (ξ(i′) ○ Gα, id, p(Gα)) ⇒ (Eα ○ ξ(i), f−1
α , Yα).

151



Such an object exists because the above square is 2-Cartesian.
We get a 2-commutative square

G(i) ξ(i) //

Gα

��
⇗ξα

E(i)

Eα

��
G(i′) ξ(i′) // E(i′)

Here ξα is the first component of Ξα.
This defines a pseudo-functor G ∶ I → D as follows. Let α ∶ i → i′ and β ∶ i′ → i′′ be two
morphisms in I. We need to define a 2-isomorphism Gβα ⇒ Gβ ○Gα. It suffices to define
the 2-isomorphism after applying the embedding

HomD(G(i),G(i′′)) ↪ HomD(G(i),E(i′′)) ×∼/HomS(Y (i),Z(i′′)) HomS(Y (i), Y (i′′))

which maps Gβ ○Gα to

(ξ(i′′) ○ Gβ ○ Gα, id, p(Gβ) ○ p(Gα))

and Gβα to
(ξ(i′′) ○ Gβα, id, p(Gβα)).

We have the chains of 2-isomorphisms

ξ(i′′) ○ Gβ ○ Gα
ξβ∗Gα
��

Eβ ○ ξ(i′) ○ Gα
Eβ∗ξα
��

Eβ ○ Eα ○ ξ(i)

��
Eβα ○ ξ(i)

ξ(i′′) ○ Gβα

OO

p(Gβ) ○ p(Gα)
Ξβ,2∗p(Gα)

��
Yβ ○ p(Gα)

Yβ∗Ξα,2

��
Yβ ○ Yα

��
Yβα

p(Gβα)

OO

Applying p to the first chain and f(i′′)○ to the second chain, we get the commutative
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diagram

f(i′′) ○ p(Gβ) ○ p(Gα)

��

f(i′′) ○ p(Gβ) ○ p(Gα)

��
Zβ ○ f(i′) ○ p(Gα)

uu ��

// f(i′′) ○ Yβ ○ p(Gα)

��
Zβ ○Zα ○ f(i) //

��

Zβ ○ f(i′) ○ Yα // f(i′′) ○ Yβ ○ Yα

��
Zβα ○ f(i)

fβα // f(i′′) ○ Yβα

f(i′′) ○ p(Gβα)

OO

f(i′′) ○ p(Gβα)

OO

hence a valid isomorphism in HomD(G(i),E(i′′)) ×∼/HomS(Y (i),Z(i′′)) HomS(Y (i), Y (i′′)).
One checks that this satisfies the axioms of a pseudo-functor (Definition 2.2.3) and that
ξ is indeed a pseudo-natural transformation (Definition 2.2.4).
Now assume that we have a lax natural transfomation, i.e. the fα go into the opposite
direction and are no longer invertible. We assume that we have a 2-fibration as well.
Then the diagram

HomD(G(i),G(i′))
ξ(i′)○ //

��

HomD(G(i),E(i′))

��
HomS(Y (i), Y (i′)) f(i′)○ // HomS(Y (i), Z(i′))

is Cartesian as well. Moreover we have an adjunction with the full comma category

HomD(G(i),G(i′))
can

// HomD(G(i),E(i′)) ×/HomS(Y (i),Z(i′)) HomS(Y (i), Y (i′))
ρξ(i′),G(i)oo

with ρ ○ can = id, in particular with the morphism ‘can’ fully faithful. See below for the
precise definition of ρ. Hence we define

G(α) ∶= ρξ(i′),G(i)(Eα ○ ξ(i), fα, Yα)

and get at least a morphism (coming from the unit of the adjunction):

Ξα ∶ (ξ(i′) ○ G(α), id, p(G(α))) ⇒ (Eα ○ ξ(i), fα, Yα).

The first component of Ξα this time (potentially) define a lax-natural transformation
ξ ∶ G → E only. To turn G into a pseudo-functor, we have to see that ρ is functorial.
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For a Cartesian arrow ξ ∶ E → F , we define

ρξ,G ∶ HomD(G,F) ×/HomS(U,T ) HomS(U,S) → HomD(G,E)

as follows: Let (τ, µ, g) be a tuple with g ∈ HomS(U,S), τ ∈ HomD(G,F) and

µ ∶ f ○ g⇒ p(τ)

a 2-morphism. We may choose a coCartesian 2-morphism

µ̃ ∶X ⇒ τ

above µ. We set ρξ(τ, µ, g) equal to an object with an isomorphism

(ξ ○ ρξ(τ, µ, g), id, p(ρξ(τ, µ, g)))
∼Ð→ (X, id, g).

Together with the morphism

µ̃ ∶ (X, id, g) Ð→ (τ, µ, g)

we get the counit
can ○ ρξ ⇒ id .

We need to define a 2-isomorphism Gβα ⇒ Gβ ○Gα. i.e.

ρξ(i′′),G(i)(Eβα ○ ξ(i), fβα, Yβα) →

ρξ(i′′),G(i′)(Eβ ○ ξ(i′), fβ, Yβ) ○ ρξ(i′),G(i)(Eα ○ ξ(i), fα, Yα)
First of all, we get three Cartesian 2-morphisms

f̃βα ∶ Xβα ⇒ Eβα ○ ξ(i) over fβα
f̃α ∶ Xα ⇒ Eα ○ ξ(i) over fα
f̃β ∶ Xβ ⇒ Eβ ○ ξ(i′) over fβ

and have to define an isomorphism (after applying can)

(Xβα, id, Y (βα)) ∼Ð→ (Xβ, id, Y (β)) ○ (Xα, id, Y (α)).

We have the diagram

G(i) f(i) //

Xα

""

G(α)

��

E(i)

E(α)

��
E(βα)⇗∼

��

⇗µα

G(i′) f(i′) //

Xβ

""

G(β)

��

⇗∼

E(i′)

E(β)

��

⇗
µβ

G(i′′) f(i′′) //

⇗∼

E(i′′)

(44)
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and the diagram

G(i) f(i) //

Xβα

""

G(βα)

��

E(i)

E(βα)

��

⇗
µβα

G(i′′) f(i′′) //

⇗∼

E(i′′)

(45)

The two pastings are both Cartesian (using Lemma 5.6.1 below) over the pastings in the
diagram

Y (i) f(i) //

Y (α)
��

Z(i)
Z(α)
��

Z(βα)⇗
Zβ,α

xx

Y (i′) f(i′) //

Y (β)
��

⇗fα

Z(i′)
Z(β)
��

Y (i′′) f(i′′) //

⇗
fβ

Z(i′′)

resp.

Y (i) f(i) //

Y (βα) ⇗
Yβ,α

&&

Y (α)
��

Z(i)
Z(α)
��

Z(βα)⇗
Zβ,α

xx

Y (i′) f(i′) //

Y (β)
��

⇗fα

Z(i′)
Z(β)
��

Y (i′′) f(i′′) //

⇗
fβ

Z(i′′)

The pasting in the second diagram is just fβ,α by definition of lax natural transformation
for f . This yields an isomorphism between the pastings in diagram (44) and (45) over
Yβ,α which we define to be Gβ,α. One checks that this defines indeed a pseudo-functor G
such that ξ ∶ G → E is a lax natural transformation which is 1-Cartesian.

Lemma 5.6.1. Let D → S be a 2-(op)fibration of 2-categories. Let µ ∶ α ⇒ β be a
2-(co)Cartesian morphism, where α,β ∶ E → F are 1-morphisms. If γ ∶ F → G is a
1-morphism then γ ∗µ is 2-(co)Cartesian. Similarly, if γ′ ∶ G → E is a 1-morphism then
µ ∗ γ′ is 2-(co)Cartesian.

Proof. This follows immediately from the axiom that composition is a morphism of
(op)fibrations.
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6 Common features of fibered multiderivators and six-functor-
formalisms

6.1 Internal and external monoidal structure.

6.1.1. Let D, S be symmetric (for simplicity) 2-multicategories with all 2-morphisms
invertible. Let D → S be a symmetric 1-bifibered and 2-isofibered 2-multicategory such
that also S → {⋅} is 1-bifibered. Then any pseudo-functor of 2-multicategories s ∶ {⋅} → S
with value S gives rise to a symmetric closed monoidal structure ⊗ on the 2-category DS .
Moreover D → {⋅} is also fibered by transitivity (cf. Proposition 2.4.25). Therefore the
whole 2-category D carries a closed monoidal structure ⊠ as well. We call ⊗ the internal
product, and ⊠ the external product, and write HOM, and HOM, respectively for
the adjoints. We also denote by ⊗ the monoidal product in S itself and by HOM its
adjoint.

6.1.2. The functor s specifies, in particular, a distinguished 1-multimorphism ∆ ∈
Hom(S,S;S). By abuse of notation, we denote by ∆ (resp. ∆′) the corresponding 1-
morphisms

∆ ∶ S ⊗ S → S ∆′ ∶ S →HOM(S,S).

By the arguments in the proof of the transitivity of bifibrations of multicategories (cf.
Proposition 2.4.25), we see that we actually have

Corollary 6.1.3.

E ⊗F ≅ ∆●(E ⊠ F),
HOM(E ,F) ≅ (∆′)●(HOM(E ,F)).

Example 6.1.4. Let us investigate the internal and external monoidal structure in the
case S = Scor (cf. Definition 3.1.1). Here the 1-morphisms ∆ and ∆′ are respectively
given by the correspondences

S
diag

||
S × S ; S

and

S
diag

""
S ; S × S.

From this we see that ∆● ≅ ∆∗ and (∆′)● ≅ ∆! hold.
In the other direction, we can also reconstruct the external monoidal product and its
adjoint from the internal one. The functor ⊠ is the push-forward along the coCartesian
1-morphism

S × S
pr1

||
pr2

��
S S ; S × S,
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hence we have (− ⊠ −) ≅ (pr∗1 − ⊗ pr∗2 −). The functor HOM is the pull-back w.r.t. the
first slot (say) along the Cartesian (w.r.t. the first slot) 1-morphism:

S × S
pr1

��

pr2

''
S × S S ; S,

hence we have HOM(−,−) ≅ HOM(pr∗1 −,pr!
2 −).

Example 6.1.5. Let us investigate the internal and external monoidal structure in the
case S = Diacor (cf. Definition 5.2.3). By Proposition 5.2.10 we know I ⊗ I ≅ I × I and
HOM(I, I) ≅ Iop × I. The 1-morphism ∆ is given by the correspondence

I
∆

}}
I × I ; I.

To determine ∆′, observe that the correspondence

I

I I ; I

belongs (via 5.2.7) to the following functor in Fun(Iop × Iop × I,Dia):

FI ∶ Iop × Iop × I → Dia

i, i′, i′′ ↦ Hom(i, i′′) ×Hom(i′, i′′)

which yields (via 5.2.7 again) the correspondence ∆′:

∫ ∇FI
p

||

q

%%
I Iop × I

and we have ∫ ∇FI = I ×/I tw(I).
We see that ∆● ≅ ∆∗ and (∆′)● ≅ p∗q∗ hold. The latter is also the same as pr2,∗ π∗π

∗

for the following functors:

tw(I) π // Iop × I pr2 // I.

Given a bifibration of 1-multicategories D → S, this explains more conceptually the con-
struction of the “multi-pull-back” in the multicategory of functors Fun(I,D) in Proposi-
tion 4.7.6. Using Proposition 2.4.26 one can even give an alternative proof of Proposi-
tion 4.7.6 in case that S is closed monoidal (i.e. bifibered over {⋅}). Applying Proposi-
tions 2.4.25 and 2.4.26 to the composition

Diacor(D) → Diacor → {⋅}
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we can show that for a derivator D it is the same

1. to define an absolute monoidal product and absolute Hom which commute with left,
resp. right Kan extensions in the correct way (conditions 1.–3. of 2.4.26) or

2. to give D the structure of a closed monoidal derivator.

6.2 Grothendieck and Wirthmüller contexts

6.2.1. Let S be a category with fiber products and final object and let S0 be a class of
morphisms in S. We can define a submulticategory Scor,0 of Scor where the 2-morphisms
are those

A

~~tt   
γ

��

S1 . . . Sn T

A′

``jj ??

in which γ ∈ S0. If S0 is the class of all morphisms in S, then we denote Scor,0 by Scor,G.

Lemma 6.2.2. Consider the 2-category Scor,0 and a morphism f ∶ S → T in S0 such
that also ∆f ∶ S → S ×T S is in S0. Then the morphisms

fop ∶
S

f

��
T S

f ∶
S

f

��
S T

are adjoints in the 2-category Scor,0.

Proof. We give unit and counit:

f ○ fop ⇒ id ∶

T

T T

S
f

__

f

??f

OO

id⇒ fop ○ f ∶

S

∆f

��

S S

S ×T S
pr1

cc

pr2

;; (46)

One easily checks the unit/counit equations.
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Proposition 6.2.3. 1. Let D → Scor,0 be a proper six-functor-formalism (cf. 3.1.4).
If ∆f ∈ S0 (in many examples this is always the case) then there is a canonical
natural transformation

f! → f∗

which is an isomorphism if f ∈ S0.

2. Let D → Scor,0 be an etale six-functor-formalism (cf. 3.1.4). If f ∈ S0 then there is
a canonical natural transformation

f∗ → f !

which is an isomorphism if ∆f ∈ S0.
In particular, for a Wirthmüller context, we have a canonical isomorphism f∗ ≅ f ! for
all morphisms f in S, and for a Grothendieck context, we have a canonical isomorphism
f! ≅ f∗ for all morphisms f in S. This justifies the naming.

Proof. We prove the first assertion, the second is shown analogously. To give a natural
transformation as claimed is equivalent to give a morphism

f∗f! → id,

or equivalently
pr2,! pr∗1 → id

with pr1 and pr2 as in (46). This natural transformation is given by means of the 2-
pullback along the 2-morphism of correspondences (46). If f is in S0 then this is the
counit of an adjunction and hence it induces a canonical isomorphism f! ≅ f∗ (uniqueness
of adjoints up to canonical isomorphism).

Example 6.2.4. From the properties of 1/2 (op)fibrations of 2-multicategories one can
derive many compatibilities of the morphism f! → f∗. For example in a proper six-
functor-formalism D → Scor for a Cartesian square

S
F //

G
��

T

g

��
U

f
// V

in S the following diagram is 2-commutative

G∗F!
∼ //

��

f!g
∗

��
G∗F∗

exc. // f∗g
∗

provided that ∆f ,∆F are in S0.
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Example 6.2.5. The following diagram, which is depicted on the front cover of Lipman’s
book [LH09] (there a specific Grothendieck context is considered, namely quasi-coherent
sheaves on a certain class of proper schemes), is commutative:

f∗ Hom(−, f !−) ∼ //

��

Hom(f!−,−)

f∗ Hom(f∗f!−, f !−) ∼ // Hom(f!−, f∗f !−)

OO

(47)

Here the horizontal morphisms are induced by the natural transformations

f∗f! → id, (48)

and
f∗f

! → id, (49)

respectively, which are the natural transformations on the push-forward (resp. the pull-
back) induced by the 2-morphisms of correspondences given by

f ○ fop ⇒ id ∶

T

T T

S
f

__

f

??f

OO

and id⇒ fop ○ f ∶

S

∆f

��

S S

S ×T S
pr1

cc

pr2

;;

Note: The isomorphism f! ≅ f∗ of Proposition 6.2.3, 1. is constructed in such a way that
the two morphisms (48) and (49) are identified with the two counits

f∗f∗ → id and f!f
! → id .

Proof. Taking adjoints this is the same as to show that the diagram

f!(− ⊗ f∗−) (f!−) ⊗ −∼
oo

��
f!((f∗f!−) ⊗ (f∗−))

OO

f!f
∗((f!−) ⊗ −)∼

oo

is commutative. This is just the diagram induced on push-forwards by the following
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commutative diagram of 2-morphisms of multicorrespondences.

⎛
⎜⎜⎜
⎝

S

f��

f

��
S T ; T

⎞
⎟⎟⎟
⎠

∼Ð→ ⋯

↓
⎛
⎜⎜⎜
⎝

S

f
ww

f��

f

��
T T ; T

⎞
⎟⎟⎟
⎠
○1

⎛
⎜⎜⎜
⎝

S
f

��
S ; T

⎞
⎟⎟⎟
⎠

∼Ð→ ⋯

⋯ ∼Ð→
⎛
⎜⎜⎜
⎝

T

T T ; T

⎞
⎟⎟⎟
⎠
○1

⎛
⎜⎜⎜
⎝

S
f

��
S ; T

⎞
⎟⎟⎟
⎠

↑

⋯ ∼Ð→
⎛
⎜⎜⎜
⎝

S

f��

f

��
T ; T

⎞
⎟⎟⎟
⎠
○
⎛
⎜⎜⎜
⎝

T

T T ; T

⎞
⎟⎟⎟
⎠
○1

⎛
⎜⎜⎜
⎝

S
f

��
S ; T

⎞
⎟⎟⎟
⎠

Hence, for a Grothendieck context given by Definiton 3.3.2 (as is the context considered
in [LH09]) the commutativity of the diagram (47) follows from Proposition 3.3.3.

6.2.6. Analogously we can say that a 1-bifibration and 2-opfibration over Diacor is a
Wirthmüller context. Note that in Diacor all functors supply valid 2-morphisms. This
shows that to construct e.g. a monoidal derivator one does not have to start with a
pre-multiderivator but could use an arbitrary 1-bifibration and and 2-opfibration over
Diacor. In detail:
Let α ∶ I → J be a functor between diagrams in Dia. Recall from Lemma 5.5.6, 1. that
in the category Diacor the correspondences

[α]′ ∶
J ×/J I

α

|| ""
J I

[α] ∶
I ×/J J

α

""||
I J

are adjoints. Using this, we can reconstruct from a strict 2-functor D → Diacor which
is 1-opfibered and 2-fibered with 1-categorical fibers a (non-strict) pre-multiderivator as
follows: Consider the embedding ι from Proposition 5.2.9 and consider the pull-back (cf.
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Definition 2.4.23) of D
ι∗D //

��

D

��
Dia1−op ι // Diacor .

The 1-opfibration, and 2-fibration of 2-multicategories ι∗D → Dia1−op with 1-categorical
fibers can be seen (cf. Proposition 2.4.16) as a pseudo-functor

D ∶ Dia1−op →MCAT .

The adjointness of [α] and [α]′ shows that D is determined by ι∗D and can thus be
reconstructed by the construction in 5.3.7 that associates the 2-multicategory Diacor(D)
with a pre-multiderivator D. The only difference is that the D reconstructed from D
might not be a strict 2-functor.
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7 (Co)homological descent

7.1 Categories of S-diagrams

Definition 7.1.1. Let S be a strong right derivator with Grothendieck pre-topology (cf.
Definition 4.5.2). Recall the 2-category Cat(S) from Definition 4.6.1.
A category of S-diagrams in Cat(S) is a full sub-2-category DIA ⊂ Cat(S), satisfying
the following axioms:

(SDia1) The empty diagram (∅,−), the diagrams (⋅, S) for any S ∈ S(⋅), and (∆1, f) for
any f ∈ S(∆1) are objects of DIA.

(SDia2) DIA is stable under taking finite coproducts and such fibered products, where one
of the morphisms is of pure diagram type.

(SDia3) For each morphism α ∶ D1 → D2 with Di = (Ii, Fi) in DIA and for each object
i ∈ I2 and morphism U → F2(i) being part of a cover in the chosen pre-topology,
the slice diagram D1 ×/D2

(i,U) is in DIA, and if α is of pure diagram type then
also (i, F2(i)) ×/D2

D1 is in DIA.

A category of S-diagrams DIA is called infinite, if it satisfies in addition:

(SDia5) DIA is stable under taking arbitrary coproducts.

There is an obvious dual notion of a category of S-diagrams in Catop(S). If S is the
trivial derivator both definitions boil down to the previous definition of a diagram cate-
gory 4.1.1.

7.2 Fundamental (co)localizers

Definition 7.2.1. A class of morphisms W in a category is called weakly saturated,
if it satisfies the following properties:

(WS1) Identities are in W.

(WS2) W has the 2-out-of-3 property.

(WS3) If p ∶ Y →X and s ∶X → Y are morphisms such that p ○ s = idX and s ○ p ∈ W then
p ∈ W (and hence s ∈ W by (WS2)).

Definition 7.2.2. Let S be a strong right derivator with Grothendieck pre-topology
(4.5.2). Let DIA ⊂ Cat(S) be a category of S-diagrams (cf. 7.1.1).
Consider a family of subclasses WS of morphisms in DIA ×/DIA (⋅, S) parametrized by
all objects S ∈ S(⋅). Such a family {WS}S is called a system of relative localizers if
the following properties are satisfied:

(L0) For any morphism S1 → S2 the induced functor DIA ×/DIA (⋅, S1) → DIA ×/DIA

(⋅, S2) maps WS1 to WS2.
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(L1) Each WS is weakly saturated.

(L2 left) If D = (I,F ) ∈ DIA, and I has a final object e, then the projection D → (e,F (e))
is in WF (e).

(L3 left) For any commutative diagram in DIA over (⋅, S)

D1

%%

w // D2

yy
D3 = (E,F )

and for any chosen covers {Ue,i → F (e)} for all e ∈ E, the following implication
holds true:

∀e ∈ E ∀i w ×/D3
(e,Ue,i) ∈ WUe,i ⇒ w ∈ WS .

(L4 left) For any morphism w ∶ D1 → D2 = (E,F ) of pure diagram type over (⋅, S) the
following implication holds true:

∀e ∈ E (e,F (e)) ×/D2
D1 → (e,F (e)) ∈ W(e,F (e)) ⇒ w ∈ WS .

There is an obvious dual notion of a system of colocalizers in DIA ⊂ Catop(S) where
S is supposed to be a strong left derivator with Grothendieck pre-cotopology.

Definition 7.2.3. Let S be a strong right derivator. Assume we are given a Grothendieck
pre-topology on S (cf. 4.5.2). Let DIA ⊂ Cat(S) be a category of S-diagrams (cf. 7.1.1).
A subclass W of morphisms in DIA is called an absolute localizer (or just localizer)
if the following properties are satisfied:

(L1) W is weakly saturated.

(L2 left) If D = (I,F ) ∈ DIA, and I has a final object e, then the projection D → (e,F (e))
is in W.

(L3 left) For any commutative diagram in DIA

D1

%%

α // D2

yy
D3 = (E,F )

and chosen covering {Ui,e → F3(e)} for all e ∈ E, the following implication holds
true:

∀e ∈ E ∀i w ×/D3
(e,Ui) ∈ W ⇒ w ∈ W.
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(L4 left) For any morphism w ∶ D1 → D2 = (E,F ) of pure diagram type, the following
implication holds true:

∀e ∈ E (e,F (e)) ×/D2
D1 → (e,F (e)) ∈ W ⇒ w ∈ W.

There is an obvious dual notion of absolute colocalizer in DIA ⊂ Catop(S) where S is
supposed to be a strong left derivator with Grothendieck pre-cotopology.
Recall the identification

Cat(S) → Catop(Sop)2−op

(I,F ) ↦ (Iop, F op)

By abuse of notation, we denote the image of DIA under this identification by DIAop.
Note that if S is a strong right derivator with Grothendieck pre-topology, then Sop is a
strong left derivator with Grothendieck pre-cotopology.

Remark 7.2.4. 1. If W is a localizer in DIA, then Wop is a colocalizer in DIAop

and vice versa. The same holds true for systems of relative localizers.

2. If S is the trivial derivator, then a system of relative localizers or a localizer are the
same notion, and (L1–L3 left) are precisely the definition of fundamental localizer
of Grothendieck.

Proposition 7.2.5 (Grothendieck). If S = {⋅} is the trivial derivator, then Cat(⋅) =
Catop(⋅) as 2-categories. If DIA is self-dual, i.e. if DIAop = DIA under this identifica-
tion, then the notions of localizer, localizer without (L4 left), colocalizer, and colocalizer
without (L4 right) are all equivalent.

Proof. [Cis04, Proposition 1.2.6]

Remark 7.2.6. The class of localizers is obviously closed under intersection, hence there
is a smallest localizerWmin

DIA. Furthermore the smallest localizer in DIA and the smallest
colocalizer in DIAop correspond. If S is the trivial derivator and DIA = Cat, Cisinski
[Cis04, Théorème 2.2.11] has shown that Wmin

Cat is precisely the class W∞ of functors
α ∶ I → J such that N(α) is a weak equivalence in the classical sense (of simplicial sets,
resp. topological spaces). For a localizer in the sense of Definition 7.2.3 this implies the
following:

Theorem 7.2.7. If DIA = Cat(S) and W is an absolute localizer in DIA and α ∈ W∞,
i.e. α ∶ I → J is a functor such that N(α) is a weak equivalence of topological spaces,
the morphism (α, id) ∶ (I, p∗IS) → (J, p∗JS) is in W for all S ∈ S(⋅). The same holds
analogously for a system of relative localizers.

Proof. The class of functors α ∶ I → J in Cat such that (α, id) ∶ (I, p∗IS) → (J, p∗JS) is in
W obviously form a fundamental localizer in the classical sense.

7.2.8. We will for (notational) simplicity assume that the following properties hold:

165



1. S has all relative finite coproducts (i.e. for each Grothendieck opfibration with
finite discrete fibers p ∶ O → I the functor p∗ has a left adjoint p! and Kan’s formula
holds true for it).

2. For all finite families (Si)i∈I of objects in S(⋅) the collection {Si →∐j∈I Sj}i∈I is a
cover.

Let ∅ be the initial object of S (which exists by 1.). Then the map

∅ → (⋅,∅),

where ∅ on the left denotes the empty diagram, is in W (resp. in W∅, and hence in all
WS) by (L3 left) applied to the empty cover.
From this and (L3 left) again it follows that for a finite collection (Si)i∈I of objects of
S(⋅) the map

(I, (Si)i∈I) → (⋅,∐
i∈I

Si)

is in W (resp. in W∐i∈I Si). More generally, if we have a Grothendieck opfibration with
finite discrete fibers p ∶ O → I and a diagram F ∈ S(O) (over S ∈ S(⋅)), then the morphism

(O,F ) → (I, p!F )

is in W (resp. in WS).

Example 7.2.9 (Mayer-Vietoris). For the simplest non-trivial example of a non-constant
map inW consider a cover {U1 → S,U2 → S} in S(⋅) consisting of two monomorphisms27.
Then the projection

p ∶
⎛
⎜⎜⎜
⎝

“U1 ×S U2” //

��

U1

U2

⎞
⎟⎟⎟
⎠
→ S

is in W (resp. in WS) as is easily derived from the axioms (L1–L4). See 7.5.14 for how
the Mayer-Vietoris long exact sequence is related to this.

7.2.10. Let α,β ∶ D1 → D2 be two morphisms in DIA. Recall that it is the same
to give a 2-morphism α ⇒ β or a morphism D1 × ∆1 → D2 such that for i = 1,2 the

compositions D1
ei // D1 ×∆1

// D2 are α and β respectively. We call α and β
homotopic if they are equivalent for the smallest equivalence relation containing by the
following relation: α ∼ β, if there exists a 2-morphism α ⇒ β. In other words α and β
are homotopic if there is a finite set of 1-morphisms γ0, γ1, . . . , γn ∶ D1 → D2 such that
γ0 = α and γn = β and a chain of 2-morphisms:

γ0 ⇐ γ1 ⇒ γ2 ⇐⋯⇒ γn.

27For an arbitrary S this means that the projections “Ui ×S Ui”→ Ui are isomorphisms.
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Proposition 7.2.11. Let DIA be a category of S-diagrams (cf. 7.1.1) and let W be
localizer in DIA (resp. let {WS}S be a system of relative localizers). Then W (resp.
{WS}S) satisfies the following properties:

1. The localizer W (resp. each WS) is closed under coproducts.

2. Let s̃ = (s, id) ∶ D2 = (I2, s
∗F ) → D1 = (I1, F ) be a morphism in DIA (resp. over

(⋅, S)) of pure diagram type such that s has a left adjoint p ∶ I1 → I2. Then the
obvious morphisms p̃ ∶D1 →D2 and s̃ are in W (resp. in WS).

3. Given a commutative diagram in DIA (resp. one over (⋅, S))

D1

!!

w // D2

}}
D3

where the underlying functors of the morphisms to D3 are Grothendieck opfibra-
tions and the underlying functor of w is a morphism of opfibrations, and coverings
{Ue,i → F3(e)} for all e ∈ I3, then (in the relative case)

∀e ∈ I3 ∀i w ×D3 (e,Ue,i) ∈ WUe,i ⇒ w ∈ WS

or (in the absolute case)

∀e ∈ I3 ∀i w ×D3 (e,Ue,i) ∈ W ⇒ w ∈ W

4. If f ∶ D1 → D2 is in W (resp. in WS) then also f × E ∶ D1 × E → D2 × E is in
W (resp. in WS) for any E ∈ Cat such that the morphism f ×E is a morphism in
DIA.

5. Any morphism which is homotopic (in the sense of 7.2.10) to a morphism in W
(resp. in WS) is in W (resp. in WS).

Proof. 1. This property follows immediately from (L3 left) applied to a diagram

∐i∈I D1,i
//

&&

∐i∈I D2,i

xx
(I, p∗IS)

where I is considered to be a discrete category. (In the absolute case let S be the final
object of S(⋅).)
2. We first show that p̃ ∈ W. Using (L3 left), it suffices to show that p̃i ∶D1×/I2i→D2×/I2i
is inW (resp. inWS) for all i ∈ I2, however by the adjunction we have I1×/I2 i = I1×/I1s(i)
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and therefore I1 ×/I2 i has a final object. In the diagram

D1 ×/I2 i
p̃i //

��

D2 ×/I2 i

��
(⋅, s(i)∗F ) (⋅, s(i)∗F )

the vertical morphisms are thus in W (resp. WS) and so is the upper horizontal mor-
phism. That s̃ is in W (resp. in WS) will follow from 4. because this implies that s̃ ○ p̃
and p̃○ s̃ are inW (resp. inWS) therefore by (L1) also s̃ is inW (resp. inWS). For note
that the unit and the counit extend to 2-morphisms of diagrams.
3. Using (L3 left), we have to show that D1×/D3

(e,Ue,i) →D2×/D3
(e,Ue,i) is inW (resp.

in WUe,i). Since the underlying functors of D1 → D3 and D2 → D3 are Grothendieck
opfibrations, we have a diagram over (e,Ue,i):

D1 ×D3 (e,Ue,i) //

ιe

��

D2 ×D3 (e,Ue,i)
ιe

��
D1 ×/D3

(e,Ue,i) //

se

OO

D2 ×/D3
(e,Ue,i)

se

OO

where the underlying functor of ιe is of diagram type and is right adjoint to se. Therefore
se is in W (resp. in WUe,i) by 2. and hence the same holds for ιe because seιe = id (using
L1). Note: we are not using the not yet proven part of 2. Since the top arrow is in W
(resp. in WUe,i) the same holds for the bottom arrow.
4. This is a special case of 2.
5. A natural transformation µ ∶ f ⇒ g for f, g ∶ D1 → D2 can be seen as a morphism
of diagrams µ ∶ ∆1 ×D1 → D2 such that µ ○ e0 = f and µ ○ e1 = g. Since the projection
p ∶ ∆1 ×D1 → D1 is in W by 3. also the morphisms e0,1 ∶ D1 → ∆1 ×D1 are in W. Since
µ ○ e0 = f and µ ○ e1 = g, the morphism f is in W if and only if g ∈ W.

Proposition 7.2.12. Axiom (L4 left) is, in the presence of (L1–L3 left), equivalent to
the following, apparently weaker axiom:

(L4’ left) Let w ∶ D1 → D2 be a morphism (resp. a morphism over (⋅, S)) of pure diagram
type such that the underlying functor is a Grothendieck fibration. Then (in the
relative case)

∀e ∈ I2 (e,F2(e)) ×D2 D1 → (e,F2(e)) ∈ WF2(e) ⇒ w ∈ WS

or (in the absolute case)

∀e ∈ I2 (e,F2(e)) ×D2 D1 → (e,F2(e)) ∈ W ⇒ w ∈ W.
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Proof. (L4’ left) implies (L4 left): Consider the following 2-commutative diagram

(E,F ) ×/(E,F ) (I, p∗F ) //

��
⇗

(I, p∗F ) =D1

��
(E,F ) (E,F ) =D2

The underlying diagram functor of the top horizontal map (which is not purely of dia-
gram type) is a Grothendieck opfibration and hence by Proposition 7.2.11, 3. it is in W
(resp. WS), provided that the morphisms of the fibers (E ×/E e,pr∗1 F ) → (⋅, F (e)) are in
W (resp. in WF (e)). However E ×/E e has the final object ide whose value under pr∗1 F is
F (e). The morphisms of the fibers are therefore inW (resp. inWF (e)) by (L2 left). The
underlying diagram functor of the left vertical map is a Grothendieck fibration and pr∗1 F
is constant along the fibers. Therefore the fact that all (e,F (e))×/D2

D1 → (e,F (e)) are
inW (resp. inWF (e)) implies that the left vertical map is inW (resp. inWS) by (L4’ left).
Thus also the right vertical map is inW (resp. inWS). (This uses Proposition 7.2.11, 5.
and the fact that the two compositions in the diagram are homotopic).
(L4 left) implies (L4’ left): If D1 →D2 = (E,F ) is a morphism whose underlying functor
is a Grothendieck fibration as in Axiom (L4’ left), the morphism of constant diagrams
(e,F (e)) ×D2 D1 → (e,F (e)) ×/D2

D1 is in W (resp. WF (e)) (their underlying functors
being part of an adjunction), therefore (L4 left) applies.

7.3 Simplicial objects in a localizer

7.3.1. In this section, we fix a strong right derivator S equipped with a Grothendieck pre-
topology and satisfying the assumptions of 7.2.8 and a category of S-diagrams DIA (cf.
7.1.1). Assume that for all S● ∈ S(∆op) the diagrams (∆op, S●) and also all truncations
((∆≤n)op, S●) are in DIA. Later we will assume that also ((∆○)op, S●) for all S● ∈
S((∆○)op) (injective simplex diagram) and all truncations ((∆○,≤n)op, S●) are in DIA.
The reasoning in this section uses little of the explicit definition of ∆op. For comparison
with classical texts on cohomological descent we stick to the particular diagram ∆op.
Consider the category S(∆op). Since S has all (relative) finite coproducts, S(⋅) is actually
tensored over SET F , hence S(∆op) will be tensored over SET F∆op

. We sketch this
construction. A finite simplicial set, i.e. a functor ξ ∶ ∆op → SET F , can be seen as
a functor with values in finite discrete categories. The corresponding Grothendieck
construction yields a Grothendieck opfibration πξ ∶ ∫ ξ → ∆op. We define for X● ∈
S(∆op):

ξ ⊗X● ∶= (πξ)!(πξ)∗X●.

Recall that the notion ‘S has relative finite coproducts’ means that all functors (πξ)!

arising this way exist and can be computed fiber-wise.

7.3.2. Consider the full subcategory ∆≤n of ∆ consisting of ∆0, . . . ,∆n. Since S is
assumed to be a right derivator, the restriction functor

ι∗ ∶ S(∆op) → S((∆≤n)op)
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has a right adjoint ι∗, which is usually called the coskeleton and denoted coskn.
Let some simplicial object Y● ∈ S(∆op) and a morphism α ∶ X≤n → ι∗Y● be given.
Consider the full subcategory (∆op × ∆1)0−≤n of all objects ∆i × [1] for all i ∈ N0, and
∆i × [0] for i ≤ n. The restriction

ι∗ ∶ S(∆op ×∆1) → S((∆op ×∆1)0−≤n)

has again an adjoint ι∗. Since S is assumed to be strong we can consider α as an object
over (∆×∆1)0−≤n. The first row of ι∗α is called the relative coskeleton coskn(X≤n∣Y●)
of X≤n. For n = −1 we understand cosk−1(−∣Y●) = Y●.
These constructions work the same way with ∆ replaced by ∆○. The functor ‘coskele-
ton’ and ‘relative coskeleton’ is in both cases even the same functor, i.e. these functors
commute with the restriction of a simplicial to a semi-simplicial object28. This would
not at all be true for the corresponding left adjoint, the functor ‘skeleton’.

We call a diagram I in a diagram category Dia contractible, if I → ⋅ lies in every
fundamental localizer on Dia.

Lemma 7.3.3. 1. Let ∆ be the simplex category, and I a category admitting a final
object i. Let N(I) be the nerve of I. Then the category

∫
(∆○)op

N(I)

is contractible.

2. Let ∆ be the simplex category, and I a category admitting a final object i. Let
N(I) be the nerve of I. Then the category

∫
∆op

N(I)

is contractible.

3. Let ∆○ be the injective simplex category and I a directed category admitting a final
object i. Let N○(I) be the semi-simplicial nerve of I, defined by letting N○(I)m be
the set of functors [n] → I such that no non-identity morphism is mapped to an
identity. Then the category

∫
(∆○)op

N○(I)

is contractible.

28To see this, e.g., for the case of the ‘coskeleton’, observe that there is an adjunction:

∆m ×/(∆○)op (∆○
≤n)

op // ∆m ×/∆op ∆op
≤n.oo
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Proof. 1. is shown in [Cis04, Proposition 2.2.3]. 2. is the same but considering N(I) as
a functor from (∆○)op to SET . The same proof works when (∆○)op is replaced by ∆op.
3. is also just a small modification of [loc. cit.]. Define a functor ξ ∶ ∫ N○(I) → ∫ N○(I)
as follows: an object (n,x), where x ∈ N○(I)n is mapped to (n,x) if x(n) = i and to
(n + 1, x′) with

x′(k) =
⎧⎪⎪⎨⎪⎪⎩

x(k) k ≤ n
i k = n + 1.

otherwise. There are natural transformations

id
∫ N○(I) ⇒ ξ i⇒ ξ

where i denotes here the constant functor with value (0, i), showing that ∫ N○(I) is
contractible.

Corollary 7.3.4. The diagrams ∆, ∆○, ∫∆op ∆n, ∫(∆○)op ∆○
n, ∫∆op ∆n×∆m and ∆m×/∆op

(∆○)op = ∫(∆○)op ∆m are contractible.

Proof. The simplicial set ∆n is just the nerve N of [n]. Likewise the semi-simplicial set
∆○
n is the semi-simplicial nerve N○ of [n].

Note that the diagram ∫ ∆○
n is even finite.

Lemma 7.3.5. Let W be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.
Let ((∆op)2, F●,●) ∈ DIA be a bisimplicial diagram (resp. a bisimplicial diagram over
(⋅, S)) and let δ ∶ ∆op → (∆op)2 be the diagonal. Then the morphism

(∆op, δ∗F●,●) → ((∆op)2, F●,●)

is in W (resp. WS).

Remark 7.3.6. The statement of the Lemma is false when ∆ is replaced by ∆○.

Proof of Lemma 7.3.5. We focus on the absolute case. For the relative case the proof is
identical. Since the morphism in the statement is of pure diagram type, we may check
the condition of (L4 left): we have to show that the category

(∆m ×∆n) ×/(∆op)2 ∆op

is contractible, say, on the diagram category of diagrams I such that (I,Fm,n) ∈ DIA.
Equivalently we may prove this for the dual category. Objects of that category are
diagrams of the form:

∆m′

""��
∆m ∆n

This is the category ∆/(∆m ×∆n) which is contractible by Lemma 7.3.3, 2. Note that
this is the only feature of ∆op used in the proof of this Lemma.
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Remark 7.3.7. The previous lemma should be seen in the following context: the Grothendieck
construction gives a way of embedding the category of simplicial sets into the category
of small categories. This construction maps weak equivalences to weak equivalences and
induces an equivalence between the corresponding homotopy categories. A bisimplicial
set can be seen as a simplicial object in the category of simplicial sets. Its homotopy
colimit is given by the diagonal simplicial set. On the other hand the homotopy colimit
in the category of small categories is just given by the Grothendieck construction. From
this perspective, the lemma is clear if S is the derivator associated with the category of
sets (equipped with the discrete topology).

Lemma 7.3.8. Let W be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.
Consider a simplicial diagram (∆op, F●) ∈ DIA (resp. a simplicial diagram over (⋅, S)).
The morphism

(∆op, F● ⊗∆n) → (∆op, F●)

is in W (resp. WS).

Proof. We focus on the absolute case. For the relative case the proof is identical. The
diagram (∆op, F●⊗∆n) is equivalent to (∫ ∆n, π

∗F●) by definition (see 7.3.1). We apply
the criterion of (L4 left) to the resulting map

(∫ ∆n, π
∗F●) → (∆op, F●)

and have to show that
∆m ×/∆op ∫ ∆n

is contractible. This category is again (dual to) the category of objects

∆k

!!��
∆m ∆n

and we have already seen in the proof of Lemma 7.3.5 that it is contractible.

Corollary 7.3.9. LetW be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.
Let f, g ∶ (∆op, F●) → (∆op,G●) be two homotopic morphisms of simplicial objects (resp.
morphisms over (⋅, S)). Then f ∈ W (resp. in WS) if and only if g ∈ W (resp. in WS).

Proof. The statement follows by the standard argument because the projection (∆op, F●⊗
∆1) → (∆op, F●) is in W (resp. in WS) by Lemma 7.3.8.

Proposition 7.3.10 (Čech resolutions are inW). Let W be a localizer (resp. let {WS}S
be a system of relative localizers) in DIA.
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Let U → S be a local epimorphism in S(⋅). Then the morphism

p ∶ (∆op, cosk0(U ∣S)) → (⋅, S)

is in W (resp. WS).

Proof. To simplify the exposition we focus on the case in which S is associated with a
category S. The reader may check however that everything goes through in the general
case because the only constructions involved can be expressed as right Kan extensions.
The assumption means that there is a cover U = {Ui → S} in the given pre-topology,
such that for all indices i, the induced map

pi ∶ U ×S Ui → Ui

has a section si. By axiom (L3 left) it suffices to show that for all i the map

p̃i ∶ (∆op, cosk0(U ×S Ui ∣Ui)) → (⋅, Ui)

is in W (resp. in WUi). Explicitly the simplicial object cosk0(U ×S Ui ∣Ui) is given by

⋯ ////
//// U ×S U ×S U ×S Ui

// //// U ×S U ×S Ui // // U ×S Ui

Since ∆op is contractible (in particular the morphism (∆op, p∗T ) → (⋅, T ) is in W, resp.
in WT , for any T ∈ S(⋅)), it suffices to show that the map

p̃i ∶ (∆op, cosk0(U ×S Ui ∣Ui)) → (∆op, p∗Ui)

is in W (resp. in WUi). There is a section

s̃i ∶ (∆op, p∗Ui) → (∆op, cosk0(U ×S Ui ∣Ui))

induced by si such that p̃i ○ s̃i = id. By (L1) it then suffices to check that s̃i ○ p̃i ∈ W
(resp. in WUi). We will construct a homotopy between id and s̃i ○ p̃i

(∆op,∆1 × cosk0(U ×S Ui ∣Ui)) → (∆op, cosk0(U ×S Ui ∣Ui))

in the sense of simplicial objects. This will suffice by Corollary 7.3.9. Since ∆1 is 1-
coskeletal, and the cosk0’s anyway, it suffices to construct the homotopy in degrees 0
and 1:

Hom(∆1,∆1) ×U ×S U ×S Ui ////

��

Hom(∆0,∆1) ×U ×S Ui

��
U ×S U ×S Ui // // U ×S Ui

This can be achieved by mapping id∆1 ×(U ×SUi)×Ui (U ×SUi) to (U ×SUi)×Ui (U ×SUi)
via (si ○ pr2) × id.

Definition 7.3.11. A morphism X● → Y● of simplicial objects is called a hypercover
if the following two equivalent conditions hold:
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1. In any diagram of simplicial objects

∂∆n ⊗U //

��

X●

��
∆n ⊗U // Y●

there is a cover U = {Ui → U} such that for all i there is a lift (indicated by a
dotted arrow) in the diagram

∂∆n ⊗Ui //

��

∂∆n ⊗U // X●

��
∆n ⊗Ui

44

// ∆n ⊗U // Y●

2. For any n ≥ 0 the morphism

Xn → coskn−1(ι∗≤n−1X● ∣Y●)n

admits local sections in the pre-topology on S (i.e. it is a local epimorphism).

Remark 7.3.12.

1. In particular the notion of hypercover depends only on the Grothendieck topology
generated by the pre-topology because a morphism is a local epimorphism precisely
if the sieve generated by it is a covering sieve.

2. The equivalent condition 1. of the definition of hypercover shows that, if S is the
derivator associated with the category SET equipped with the discrete topology, then
a hypercover is precisely a trivial Kan fibration.

Definition 7.3.13. If in condition 2. of Definition 7.3.11 the morphism is even an
isomorphism for all sufficiently large n, then α is called a finite (or bounded) hyper-
cover. Equivalently we have X● ≅ coskn(ι∗≤nX● ∣Y●) for some n.

Lemma 7.3.14. Let W be a localizer (resp. {WS}S be a system of relative localizers)
in DIA.
For a finite hypercover X● → Y● (resp. one over (⋅, S)) such that X● ≅ coski+1(X● ∣Y●)
and ι∗≤i−1X● ≅ ι∗≤i−1Y● the morphism (∆op,X●) → (∆op, Y●) is in W (resp. in WS).

Proof. Again, to simplify the exposition we focus on the case in which S is associated
with a category S. We may assume i ≥ 1 because otherwise we are in the situation of
Lemma 7.3.10. The assumptions imply that the map Xi → Yi is a local epimorphism.
Indeed, this is the map Xi → Yi = coski−1(ι∗≤i−1X● ∣Y●)i in this case. Therefore the
morphism Xj → Yj is actually a local epimorphism for all j.
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Consider the following diagram in DIA:

(∆op ×∆op, (X● ×Y● X● ∣X●)) //

��

(∆op ×∆op, (X● ∣Y●))

��
(∆op,X●) // (∆op, Y●)

where
(X● ∣Y●)m,n ∶= cosk0(Xn ∣Yn)m =Xn ×Yn ⋯×Yn Xn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m+1 factors

.

(X● ×Y● X● ∣X●)m,n ∶= cosk0(Xn ×Yn Xn ∣Xn)m =Xn ×Yn ⋯×Yn Xn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2 factors

.

The vertical morphisms are inW by Proposition 7.2.11, 3. because its columns are inW
by Lemma 7.3.10. Again by Proposition 7.2.11, 3. it then suffices to show that the rows

p ∶ (∆op, (X● × Y● ∣X●)m,●) // (∆op, (X● ∣Y●)m,●)

of the top horizontal morphism are in W. These are again hypercovers of the form
considered in this Lemma, in particular i-coskeletal, where the i-truncation is given by

Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2

��

//
⋮ // Xi−1 = Yi−1⋯ ⋯ //// X0 = Y0

Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+1

//
⋮ // Yi−1⋯ ⋯ // // Y0

where the left-most vertical arrow is induced by the map ∆m+1 →∆m+2, i↦ i. There is
a section s, with si induced by the map

∆m+2 →∆m+1, i↦
⎧⎪⎪⎨⎪⎪⎩

i i <m + 2,

m + 1 i =m + 2.

We will construct a homotopy µ ∶ id⇒ s ○ p of truncated simplicial objects:

Hom(∆i,∆1) ×Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2
µi

��

//
⋮ // Hom(∆i−1,∆1) × Yi−1⋯

µi−1

��

⋯ //// Hom(∆0,∆1) × Y0

µ0

��
Xi ×Yi ⋯×Yi Xi
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m+2

//
⋮ // Yi−1⋯ ⋯ //// Y0

The morphism µi at the constant morphism 0 ∶ ∆i → ∆1 is given by the identity, at the
constant morphism 1 ∶ ∆i → ∆1 given by si ○ pi, and at the other morphisms ∆i → ∆1

arbitrarily. The existence of this homotopy allows by Lemma 7.3.9 and by (L1) to
conclude.
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Theorem 7.3.15. Let W be a localizer (resp. {WS}S be a system of relative localizers)
in DIA.
Any finite hypercover (resp. one over S) considered as a morphism of diagrams in DIA

(∆op,X●) → (∆op, Y●) (50)

is in W (resp. in WS).
Let ι ∶ (∆○)op →∆op be the inclusion. If the morphism (50) exists in DIA then also

((∆○)op, ι∗X●) → ((∆○)op, ι∗Y●)

is in W (resp. in WS).

Proof. Any finite hypercover is a finite succession of hypercovers of the form considered
in Lemma 7.3.14. The additional statement is a consequence of the following Lemma.

Lemma 7.3.16. Let W be a localizer (resp. let {WS}S be a system of relative localizers)
in DIA.
Let ι ∶ (∆○)op →∆op be the inclusion and let (∆op,X●) be a simplicial diagram in DIA
(resp. a simplicial diagram over (⋅, S)). Then the morphism

((∆○)op, ι∗X●) → (∆op,X●)

(if in DIA) is in W (resp. in WS).

Proof. We focus on the absolute case. For the relative case the proof is identical. Since
the morphism in the statement is of pure diagram type, we may check the condition of
(L4 left): we have to show that the category

∆m ×/∆op (∆○)op

is contractible, say, on the diagram category of diagrams I such that (I,Xm) ∈ DIA.
This is true by Lemma 7.3.3, 1.

7.4 Cartesian and coCartesian objects

Definition 7.4.1. Let D → S be a fibered derivator of domain Dia. Let I,E ∈ Dia be
diagrams and let α ∶ I → E be a functor in Dia. We say that an object

X ∈ D(I)

is E-(co)Cartesian, if for any morphism µ ∶ i → j in I mapping to an identity in E,
the corresponding morphism D(µ) ∶ i∗X → j∗X is (co)Cartesian.
If E is the trivial category, we omit it from the notation, and talk about (co)Cartesian
objects.

These notions define full subcategories D(I)E−cart (resp. D(I)E−cocart) of D(I), and
D(I)E−cart

F (resp. D(I)E−cocart
F ) of D(I)F for any F ∈ S(I).

176



Lemma 7.4.2. The functor α∗ w.r.t. a morphism α ∶ D1 → D2 in Dia(S) maps Carte-
sian objects to Cartesian objects. The functor α∗ for a morphism α ∶ D1 → D2 in
Diaop(S) maps coCartesian objects to coCartesian objects.

Remark 7.4.3. The categories of coCartesian objects are a generalization of the equiv-
ariant derived categories of Bernstein and Lunts [BL94]. For this let D→ Sop be the
stable fibered derivator of sheaves of abelian groups on (nice) topological spaces, where S
is the pre-derivator associated with the category of (nice) topological spaces. Let G be a
topological group acting on a space X. Then we may form the following simplicial space
which is an object of S(∆op):

[G/X]● ∶ ⋯ ////
//// G ×G ×X // //// G ×X // // X,

cf. [BL94, B1]. Then the category

D(∆)cocart
[G/X]●

is equivalent to the (unbounded) equivariant derived category, cf. [BL94, Proposition B4].
Note that all pull-back functors are exact in this context.

Definition 7.4.4. Let D → S be a fibered derivator of domain Dia. We say that D → S
admits left Cartesian projections if for all functors α ∶ I → E in Dia and S ∈ S(⋅),
the fully-faithful inclusion

D(I)E−cart
F → D(I)F

has a left adjoint ◻E! . More generally we have four notions with the following notations:

◻E! left adjoint left Cartesian projection

∎E! right adjoint right Cartesian projection

∎E∗ left adjoint left coCartesian projection

◻E∗ right adjoint right coCartesian projection

We will, in general, only use left Cartesian and right coCartesian projection, the others
being somewhat unnatural. In 8.3.1 we will show (using Brown representability) that
for an infinite fibered derivator whose fibers are stable and well-generated (cf. Defini-
tions 8.1.1, 8.1.7) a right coCartesian projection exists. Similarly if, in addition, Brown
representability for the dual holds, e.g. if the fibers are compactly generated, then a
left Cartesian projection exists (see 8.3.2) in many cases. Note that for a usual (non
fibered) derivator, the notions ‘Cartesian’ and ‘coCartesian’ are equivalent. If for a
fibered derivator with stable fibers both left and right Cartesian projections exist, then
there is actually a recollement [Kra10, Proposition 4.13.1]:

D(I)E−cart
F

incl. // D(I)F
◻!oo

∎∗oo

// D(I)F /D(I)E−cart
F

oo

oo
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Example 7.4.5. The projections are difficult to describe explicitly, except in very special
situations. Here a rather trivial example where this is possible. Let D be a stable derivator
and consider I = ∆1, the projection p ∶ ∆1 → ⋅ and the inclusions e0, e1 ∶ ⋅ → ∆1. Then
a left and a right Cartesian projection exist and the recollement above is explicitly given
by:

D(∆1)cart ≅ D(⋅) p∗ // D(∆1)
e∗1oo

e∗0oo
C // D(⋅)

[−1]○e0,∗oo

e1!oo

Note that the functor C (Cone) may be described as either [1]○e!
0 or e?

1 (cf. [Gro13, §3])
and that the essential image of p∗ is precisely the kernel of C, which also coincides with
the full subcategory of Cartesian=coCartesian objects.

7.5 Weak and strong D-equivalences

Definition 7.5.1 (left). Let Dia be a diagram category and let S be a strong right
derivator with domain Dia equipped with a Grothendieck pre-topology. Let D→ S be a left
fibered derivator satisfying (FDer0 right) and let S ∈ S(⋅). A morphism f ∶ D1 → D2 in
Dia(S)/(⋅, S) is called a weak D-equivalence relative to S if the natural transformation

p1!p
∗
1 → p2!p

∗
2

is an isomorphism of functors. A morphism f ∈ Dia(S) is called a strong D-equivalence
if the functor f∗ induces an equivalence of categories

f∗ ∶ D(D2)cart → D(D1)cart.

Note that weak is a relative notion whereas strong is absolute.

Definition 7.5.2 (right). Let Dia be a diagram category, and let S be a strong left
derivator with domain Dia equipped with a Grothendieck pre-cotopology. Let D → S be
a right fibered derivator satisfying (FDer0 left) and S ∈ S(⋅). A morphism f ∶ D1 →
D2 in Diaop(S)/(⋅, S) is called a weak D-equivalence relative to S, if the natural
transformation

p2∗p
∗
2 → p1∗p

∗
1

is an isomorphism of functors. A morphism f ∈ Diaop(S) is called a strong D-equivalence
if the functor f∗ induces an equivalence of categories

f∗ ∶ D(D2)cocart → D(D1)cocart.

For a (left and right) derivator, i.e. for S = ⋅, there is no difference between Dia(S) and
Diaop(S) and then also the two different definitions of weak, resp. strong D-equivalence
coincide (for the case of weak D-equivalences, note that the two conditions become
adjoint to each other). These notions of D-equivalence (right version) should be compared
to the classical notions of cohomological descent, see [SGA72b, Exposé Vbis].
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Lemma 7.5.3 (left). Let f ∶ D1 → D2 be a morphism in Dia(S)/(⋅, S). Then the
following implication holds:

f strong D-equivalence ⇒ f weak D-equivalence relative to S.

Proof. The morphism in the definition of weak D-equivalence is induced by the counit
w.r.t. the adjunction f∗, f!:

p1!p
∗
1 ≅ p2!f!f

∗p∗2 → p2!p
∗
2

Now let f!◻ be an inverse to f∗, as required by the definition of strong D-equivalence.
From f∗p∗2 ≅ p∗1 follows p2!f!◻ ≅ p1! and moreover the diagram

p2!f!f
∗p∗2

//

∼

��

p2!p
∗
2

p2!f!◻f
∗p∗2

99

is commutative. Since the diagonal morphism is a natural isomorphism the statement
follows.

Of course there is an analogous right version of this lemma. The goal of this section is
to prove the following two theorems:

Main Theorem 7.5.4 (right). Let Dia be a diagram category and let S be a strong left
derivator with domain Dia equipped with a Grothendieck pre-cotopology.

1. Let D → S be a fibered derivator with domain Dia which is colocal in the sense
of Definition 4.5.6 for the Grothendieck pre-cotopology on S. Then the collection
of classes {WD,S}S, where WD,S consists of those morphisms f ∶ D1 → D2 in
Diaop(S) which are weak D-equivalences relative to S ∈ S(⋅), forms a system of
relative colocalizers.

2. Let D → S be an infinite fibered derivator with domain Dia which is colocal in the
sense of Definition 4.5.6 for the Grothendieck pre-cotopology on S, with stable,
compactly generated fibers. The class WD consisting of those morphisms f ∶ D1 →
D2 in Diaop(S) which are strong D-equivalences forms an absolute colocalizer.

Main Theorem 7.5.5 (left). Let Dia be a diagram category and let S be a strong right
derivator with domain Dia equipped with a Grothendieck pre-topology.

1. Let D → S be a fibered derivator with domain Dia, which is local in the sense of
Definition 4.5.4 for the Grothendieck pre-topology on S. Then the collection of
classes {WD,S}S, where WD,S consists of those morphisms f ∶ D1 → D2 in Dia(S)
which are weak D-equivalences relative to S ∈ S(⋅), forms a system of relative
localizers.
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2. Let Dia′(S) ⊂ Dia(S) be the full subcategory of the diagrams which consist of uni-
versally D-local morphisms.

Let D → S be an infinite fibered derivator with domain Dia, which is local in the
sense of Definition 4.5.4 for the Grothendieck pre-topology on S, with stable, com-
pactly generated fibers. The class WD consisting of those morphisms f ∶ D1 → D2

in Dia′(S) which are strong D-equivalences forms an absolute localizer in Dia′(S).

Remark 7.5.6. The restriction onto Dia′(S) in the left-variant of the theorem is needed
because otherwise we do not know whether left Cartesian projections exist (cf. Theorem
8.3.2).

The weak D-equivalences for the case of usual derivators (i.e. for S = {⋅}) were called
just ‘D-equivalences’ by Cisinski [Cis08] and it is rather straight-forward to see from the
definition of derivator that they from a fundamental localizer in the classical sense (=
absolute localizer for S = {⋅}, = system of relative localizers for S = {⋅}).
We will only prove the left-variant of the theorem. The other follows by logical duality
and the restriction to Dia′(S) is not necessary because Lemma 7.5.11 is used instead of
Lemma 7.5.10. Before proving the theorem we need a couple of lemmas. We assume
for the rest of this section that Dia is a diagram category and that S is a strong right
derivator with domain Dia equipped with a Grothendieck pre-topology.

Definition 7.5.7. Two morphisms (in Dia(S) or in Diaop(S))

D1

p // D2
s

oo

such that chains of 2-morphisms

p ○ s⇒⋯⇐⋯⇒ idD1 s ○ p⇒⋯⇐⋯⇒ idD2

exist are called a homotopy equivalence (or p is called as such if an s with this
property exists).

Lemma 7.5.8 (left). Let D be a left fibered derivator satisfying (FDer0 right) and let
D1,D2 ∈ Dia(S). Given any homotopy equivalence (p, s), then the functors p∗ and s∗

induce an equivalence

D(D2)cart
p∗ // D(D1)cart

s∗
oo

Proof. The 2-morphisms µ ∶ (α, f) ⇒ (β, g) in Definition 7.5.7 induce morphisms be-
tween the pull-back functors

(α, f)∗E → (β, g)∗E

which are isomorphisms on Cartesian objects.
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Example 7.5.9 (cf. also Proposition 7.2.11, 2.). Let I1, I2 be diagrams in Dia. If

I1

p // I2
s

oo

is an adjunction where p is left adjoint to s, and if F ∈ S(I1) then we get an equivalence

D(D2)cart
p∗ // D(D1)cart

s∗
oo

where D1 = (I1, F ) and D2 = (I2, s
∗F ).

Lemma 7.5.10 (left). Let Dia be an infinite diagram category and let D→ S be an infi-
nite fibered derivator with domain Dia with stable, compactly generated fibers. Consider a
morphism D = (I,F ) → (⋅, S) such that F is a diagram of universally D-local morphisms.
Let U → S be a universally D-local morphism. Write DU ∶= D ×(⋅,S) (⋅, U) in Dia(S).
Then the following diagram is 2-commutative (via the exchange natural isomorphism):

D(D)

pr∗1
��

◻! // D(D)cart

pr∗1
��

D(DU)
◻! // D(DU)cart

Note that left Cartesian projectors exist for D and DU by Theorem 8.3.2.

Proof. The functor pr∗1 has a right adjoint pr1∗ by (Dloc2 left) and then Brown repre-
sentability theorem. (Dloc1 left) says that pr∗1 preserves coCartesian morphisms, hence
pr1∗ preserves Cartesian morphisms. Therefore the right adjoint of the given diagram is
the following commutative diagram:

D(D) D(D)cartoo

D(DU)

pr1∗

OO

D(DU)cart

pr1∗

OO

oo

Consequently the exchange morphism of the diagram in the statement is also a natural
isomorphism.

Lemma 7.5.11 (right). Let Dia be an infinite diagram category and let D → S be an
infinite fibered derivator with domain Dia with stable, compactly generated fibers. Con-
sider a morphism D = (I,F ) → (⋅, S). Let S → U be a universally D-colocal morphism.
Write DU ∶= D ×(⋅,S) (⋅, U) in Diaop(S). Then the following diagram is 2-commutative
(via the exchange natural isomorphism):

D(D)

pr∗1
��

◻∗ // D(D)cocart

pr∗1
��

D(DU)
◻∗ // D(DU)cocart
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Note that right Cartesian projectors exist for D and DU by Theorem 8.3.1.

Proof. The functor pr∗1 has a left adjoint pr1! by (Dloc2 right) and by the Brown repre-
sentability theorem for the dual. (Dloc1 right) says that pr∗1 preserves Cartesian mor-
phisms, hence pr1! preserves coCartesian morphisms. Therefore the right adjoint of the
given diagram is the following commutative diagram:

D(D) D(D)cocartoo

D(DU)

pr1!

OO

D(DU)cocart

pr1!

OO

oo

Consequently the exchange morphism of the diagram in the statement is also a natural
isomorphism.

Lemma 7.5.12 (left). Let D → S be a fibered derivator with domain Dia admitting a
left Cartesian projection (cf. 7.4.4). For any Grothendieck opfibration

I

π
��
E

in Dia, for any diagram in F ∈ S(I), and for each element e ∈ E, the following diagram
is 2-commutative:

D(I)F

ι∗

��

◻E! // D(I)E−cart
F

ι∗

��
D(Ie)Fe

◻! // D(Ie)cart
Fe

where ι ∶ Ie → I is the inclusion of the fiber.

Lemma 7.5.13 (right). Let D → S be a fibered derivator with domain Dia admitting a
right coCartesian projection (cf. 7.4.4). For a Grothendieck fibration

I

π
��
E

in Dia, for any diagram in F ∈ S(I), and for each element e ∈ E, the following diagram
is 2-commutative:

D(I)F

ι∗

��

◻E∗ // D(I)E−cocart
F

ι∗

��
D(Ie)Fe

◻∗ // D(Ie)cocart
Fe

where ι ∶ Ie → I is the inclusion of the fiber.
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Proof. We restrict to the right-variant, the other being dual. We will show that the
functor ι! maps coCartesian objects to E-coCartesian ones. Then the left adjoint of the
given diagram is the diagram

D(I)F D(I)E−cocart
F

oo

D(Ie)Fe

ι!

OO

D(Ie)cocart
Fe

ι!

OO

oo

which is commutative. Consequently also the diagram of the statement is 2-commutative
via the natural exchange morphism.
Let f in E be an object and let ν ∶ i1 → i2 be a morphism in I mapping to idf . Let αk be
the inclusions of ⋅ into I with image ik. The morphism ν yields a natural transformation

ν ∶ α1 ⇒ α2.

Consider the diagram

e ×/E f
ck //

p′

��

Ie ×/I ik
Ak //

π
oo

pk

��

⇙µk

Ie

ι

��
⋅ ⋅ αk // I

where ck is given on a morphism β ∶ e → f in E by the choice of a Cartesian arrow
i′k → ik. It is right adjoint to π by the definition of Cartesian arrow.
There is a functor (composition with ν):

ν̃ ∶ Ie ×/I i1 → Ie ×/I i2

such that A2ν̃ = A1 and p2ν̃ = p1. We have therefore a natural (point-wise) coCartesian
morphism S(µ1)●ν̃∗ → ν̃∗S(µ2)● of functors D(Ie ×/I i2)A∗2Fe → D(Ie ×/I i1).
We have also a natural transformation ρ ∶ ν̃c1 → c2 defined for a morphism β ∶ e → f in
E as the unique arrow ρ(β) over ide making the following diagram commutative:

i′1
c1(β) //

ρ(β)
��

i1

ν

��
i′2

c2(β) // i2

The resulting morphism D(ρ) ∶ c∗1 ν̃∗ → c∗2 is point-wise coCartesian on coCartesian
objects.
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We get a commutative diagram of natural transformations

S(µ1)●A∗
1

//

∼

��

S(µ1)●A∗
1ι
∗ι!

D(µ1)
′

//

∼

��

p∗1α
∗
1ι!

∼

��
S(µ1)●ν̃∗A∗

2

��

// S(µ1)●ν̃∗A∗
2ι
∗ι!

��

ν̃∗p∗2α
∗
1ι!

ν̃∗p∗2(D(ν))

��
ν̃∗S(µ2)●A∗

2
// ν̃∗S(µ2)●A∗

2ι
∗ι!

ν̃∗(D(µ2)
′) // ν̃∗p∗2α

∗
2ι!

where the first two top vertical morphisms are the natural isomorphisms induced by
A2ν̃ = A1, the third top vertical morphism is the natural isomorphism induced by p2ν̃ =
p1, and the first two lower vertical morphisms are point-wise coCartesian. Here we use
the notation D(µ1)′ for the morphism S(µ1)●X → Y induced by a morphism D(µ1) ∶
X → Y .
Now we apply p1! to the outer square:

p1!S(µ1)●A∗
1

//

��

p1!p
∗
1α

∗
1ι!

��
p1!ν̃

∗S(µ2)●A∗
2

// p1!ν̃
∗p∗2α

∗
2ι!

The left vertical map is still coCartesian (homotopy colimits preserve coCartesian mor-
phisms).
There is a canonical isomorphism p′!c

∗
i → pi! [Gro13, Prop. 1.23] and the natural trans-

formation D(ρ) ∶ c∗1 ν̃∗ → c∗2 is an isomorphism on coCartesian objects over constant
diagrams. Consider the commutative diagram:

p′!c
∗
1 ν̃

∗ ∼ // p2!ν̃!c1!c
∗
1 ν̃

∗ // p2!

p′!c
∗
1 ν̃

∗ ∼ // p2!c2!c
∗
1 ν̃

∗

D(ρ)ad

OO

D(ρ)

��
p2!c2!c

∗
2

∼ // p2!

where the rightmost horizontal morphisms are the respective counits. Since D(ρ) is
an isomorphism on coCartesian objects over constant diagrams, so is the morphism
p′!c

∗
1 ν̃

∗ → p2!. Now we have the commutative diagram

p′!c
∗
1 ν̃

∗ //

∼

��

p2!

p1!ν̃
∗ ∼ // p2!ν̃!ν̃

∗

OO
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which shows that also the natural map p1!ν̃
∗ → p2! is an isomorphism on coCartesian

objects over constant diagrams.
We get a commutative diagram

p1!S(µ1)●A∗
1

//

��

p1!p
∗
1α

∗
1ι!

��

// α∗1ι!

D(ν)

��

p1!ν̃
∗S(µ2)●A∗

2

��

// p1!ν̃
∗p∗2α

∗
2ι!

��
p2!S(µ2)●A∗

2
// p2!p

∗
2α

∗
2ι!

// α∗2ι!

where the composition of the left vertical morphisms is coCartesian on coCartesian
objects because the functor S(µ2)●A∗

2 maps coCartesian objects to coCartesian objects
over constant diagrams. The composition of the horizontal morphisms in the top and
bottom rows are isomorphisms by (FDer4 left). Hence the rightmost vertical map is
coCartesian as well.

Proof of Main Theorem 7.5.5, 1. This is the case of weak D-equivalences.
(L0) and (L1) are clear.
For (L2 left), let D1 = (I,F ) and D2 = ({e}, F (e)). The projection p and the inclusion
i of the final object induce morphisms:

D1

p // D2
i

oo

We have p ○ i = id and there is a 2-morphism β ∶ id ⇒ i ○ p. Therefore the statement is
clear for weak D-equivalences over any base S.
(L3 left): Let

D1
w //

p1

$$

p′1 %%

D2

p′2yy

p2

zz

D3 = (E,F )
p

��
(⋅, S)

be a morphism as in (L3 left) over a base S ∈ S(⋅). We have to show that

p1! p
∗
1 → p2! p

∗
2

is an isomorphism and it suffices to show that the morphism

p′1! (p1)∗ → p′2! (p2)∗
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is an isomorphism. This may be checked point-wise by (Der2) and after pull-back to an
open cover by condition 2. of ‘local’ for a fibered derivator (see Definition 4.5.4), so fix
e ∈ E and consider the 2-commutative diagrams

Di ×/D3
(e,Uj)

p′i,e,j
��

ιi,e,j // Di

p′i
��

(e,Uj)
εe,j // D3

and let pi,e ∶Di ×/D3
(e,Ui) →Di be the projection. Applying the functor ε∗e,j , we get

ε∗e,jp
′
1!(p1)∗ → ε∗e,jp

′
2!(p2)∗

which is, using Proposition 4.6.9 (note that ιe,j is D-local by assumption), the same as

(p′1,e,j)!(ιi,e,j)∗(p1)∗ → (p′2,e,j)!(ιi,e,j)∗(p2)∗.

Now pi ○ ιi,e,j = πj ○ p′i,e,j , where π ∶ (⋅, Uj) → (⋅, S) is the structural morphism. Therefore
we get:

(p′1,e,j)!(p′1,e,j)∗π∗j → (p′2,e,j)!(p′2,e,j)∗π∗j .

By Lemma 4.6.7 this is induced by the canonical natural transformation which is an
isomorphism by assumption.
(L4 left): By Lemma 7.2.12 we may prove axiom (L4’ left) instead. Consider a morphism
p ∶D1 → (E,F ) =D2 in Dia(S) of pure diagram type, where the underlying functor of p
is a Grothendieck fibration. It suffices to show that the counit

p! p
∗ → id

is an isomorphism. This is the same as showing that the unit

id→ p∗ p
∗

is an isomorphism. Note that p∗ exists because this is a morphism of diagram type and
D→ S is assumed to be a right fibered derivator as well (this is the only place, where this
assumption is used for the case of weak D-equivalences). Now, since p is a Grothendieck
fibration, p∗ can be computed fiber-wise. So we have to show that

id→ pe,∗ p
∗
e

is an isomorphism or, equivalently, that

pe,! p
∗
e → id

is an isomorphism. This holds true because by assumption the map of fibers Ie → e is
in WF (e).
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We proceed to state some consequences of the fact that weak D-equivalences form a
fundamental localizer.

Example 7.5.14 (Mayer-Vietoris). Let S be a strong right derivator (e.g. associated
with a category with limits) with a Grothendieck pre-topology. We saw in Example 7.2.9
that for a cover {U1 → S,U2 → S} consisting of 2 monomorphisms, the projection

p ∶
⎛
⎜⎜⎜
⎝

“U1 ×S U2” //

��

U1

U2

⎞
⎟⎟⎟
⎠
→ S

belongs to any fundamental localizer. If D→ S is a fibered derivator which is local w.r.t.
the pre-topology on S, Theorem 7.5.5 implies therefore that p is a weak D-equivalence in
Dia(S)/(⋅, S), i.e. for A ∈ D(⋅)S we have

p! p
∗A ≅ A,

i.e. the homotopy colimit of

i1,2,● i
●
1,2A

//

��

i1,● i
●
1A

i2,● i
●
2A

is isomorphic to A. If D has stable fibers, this translates to the usual distinguished
triangle

i1,2,● i
●
1,2A→ i1,● i

●
1A⊕ i2,● i●2A→ A→ i1,2,● i

●
1,2A[1]

in the language of triangulated categories.
Dually, if D → Sop is a fibered derivator which is colocal w.r.t. the pre-cotopology on
Sop, Theorem 7.5.4 implies that pop is a weak D-equivalence in Diaop(Sop)/(⋅, S), i.e. for
A ∈ D(⋅)S we have

A ≅ p∗p∗A.
This means that the homotopy limit of

i●1 i1,●A

��
i●2 i2,●A

// i●1,2 i1,2,●A

is isomorphic to A. If D has stable fibers, this translates to the usual distinguished
triangle

A→ i●1 i1,●A⊕ i●2 i2,●A→ i●1,2 i1,2,●A→ A[1]
in the language of triangulated categories. Note that i● denotes a left adjoint push-forward
along a morphism in Sop, i.e. a left adjoint pull-back along a morphism in S.
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Example 7.5.15 ((Co)homological descent). Let S be a strong right derivator with a
Grothendieck pre-topology and let X● ∈ S(∆op) be a simplicial diagram over S ∈ S(⋅) with
underlying diagram

⋯ // //
//// X2

////// X1
//// X0

such that (id, p) ∶ (∆op,X●) → (∆op, π∗S) is a finite hypercover. Here π ∶ ∆op → ⋅ denotes
the projection. If D→ S is a fibered derivator which is local w.r.t. the pre-topology on S,
Theorem 7.5.5 implies that (π, p) is a weak D-equivalence in S(⋅)/(⋅, S), i.e. for A ∈ D(⋅)S
we have

A ≅ π! p● p
● π∗A.

This means that the homotopy colimit of p● p
● π∗A is equal to A. If the fibers of D→ S are

in fact derived categories, this yields a spectral sequence of homological descent because
the homotopy colimit over a simplicial complex is the total complex of the associated
double complex (a well-known fact). This double complex looks like

⋯ // p2,● p
●
2A

// p1,● p
●
1A

// p0,● p
●
0A.

The point is that we get a coherent double complex. Knowing the individual morphisms
pi,● p

●
iA→ pi−1,● p

●
i−1A as morphisms in the derived category D(⋅)S would not be sufficient!

Dually (applying everything to a fibered derivator D→ Sop, and working in Diaop(Sop)),
one obtains the more classical spectral sequence of cohomological descent.

Proof of Main Theorem 7.5.5, 2. This is the case of strong D-equivalences.
(L1) is clear.
For (L2 left), let D1 = (I,F ) and D2 = (e,F (e)). The projection p and the inclusion i
of the final object induce morphisms:

D1

p // D2
i

oo

We have p○i = id and there is a 2-morphism β ∶ id⇒ i○p. Therefore the statement follows
from Lemma 7.5.8. (Actually (i○p)∗ is left adjoint to the inclusion D(D1)cart → D(D1).)
(L3 left): It suffices to prove the following two statements:

1. Consider a morphism of diagrams w = (α, f) ∶ D1 = (I1, F1) → D2 = (I2, F2) such
that we have a commutative diagram

I1
α //

p1 ��

I2

p2��
E

and such that w ×/E e is a strong D-equivalence for all objects e in E. Then w is
a strong D-equivalence.
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2. Consider a morphism of diagrams w ∶ D1 = (I1, F1) → D2 = (I2, F2) over (⋅, S) and
let {Ui → S} be a covering. If w×(⋅,S) (⋅, Ui) is a strong D-equivalence for all i then
w is a strong D-equivalence.

We proceed by showing statement 1. Consider the following diagram over E

D1

��

w // D2

��
D1 ×/E E

w′ // D2 ×/E E

where the vertical morphisms are of pure diagram type. We have an adjunction

Ii
κi // Ii ×/E Eιi

oo

where κi maps an object i to (i, idp(i)). We have a natural transformation κi ○ ιi ⇒
idIi×/EE and moreover ιi ○ κi = idE holds. Actually this defines an adjunction with κi
left-adjoint to ιi. Furthermore, we get lifts to diagrams

Di

κ̃i // (Ii ×/E E, ιi ○ F ) =D1 ×/E E,
ι̃i

oo

and a 2-morphism κ̃i ○ ι̃i ⇒ idD1×/EE , and we have ι̃i ○ κ̃i = idD1 .
Hence, by Lemma 7.5.8, the pull-backs along ι̃1 and ι̃2 induce equivalences on Cartesian
objects, so we are reduced to showing that the pull-back along w′ induces an equivalence
on Cartesian objects. The underlying diagrams Ik ×/E E are Grothendieck opfibratons
over E and the functor underlying w′ is a map of Grothendieck opfibrations (the push-
forward along a map µ ∶ e→ f in E being given by mapping (i, ν ∶ p(i) → e) to (i, ν ○µ)).
Hence w.l.o.g. we may assume that I1 → E is a Grothendieck opfibration and the
morphism I1 → I2 underlying f is a morphism of Grothendieck opfibrations.
We keep the notation w ∶ D1 → D2, however, and the assumption translates to the
statement that the composition

D(D2,e)cart w∗e // D(D1,e)cart

for the fibers is an equivalence with inverse ◻!we,!.
Consider the two functors:

D(D2)E−cart incl. // D(D2) w∗ // D(D1).

We first show that the counit
◻E! w!w

∗E → E

is an isomorphism for every E-Cartesian E .
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This can be checked after pulling back to the fibers. Let ιk ∶ Ik,e → Ik be the inclusion
of the fiber over some e ∈ E.
We have the isomorphisms

ι∗2 ◻E! w!w
∗E ≅ ◻!we,!ι

∗
1w

∗E ≅ ◻!we,!w
e,∗ι∗2E ≅ ι∗2E ,

where we used the isomorphism ι∗2◻E! ≅ ◻!ι
∗
2 (Lemma 7.5.12) and the isomorphism

ι∗2w! ≅ we,!ι∗1 (exists for morphisms of pure diagram type because we have a morphism of
Grothendieck opfibrations, see Proposition 4.3.23, 3. and for morphisms of fixed shape
by axiom (FDer0 left)). The morphism ◻!we,!w

e,∗E → E is an isomorphism for Cartesian
E by assumption.
We now show that the unit

E → w∗ ◻E! w!E

is an isomorphism for every E-Cartesian E . This can be checked again on the fibers:

ι∗1w
∗ ◻E! w!E ≅ w∗

e ι
∗
2 ◻E! w!E ≅ w∗

e ◻! we,!ι
∗
1E ≅ ι∗1E .

Therefore we have already proven that the functors

D(D2)E−cart w∗ // D(D1)E−cart

◻E! w!

oo

form an equivalence.
We conclude by showing that ◻E! w! maps Cartesian objects to Cartesian objects: Let
ν ∶ e → f be a morphisms of E. It induces a morphism (choice of push-forward for
Ik → E)

ν̃k ∶Dk,e →Dk,f

(not of diagram type!) and a 2-morphism: ιk,e → ιk,f ○ ν̃k.

• Claim: It suffices to show that for all ν ∶ e→ f the induced morphism

ι∗2,e ◻E! w!E → ν̃∗2 ι
∗
2,f ◻E! w!E

is an isomorphism for every Cartesian E .

Proof of the claim: Every morphism µ ∶ i→ i′′ in I with p(µ) = ν, say, is the composition
of a coCartesian µ′ and some morphism µ′′ with p(µ′′) = idf . Since E is E-Cartesian,
the morphism E(µ′′) is Cartesian. Hence to show that E(µ) is Cartesian it suffices to
see that E(µ′) is Cartesian. A reformulation is, however, that the morphism of the claim
be an isomorphism.
Using the same argument as in the first part of the proof, we have to show that

◻!we,!ι
∗
1,eE → ν̃∗2 ◻! wf,!ι

∗
1,fE
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is an isomorphism for every Cartesian E . Since both sides are Cartesian objects, this
can be checked after applying w∗

e which is an equivalence on Cartesian objects:

w∗
e ◻! we,!ι

∗
1,eE → w∗

e ν̃
∗
2 ◻! wf,!ι

∗
1,fE .

We have w∗
e ν̃

∗
2 = ν̃∗1w

∗
f because the map of diagrams underlying w is a morphism of

Grothendieck opfibrations. Hence, after applying w∗
e , we get

we∗ ◻! we,!ι
∗
1,eE → ν̃∗1wf∗ ◻! wf,!ι

∗
1,fE .

Since we∗ ◻! we,! and wf∗ ◻! wf,! are equivalences on Cartesian objects, we get

ι∗1,eE → ν̃∗1 ι
∗
1,fE .

A slightly tedious check shows that this is again the morphism induced by the 2-
morphism ι1,e → ι1,f ○ ν̃1. It is an isomorphism because E is Cartesian.
We will now show statement 2. Consider a diagram

D1
w //

p1 ""

D2

p2||
(⋅, S)

For any i (index of the cover in L4 left) we have the following commutative diagrams of
objects in Dia(S):

D1 ×S Ui
wi //

pr
(i)
1
��

D2 ×S Ui
pr
(i)
1

��
D1

w // D2

The morphisms pr
(i)
1 are of fixed shape. We first show that the unit is an isomorphism

E → w∗ ◻! w! E

for any Cartesian E . Note that by the stability axiom of a Grothendieck pre-topology also
the collections (D1 ×S Ui)j → D1,j are covers for any j ∈ I1, where I1 is the underlying
diagram of D1. Since D is local w.r.t. the Grothendieck pre-topology (and by axiom

Der2), the family (pr
(i)
1 )∗ is jointly conservative. Therefore it suffices to show that the

unit is an isomorphism after applying (pr
(i)
1 )∗. We get

(pr
(i)
1 )∗E → (pr

(i)
1 )∗w∗ ◻! w! E

which is the same as
(pr

(i)
1 )∗E → w∗

i (pr
(i)
1 )∗ ◻! w! E .
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Since (pr
(i)
1 )∗ commutes with ◻! (Lemma 7.5.10) and with w! (Proposition 4.6.9, 2.), we

get

(pr
(i)
1 )∗E → w∗

i ◻! wi,! (pr
(i)
1 )∗E .

This morphism is an isomorphism by assumption. In the same way one shows that the
counit is an isomorphism.
(L4 left): By Lemma 7.2.12 we may prove axiom (L4’ left) instead. We have shown
during the proof for (L4’ left) for the case of weak D-equivalences that

p! p
∗ → id

is an isomorphism, hence on Cartesian objects the same holds for the natural transfor-
mation

◻! p! p
∗ → id .

We have to show that also the counit

id→ p∗ ◻! p! (51)

is an isomorphism on Cartesian objects. First note that p∗ also is a right adjoint of
p∗ when restricted to the full subcategories of Cartesian objects because p∗ preserves
Cartesian objects. Indeed, p∗ can be computed fiber-wise because p is a Grothendieck
fibration. The fibers being contractible in the sense of any localizer on Dia implies that
the functors p∗e , pe,∗ induce an equivalence D(De)cart ≅ D(⋅)F (e). Note: This uses that
(L1–L3 left) hold for the class of strong D-equivalences on the fiber DF (e), a fact which
has been proven already. Therefore we pass to the right adjoints of the functors in (51)
and have to show that the counit

p∗ p∗ → id

is an isomorphism on Cartesian objects. Again this can be checked fiber-wise, i.e. we
have to show that the counit

p∗e pe,∗ → id

is an isomorphism on Cartesian objects. But the pair of functors is an equivalence as we
have seen, and the claim follows.

We proceed to state some consequences of the fact that strong D-equivalences form a
fundamental localizer.

Corollary 7.5.16 (left). Let S be a strong right derivator. If D→ S is an infinite fibered
derivator which is local w.r.t. the pre-topology on S (cf. 4.5.2) with stable, compactly
generated fibers then for any finite hypercover f ∶ X● → Y● considered in Dia(S)′ the
functor f∗ induces an equivalence

D(Y●)cart → D(X●)cart.

Here Dia(S)′ is the full subcategory of diagrams with universally D-local morphisms.
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Corollary 7.5.17 (right). Let S be a strong right derivator. If D → Sop is an infinite
fibered derivator which is colocal w.r.t. the pre-cotopology on Sop (cf. 4.5.2) with stable,
compactly generated fibers then for any finite hypercover f ∶ X● → Y● considered in
Diaop(Sop) the functor f∗ induces an equivalence

D(Y●)cocart → D(X●)cocart.

Corollary 7.5.18. If D is an infinite derivator (not fibered) with domain Cat which
is stable and well-generated, then for each homotopy type I, we get a category D(I)cart

well-defined up to equivalence of categories. Moreover each morphism I → J of homotopy
types gives rise to a corresponding functor α∗ ∶ D(J)cart → D(I)cart. It is, however, not
possible to arrange those as a pseudo functor HOT → CAT , but it is possible to arrange
them as a pseudo-functor HOT (2) → CAT where HOT (2) is the homotopy 2-category
(2-truncation) of any model for the homotopy theory of spaces (cf. also 2.4).

8 Representability

In this chapter we exploit the consequences that Brown representability type results have
for fibered derivators. In particular these results are useful to see that under certain
circumstances a left fibered (multi-)derivator is already a right fibered (multi-)derivator,
provided that its fibers are nice (i.e. stable and well-generated derivators). Furthermore
they provide us with (co)Cartesian projectors that are needed for the strong form of
(co)homological descent. In contrast to the rest of the article the results are stated
in a rather unsymmetric form. This is due to the fact that in applications the stable
derivators will rather be well-generated or compactly generated whereas their duals will
rather not satisfy this condition. All the auxiliary results are taken from [Kra10] and
[Nee01].

8.1 Well-generated triangulated categories and Brown representability

Definition 8.1.1 (cf. [Kra10, 5.1, 6.3]). Let D be a category with zero object and small
coproducts. We call D perfectly generated if there is a set of objects T in D such
that the following conditions hold:

1. An object X ∈ D(⋅) is zero if and only if Hom(T,X) = 0 for all T ∈ T .

2. If {Xi → Yi} is any set of maps, and Hom(T,Xi) → Hom(T,Yi) is surjective for
all i, then Hom(T,∐iXi) → Hom(T,∐i Yi) is also surjective.

The category D is called well-generated if there is a set of objects T in D such that in
addition to 1., 2. there is a regular cardinal α such that the following condition holds:

3. All objects T ∈ T are α-small, cf. [Kra10, 6.3].

The category D is called compactly generated if there is a set of objects T in D such
that in addition to 1., 2. the following two equivalent conditions hold:
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4. All T ∈ T are ℵ0-small.

4’. All T ∈ T are compact, i.e. for each morphism γ ∶ T → ∐i∈I Xi there is a finite
subset J ⊆ I such that γ factors through ∐i∈J Xi.

Definition 8.1.2. A pre-derivator D whose domain Dia is infinite (i.e. closed under in-
finite disjoint unions) is called infinite if the restriction-to-Ij functors induce an equiv-
alence

D(∐
j∈J

Ij) ≅ ∏
j∈J

D(Ij)

for all sets J .

Recall (cf. [Kra10, 4.4]) that a functor from a triangulated category D to an abelian
category is called cohomological if it sends distinguished triangles to exact sequences.
We recall the following theorem:

Theorem 8.1.3 (right Brown representability). Let D be a perfectly generated triangu-
lated category with small coproducts. Then a functor F ∶ Dop → AB is cohomological and
sends coproducts to products if and only if it is representable. An exact functor D → E
between triangulated categories commutes with coproducts if and only if it has a right
adjoint.

Proof. See [Kra10, Theorem 5.1.1].

It can be shown that for a compactly generated triangulated category D with small
coproducts, Dop is perfectly generated and has small coproducts. Therefore the dual
version of the previous theorem holds in this case:

Theorem 8.1.4 (left Brown representability). Let D be a compactly generated triangu-
lated category with small coproducts. Then a functor F ∶ D → AB is homological and
sends products to products if and only if F is representable. An exact functor D → E
between triangulated categories commutes with products if and only if it has a left adjoint.

Theorem 8.1.5. Let D be a well-generated triangulated category with small coproducts.
Consider a functor F ∶ D → AB which is cohomological and commutes with coproducts.
Then there exists a right adjoint to the inclusion of the full subcategory of objects X such
that F (X[n]) = 0 for all n ∈ Z (i.e. this subcategory is coreflective).

Proof. See [Kra10, Theorem 7.1.1].

Lemma 8.1.6. Let Dia be an infinite diagram category (4.1.1). Let D→ S be an infinite
left fibered derivator with domain Dia. If D(⋅)S for all S ∈ S(⋅) is perfectly generated
(resp. well-generated, resp. compactly generated), then the same holds for D(I)S′ for
all I ∈ Dia and for all S′ ∈ S(I). Furthermore the categories D(I)S′ all have small
coproducts.
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Proof. A set of generators as requested is given by the set TI ∶= {i!T}i∈I,T ∈T . Indeed,
an object X ∈ D(I) is zero if i∗X is zero for all i ∈ X by (Der2). Therefore X is zero
if Hom(i!T,X) = Hom(T, i∗X) = 0 for all i ∈ I and for every T ∈ T . We have to show
that Hom(i!T,∐iXi) → Hom(i!T,∐i Yi) is an isomorphism for a family {Xi → Yi}i∈O
of morphisms as in Definition 8.1.1, 2. We have Hom(i!T,∐iXi) = Hom(T, i∗∐iXi) =
Hom(T,∐i i

∗Xi), where we used that i∗ commutes with coproducts. This follows be-
cause the Cartesian diagram

O //

��

O × I

��
⋅ // I

is homotopy exact. Note that, since D is infinite, coproducts exist and are equal to the
corresponding homotopy coproducts. The map Hom(T,∐i i

∗Xi) → Hom(T,∐i i
∗Yi) is

surjective by assumption.
We have to show that a morphism

i!T →∐
i∈I

Yi

in D(I)S′ factors through ∐i∈J Yi for some subset J ⊂ I of cardinality less than α. By
the same reasoning as above, we get a morphism

T →∐
i∈I

i∗Yi

Hence, there is some subset J ⊂ I, as required, such that this morphism factors through
it. The same then holds for the original morphism. Since there is no need to enlarge J ,
the same statement holds for finite subsets.
The categories D(I)S′ have small coproducts because D → S is infinite and left fibered.

Definition 8.1.7. Let D → S be an infinite left fibered derivator with domain Dia. We
will say that D→ S has perfectly-generated (resp. well-generated, resp. compactly-
generated) fibers, if all categories D(⋅)S are perfectly-generated (resp. well-generated,
resp. compactly-generated) for all S ∈ S(⋅). It follows from the previous Lemma that,
in this case, for all I ∈ Dia and for all S′ ∈ S(I) the category D(I)S′ is also perfectly-
generated (resp. well-generated, resp. compactly-generated).

8.2 Left and right

Theorem 8.2.1 (left). Let Dia be an infinite diagram category (cf. 4.1.1). Let D and
E be infinite left derivators with domain Dia such that for all I ∈ Dia the pre-derivators
DI and EI are stable (left and right) derivators with domain Posf. Assume that D
is perfectly generated. Then a morphism of derivators F ∶ D → E commutes with all
homotopy colimits w.r.t. Dia if and only if it has a right adjoint.
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Proof. Let I be in Dia. Since DI and EI are stable, D(I) is canonically triangulated, and
we may use Theorem 8.1.3 of right Brown representability. It follows that the functor
F (I) ∶ D(I) → E(I) has a right adjoint G(I), because it is triangulated, commutes
with small coproducts and D(I) is perfectly generated. To construct a morphism of
derivators out of this collection, for any α ∶ I → J , we have to give an isomorphism:
G(J)α∗ → α∗G(I). We may take the adjoint of the isomorphism α!F (J) → F (I)α!

expressing that F commutes with all homotopy colimits (see [Gro13, Lemma 2.1] for
details).

Analogously, using Theorem 8.1.4 of left Brown representability, we obtain:

Theorem 8.2.2 (right). Let Dia be an infinite diagram category (cf. 4.1.1). Let D and
E be infinite right derivators with domain Dia such that for all I ∈ Dia, the pre-derivators
DI and EI are stable (left and right) derivators with domain Posf. Assume that D is
compactly generated. Then a morphism of derivators F ∶ D → E commutes with all
homotopy limits w.r.t. Dia if and only if it has a left adjoint.

Theorem 8.2.3 (left). Let Dia be an infinite diagram category (cf. 4.1.1). Let D → S
be an infinite left fibered (multi)derivator with domain Dia whose fibers DS for every
I ∈ Dia and all S ∈ S(I) are stable (left and right) derivators with domain Posf. Assume
that D has perfectly generated fibers. Then D is a right fibered (multi)derivator as well.

Proof. Let I ∈ Dia and let f ∈ HomS(I)(S1, . . . , Sn;T ) be a multimorphism. By Lemma 4.3.13,

fixing E1, î. . .,En, the association

D(I × J)p∗Si → D(I)p∗T
Ei ↦ (p∗f)●(p∗E1, . . . , Ei, . . . , p∗En)

defines a morphism of derivators
DSi → DT

which is left continuous. Hence by Theorem 8.2.1 it has a right adjoint. This shows the
first part of (FDer0 right), i.e. the functor D(I) → S(I) is an opfibration as well, for
every I ∈ Dia. Then axiom (FDer5 left) implies the remaining assertion of (FDer0 right)
while (FDer0 left) implies (FDer5 right), see Lemma 4.3.8.
Similarly a morphism α ∶ I → J in Dia induces a morphism of derivators

α∗ ∶ DS → Dα∗S .

It commutes with homotopy colimits by Proposition 4.3.23, 2. Therefore α∗ has a right
adjoint α∗ by the previous theorem, i.e. (FDer3 right) holds. (FDer4 right) is then a
consequence of Lemma 4.3.23, 1.

Analogously, using Theorem 8.1.4 of left Brown representability, we obtain:

Theorem 8.2.4 (right). Let Dia be an infinite diagram category (cf. 4.1.1). Let D→ S
be an infinite right fibered (multi)derivator with domain Dia, whose fibers DS for every
I ∈ Dia and for all S ∈ S(I) are stable (left and right) derivators with domain Posf.
Assume that D has compactly generated fibers. Then D is a left fibered (multi)derivator
as well.
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8.3 (Co)Cartesian projectors

Theorem 8.3.1 (right). Let D→ S be an infinite fibered left derivator (w.r.t. Dia) whose
fibers are stable derivators w.r.t. Posf. Assume that D(⋅)S is well-generated for every
S ∈ S(⋅). Then for all I ∈ Dia, for all F ∈ S(I), and for all functors I → E in Dia the
fully-faithful inclusion

D(I)E−cocart
F → D(I)F

has a right adjoint ◻E∗ .
If D→ S also satisfies (FDer0 right) and if F is such that F (µ) satisfies (Dloc2 left) for
every µ mapping to an identity in E, then the fully-faithful inclusion

D(I)E−cart
F → D(I)F

has a right adjoint ∎E∗ .

Proof. Consider the set O of morphisms µ ∶ i → j which map to an identity in E, and
for each morphism µ ∈ O the composition Dµ:

D(I)F
µ∗ // D(→)µ∗F

F (µ)● // D(→)i∗F Cone // D(⋅)i∗F

We define a functor D by

∏
µ∈O

Dµ ∶ D(I)F → ∏
µ∈O

D(⋅)i∗F = D(O)ι∗F ,

where ι ∶ O → I is the map “source”. D commutes with coproducts, as all functors in
the succession do, and it is exact. Therefore by [Kra10, Theorem 7.4.1] the triangulated
subcategory D(I)E−cocart

F = kerD is well-generated and hence the inclusion in the state-
ment has a right adjoint. In the Cartesian case, F (µ)● commutes with coproducts only
if F (µ) satisfies (Dloc2 left).

Theorem 8.3.2 (left). Let D → S be an infinite fibered derivator (with domain Dia)
whose fibers are stable. Assume that all D(⋅)S for S ∈ S(⋅) are compactly generated.
Let I → E be a functor in Dia and let F ∈ S(I). Suppose that F (µ) satisfies (Dloc2
left) for every morphism µ in I that maps to an identity in E. Then the fully-faithful
inclusion

D(I)E−cart
F → D(I)F

has a left adjoint ◻E! .

Proof. As in the proof of the previous theorem we have an exact functor

F cart ∶ D(I)F → T

into another triangulated category which commutes with coproducts and such that the
subcategory of E-Cartesian objects is precisely its kernel. Lemma 8.1.6 implies that
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D(I)F is compactly generated, and hence D(I)op
F is perfectly generated. Furthermore,

Theorem 8.3.1 implies that the categories D(I)F /D(I)E−cart
F are locally small. Note that

D(I)op
F /(D(I)E−cart

F )op = (D(I)F /D(I)E−cart
F )op.

Therefore [Kra10, Proposition 5.2.1] implies that a right adjoint to the inclusion (D(I)E−cart
F )op →

(D(I)F )op exists. So a left adjoint to the inclusion

D(I)E−cart
F → D(I)F

exists.

In the compactly generated case, ◻E! should exist unconditionally, but we were not able
to prove this.
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9 Derivator six-functor-formalisms

9.1 Definitions

Our main purpose for introducing the more general notion of fibered multiderivator
over 2-pre-multiderivators (as opposed to those over usual pre-multiderivators) is that it
provides the right framework to think about any kind of derived six-functor-formalism:

Definition 9.1.1. Let S be a (symmetric) opmulticategory with multipullbacks29. Recall
from Section 3.1 the definition of the (symmetric) 2-multicategory Scor (resp. Scor,0
with choice of classes of proper or etale morphisms). Denote its associated represented
2-pre-multiderivator by Scor, Scor,0,lax, and Scor,0,oplax, respectively (cf. 5.1.5).

1. We define a (symmetric) derivator six-functor-formalism as a left and right
fibered (symmetric) multiderivator

D→ Scor.

2. We define a (symmetric) proper derivator six-functor-formalism as before
which has an extension as oplax left fibered (symmetric) multiderivator

D′ → Scor,0,oplax,

and an extension as lax right fibered (symmetric) multiderivator

D′′ → Scor,0,lax.

3. We define a (symmetric) etale derivator six-functor-formalism as before
which has an extension as lax left fibered (symmetric) multiderivator

D′ → Scor,0,lax,

and an extension as oplax right fibered (symmetric) multiderivator

D′′ → Scor,0,oplax.

In particular, and in view of Section 6.2, if Scor,0 = Scor,G is formed w.r.t. the choice of all
morphisms, we call a proper derivator six-functor-formalism a derivator Grothendieck
context and an etale derivator six-functor-formalism a derivator Wirthmüller con-
text.

9.1.2. As mentioned, if S is really a 2-pre-multiderivator, as opposed to a usual pre-
multiderivator, the functor

Diacor(S) → Diacor,

29e.g. a category S with fiber products made into a symmetric opmulticategory like in (20)
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has hardly ever any fibration properties, because of the truncation involved in the defi-
nition of the categories of 1-morphisms. Nevertheless the composition

Diacor(S) → {⋅}

is often 1-bifibered, i.e. there exists an absolute monoidal product on Diacor(S) extending
the one on Diacor. For example, if S is a usual 1-category with fiber products and final ob-
ject equipped with the opmulticategory structure (20) then for the 2-pre-multiderivator
Scor represented by Scor, we have on Diacor(Scor) the monoidal product

(I,F ) ⊠ (J,G) = (I × J,F ×G)

where F ×G is the diagram of correspondences in S formed by applying × point-wise.
Similarly we have

HOM ((I,F ), (J,G)) = (Iop × J,F op ×G)

where in F op all correspondences are flipped. In particular any object (I,F ) in Diacor(Scor)
is dualizable with duality explicitly given by

HOM ((I,F ), (⋅, ⋅)) = (Iop, F op).

Given a derivator six-functor-formalism D → Scor we get an external monoidal product
even on Diacor(D) which prolongs the one on diagrams of correspondences, and in many
concrete situations all objects will be dualizable.

9.2 Construction of derivator Grothendieck contexts

In this section we formally construct a (symmetric) derivator six-functor-formalism in
which f! = f∗, i.e. a derivator Grothendieck context, starting from a (symmetric) fibered
multiderivator D→ Sop. The precise statement is as follows:

Main Theorem 9.2.1. Let S be a (symmetric) opmulticategory with multipullbacks
and let Sop be the (symmetric) pre-multiderivator represented by Sop . Let D→ Sop be a
(symmetric) left and right fibered multiderivator such that the following holds:

1. The pullback along 1-ary morphisms (i.e. pushforward along 1-ary morphisms in
S) commutes also with homotopy colimits (of shape in Dia).

2. In the underlying bifibration D(⋅) → S(⋅) multi-base-change holds in the sense of
Definition 1.10.1.

Then there exists a (symmetric) oplax left fibered multiderivator

E→ Scor,G,oplax

satisfying the following properties
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a) The corresponding (symmetric) 1-opfibration, and 2-opfibration of 2-multicategories
with 1-categorical fibers

E(⋅) → Scor,G,oplax(⋅) = Scor,G

is just (up to equivalence) obtained from D(⋅) → Sop by the procedure described in
Definition 3.3.2.

b) For every S ∈ S there is a canonical equivalence between the fibers (which are usual
left and right derivators):

ES ≅ DS .

Using standard theorems on Brown representability (cf. Section 8) we can refine this:

Main Theorem 9.2.2. Let Dia be an infinite diagram category (cf. Definition 4.1.1)
which contains all finite posets. Let S be a (symmetric) opmulticategory with multip-
ullbacks and let S be the corresponding represented (symmetric) pre-multiderivator. Let
D → Sop be an infinite (symmetric) left and right fibered multiderivator satisfying con-
ditions 1. and 2. of Theorem 9.2.1, with stable, perfectly generated fibers (cf. Defini-
tion 4.3.19 and Definition 8.1.7).
Then the restriction of the left fibered multiderivator E from Theorem 9.2.1 is a (sym-
metric) left and right fibered multiderivator

E∣Scor → Scor

and has an extension as a (symmetric) lax right fibered multiderivator

E′ → Scor,G,lax.

In other words, we get a (symmetric) derivator Grothendieck context in the sense of
Section 9.1.

We begin by explaining the construction of E. We need some preparation:

9.2.3. Let I be a diagram, n a natural number and Ξ = (Ξ1, . . . ,Ξn) ∈ {↑, ↓}n be a
sequence of arrow directions. We define a diagram

ΞI

whose objects are sequences of n − 1 morphisms in I

i1 // i2 // ⋯ // in

and whose morphisms are commutative diagrams

i1 //
OO

��

i2 //
OO

��

⋯ // inOO

��
i′1

// i′2
// ⋯ // i′n
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in which the j-th vertical arrow goes in the direction indicated by Ξj . We call such
morphisms of type j if the morphism ik → i′k is an identity unless k = j. From now on
we assume that Dia permits this construction for any I ∈ Dia, i.e. if I ∈ Dia then also
ΞI ∈ Dia for every finite Ξ.

Example 9.2.4.

↓I = I
↑I = Iop

↓↓I = I ×/I I
↓↑I = tw(I)

where I ×/I I is the comma category (or the arrow category of I) and tw(I) is called the
twisted arrow category.

9.2.5. For any ordered subset {i1, . . . , im} ⊆ {1, . . . , n}, denoting Ξ′ the restriction of Ξ
to the subset, we get an obvious restriction functor

πi1,...,im ∶ ΞI → Ξ′I.

If Ξ = Ξ′ ○Ξ′′ ○Ξ′′′, where ○ means concatenation, then the projection

π1,...,n′ ∶ ΞI → Ξ′I

is a fibration if the last arrow of Ξ′ is ↓ and an opfibration if the last arrow of Ξ′ is ↑
while the projection

πn−n′′′+1,...,n ∶ ΞI → Ξ′′′I

is an opfibration if the first arrow of Ξ′′′ is ↓ and a fibration if the first arrow of Ξ′′′ is ↑.

9.2.6. A functor α ∶ I → J induces an obvious functor

Ξα ∶ ΞI → ΞJ.

A natural transfomation µ ∶ α⇒ β induces functors

(Ξµ)0, . . . , (Ξµ)n ∶ ΞI → ΞJ

with (Ξµ)0 = Ξα, and (Ξµ)n = Ξβ, defined by mapping an object i1
ν1 // i2 // . . .

νn−1 // in
of ΞI to the sequence:

α(i1) // ⋯ // α(in−j)
β(νn−j)○µ(in−j)

%%
β(in−j+1) // ⋯ // β(in)
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There is a sequence of natural transformations

Ξα = (Ξµ)0 ⇔⋯⇔ (Ξµ)n = Ξβ

where the natural transformations at position i (the count starting with 0) goes to the
right if Ξn−i =↓ and to the left if Ξn−i =↑. Furthermore, the natural transformation at
position i consists element-wise of morphisms of type n − i.

9.2.7. If α ∶ I → J is an opfibration and we form the pull-back

↓↑J ×J I //

��

I

α

��
↓↑J π1

// J

then obviously the left vertical functor is an opfibration as well.

9.2.8. Let S ∶ I → Scor be a pseudo-functor. We can associate to it a natural functor
S′ ∶ ↓↑I → S such that for each composition of three morphisms γβα the commutative
diagram

γβα //

��

βα

��
γβ // β

(52)

in ↓↑I is mapped to a Cartesian square in S. We call such diagrams admissible.
Note that the horizontal morphisms are of type 2 and the vertical ones of type 1. Con-
versely every square in ↓↑I with these properties has the above form.
The construction of S′ is as follows. S maps a morphism ν in I to a correspondence in
S

Xν ←Ð Aν Ð→ Yν ,

and we define S′(ν) ∶= Aν . A morphism ξ ∶ ν → µ defined by

i
ν //

α
��

j

k µ
// l

β

OO

induces, by definition of the composition in Scor, a commutative diagram in which all
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squares are Cartesian:

Aν

}} !!
Aµα

}} !!

Aβµ

}} !!
Aα

~~ ""

Aµ

|| ""

Aβ

||   
X Y Z W

We define S′(ξ) to be the induced morphism Aν → Aµ. Note that the square of the
form (52) is just mapped to the upper square in the above diagram, thus to a Cartesian
square. Hence the so defined functor S′ is admissible.

9.2.9. A multimorphism
T Ð→ S1, . . . , Sn

of admissible diagrams in S(↓↑I) is called type i admissible (i = 1,2), if for any mor-
phism ξ ∶ ν → µ in ↓↑I of type i the diagram

T (ν) //

��

(S1(ν), . . . , Sn(ν))

��
T (µ) // (S1(µ), . . . , Sn(µ))

is a multipullback.
A multimorphism (X1, . . . ,Xn) → Y in Scor(I) can be seen equivalently as a multicor-
respondence of admissible diagrams in S(↓↑I)

A
f

��

g

yy
(X1, . . . ,Xn) Y

where f is type 2 admissible and g is type 1 admissible. In this description, the 2-
morphisms are the commutative diagrams

A

h

��

xx ��
(X1, . . . ,Xn) Y

A′

??ee
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where the morphism h is an isomorphism.
In this way, we see that the 2-multicategory Scor(I) is equivalent to the 2-multicategory
having as objects admissible diagrams ↓↑I → S with the 1-multimorphisms and 2-
morphisms described above.

Lemma 9.2.10. Type i admissible morphisms S → T between admissible diagrams S,T ∈
S(↓↑I) satisfy the following property:
If h3 = h2 ○ h1 and h2 is type i-admissible then h1 is type i admissible if and only if h3

is type i admissible.

Proof. This follows immediately from the corresponding property of Cartesian squares.

9.2.11. The discussion in 9.2.9 has an (op)lax variant. Recall the definition of the cate-
gory (value of the represented (op)lax 2-pre-multiderivator) Scor,G,lax(I) (resp. Scor,G,oplax(I)),
of pseudo-functors, (op)lax natural transformations, and modifications. A lax multimor-
phism of pseudo-functors

(X1, . . . ,Xn) Ð→ Y

can be equivalently seen as a multicorrespondence of admissible diagrams in S(↓↑I)

A
f

��

g

yy
(X1, . . . ,Xn) Y

where g is type 1 admissible and f is arbitrary. Similarly an oplax multimorphism
can be seen as such a multicorrespondence in which g is arbitrary and f is type 2
admissible. In the 2-morphisms the morphism h can be an arbitrary morphism, which is
automatically type 1 admissible in the lax case and type 2 admissible in the oplax case
(cf. Lemma 9.2.10).

9.2.12. We can therefore describe the represented 2-pre-multiderivator Scor, Scor,G,lax,
and Scor,G,oplax, respectively, in a different way: A diagram I is mapped to the 2-
multicategory of admissible diagrams ↓↑I → S where multimorphisms are multicorre-
spondences

A
f

��

g

yy
(X1, . . . ,Xn) Y

of admissible diagrams with the corresponding conditions discussed above and where
2-morphisms are the isomorphisms (resp. arbitrary morphisms) between these multicor-
respondences.
A functor α ∶ I → J is mapped to the composition − ○ (↓↑α). This is a strict functor and
the association is strictly functorial. A natural transformation µ ∶ α ⇒ β is mapped to
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the following natural transformation. First of all it gives rise (cf. 9.2.6) to a sequence of
natural transformations

(↓↑α) ⇐ (↓↑µ)1 ⇒ (↓↑β).
For any admissible diagram S ∶ ↓↑I → S this defines a diagram

(↓↑µ)∗1S
fS

%%

gS

yy
(↓↑α)∗S (↓↑β)∗S

in which the morphism fS is type 2 admissible and the morphism gS is type 1 admissible.
This defines a 1-morphism

(↓↑α)∗S → (↓↑β)∗S
in the alternative description (cf. 9.2.9) of Scor(I). For any admissible diagram S this
defines a pseudo-functor α ↦ α∗S from the category of functors Fun(I, J) to the 2-
category Scor(I).

9.2.13. Let I be a diagram. Consider the category ↓↑↓I defined in 9.2.3. Recall that its
objects are compositions of two morphisms in I and its morphisms ν → µ are commuta-
tive diagrams

i
ν1 //

��

j
ν2 // k

��
i′ µ1

// j′ µ2

//

OO

k′

9.2.14. If α ∶ I → J is an opfibration and we form the pull-back

↓↑↓J ×J I //

��

I

α

��
↓↑↓J π1

// J

and
↓↑↓J ×↓↑J ↓↑I //

��

↓↑I

↓↑α
��

↓↑↓J π12

// ↓↑J

then obviously the left vertical functors are opfibrations as well.

Lemma 9.2.15. Let α ∶ I → J be an opfibration, and consider the sequence defined by
the universal property of pull-backs

↓↑↓I
q1 // ↓↑↓J ×(↓↑J)

↓↑I
q2 // ↓↑↓J ×J I.
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1. The functor q1 is an opfibration. The fiber of q1 over a pair j1 → j2 → j3 and
i1 → i2 is

i3 ×/Ij3
Ij3

where i3 is the target of a coCartesian arrow over j2 → j3 with source i2.

2. The functor q2 is a fibration. The fiber of q2 over a pair j1 → j2 → j3 and i1 is

(i2 ×/Ij2
Ij2)op

where i2 is the target of a coCartesian arrow over j1 → j2 with source i1.

Proof. Straightforward.

Recall the following definition (Definition 7.4.1), in which S can actually be any 2-pre-
multiderivator.

Definition 9.2.16. Let D → S be a right (resp. left) fibered (multi)derivator of domain
Dia. Let I,E ∈ Dia be diagrams and let α ∶ I → E be a functor in Dia. We say that an
object

E ∈ D(I)

is E-(co-)Cartesian, if for any morphism µ ∶ i → j in I mapping to an identity in E,
the corresponding morphism D(µ) ∶ i∗E → j∗E is (co-)Cartesian.
If E is the trivial category, we omit it from the notation, and talk about (co-)Cartesian
objects.

These notions define full subcategories D(I)E−cart (resp. D(I)E−cocart) of D(I), and
D(I)E−cart

S (resp. D(I)E−cocart
S ) of D(I)S for any S ∈ S(I). If we want to specify the

functor α, we speak about α-(co)Cartesian objects and denote these e.g. by D(I)α−cart
S .

Definition 9.2.17. Let S be an opmulticategory with multipullbacks and let Sop be the
pre-multiderivator represented by Sop. Let D → Sop be a (left and right) fibered multi-
derivator such that conditions 1. and 2. of Theorem 9.2.1 hold true.
We define the morphism of 2-pre-multiderivators E → Scor of Theorem 9.2.1. The 2-
pre-multiderivator E is defined as follows: A diagram I is mapped to a 1-opfibered, and
2-opfibered multicategory with 1-categorical fibers E(I) → Scor,G,oplax(I). We will specify
this by giving the pseudo-functor of 2-multicategories

Scor,G,oplax(I)2−op → CAT

where we understand Scor(I) (resp. Scor,G,lax(I)) in the form described in 9.2.12. An
admissible diagram S ∶ ↓↑I → S is mapped to the category

E(I)S ∶= D(↓↑↓I)π12−cocart,π13−cart
π∗23(S

op)

(cf. Definition 9.2.16). Note that (↓↑I)op = ↑↓I.
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A multicorrespondence
A

f

��

g

yy
(S1, . . . , Sn) T

where f is type 2 admissible and g is type 1 admissible is mapped to the functor

(π∗23f)●(π∗23g)● ∶ E(I)S1 ×⋯ ×E(I)Sn → E(I)T
Note that, by Lemma 9.2.18, (π∗23g)● preserves the subcategory of π12-Cartesian objects
and, by Lemma 9.2.19, (π∗23f)● preserves the subcategory of π13-coCartesian objects. In
the oplax case, the condition on f is repealed and the multicorrespondence is mapped to

◻∗(π∗23f)●(π∗23g)●
where ◻∗ is the right coCartesian projection defined and discussed in Section 9.3.
A 2-morphism, given by a morphism of multicorrespondences

A

h

��

X1, . . . ,Xn

yy

f

ee

f ′

Y
  

g

??

g′

A′

where h is an isomorphism, is mapped to the natural transformation given by the unit

(π∗23f)●(π∗23g)● ≅ (π∗23f
′)●(π∗23h)●(π∗23h)●(π∗23g

′)● ← (π∗23f
′)●(π∗23g

′)●
In the oplax case, h can be an arbitrary morphism (which will be automatically type 1
admissible). The 2-morphism is then mapped to the natural transformation given by the
unit

◻∗(π∗23f)●(π∗23g)● ≅ ◻∗(π∗23f
′)● ◻∗ (π∗23h)●(π∗23h)●(π∗23g

′)● ← ◻∗(π∗23f
′)●(π∗23g

′)●.

A functor α ∶ I → J is mapped to the functor

(↓↑↓α)∗

which obviously preserves the (co)Cartesianity conditions. This is strictly compatible
with composition of functors between diagrams. A natural transformation µ ∶ α → β is
mapped to the following natural transformation (↓↑↓α)∗ → (↓↑↓β)∗: We have the corre-
spondence (cf. 9.2.12)

(↓↑µ)∗1S
fµ

%%

gµ

yy
(↓↑α)∗S (↓↑β)∗S
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where fµ is type 2 admissible and gµ is type 1 admissible by the definition of admissible
diagram. On the other hand, there are natural transformations (cf. 9.2.6)

↓↑↓α⇒ (↓↑↓µ)1 ⇐ (↓↑↓µ)2 ⇒ ↓↑↓β.

Inserting π∗23(Sop) into this, we get

π∗23(↓↑α)∗(Sop)
π∗23gµ // π∗23(↓↑µ)∗1(Sop) oo

π∗23fµ
π∗23(↓↑β)∗(Sop) π∗23(↓↑β)∗(Sop). (53)

The natural transformation µ ∶ α → β may be seen as a functor ∆1 × I → J and therefore
we get a functor

↓↑↓µ ∶ ↓↑↓∆1 × ↓↑↓I → ↓↑↓J.
Applying the (pre-)derivator D and partially evaluating at the objects and morphisms of
↓↑↓∆1 we get natural transformations

(π∗23gµ)●(↓↑↓α)∗ → (↓↑↓µ)∗1
(↓↑↓µ)∗2 → (π∗23fµ)●(↓↑↓µ)∗1
(↓↑↓µ)∗2 → (↓↑↓β)∗

where the (−)∗-functors are now considered to be functors between the respective fibers
over the objects of (53). Clearly the first two morphisms (in particular the second)
are isomorphisms when restricted to the respective categories of (co)Cartesian objects.
Therefore we can form their composition:

(π∗23f)●(π∗23g)●(↓↑↓α)∗ → (↓↑↓β)∗

which will be the image of µ under the 2-pre-multiderivator E. One checks that for
any admissible diagram S ∈ S(↓↑I), this defines a pseudo-functor from the category of
functors Fun(I, J) to the 2-category of functors of the 2-category E(I) to the 2-category
E(J), pseudo-natural transformations and modifications.

Lemma 9.2.18. Under the conditions of Theorem 9.2.1, let S,T ∶ ↓↑I → S be admissible
diagrams and let f ∶ S → T be any morphism in S(↓↑I). Then the functor

(π∗23f)● ∶ D(I)π∗23T
op → D(I)π∗23S

op

maps always π13-Cartesian objects to π13-Cartesian objects, and maps π12-coCartesian
objects to π12-coCartesian if f is type 2 admissible.

Proof. This follows immediately from base-change and from the definition of type 2
admissible.

Lemma 9.2.19. Under the conditions of Theorem 9.2.1, let S1, . . . , Sn, T ∶ ↓↑I → S be
admissible diagrams and let g ∶ S1, . . . , Sn → T be any multimorphism in S(↓↑I). Then
the functor

(π∗23g)● ∶ D(I)π∗23S
op
1
×⋯ ×D(I)π∗23S

op
n
→ D(I)π∗23T

op

maps always π12-coCartesian objects to π12-coCartesian objects, and maps π13-Cartesian
objects to π13-Cartesian objects if g is type 1 admissible.
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Proof. This follows immediately from multi-base-change and from the definition of type
1 admissible.

9.2.20. Recall that a diagram I is called contractible, if

id⇒ pI,∗(pI)∗,

or equivalently
pI,!(pI)∗ ⇒ id,

is an isomorphism for all derivators. Cisinski showed that this is the case if and only if
N(I) is weakly contractible in the sense of simplicial sets. For instance, any diagram
possessing a final or initial object is contractible. The following lemma was shown
in Chapter 7 for the case of all contractible diagrams for a restricted class of stable
derivators. We will only need the mentioned special case which is easy to prove in full
generality:

Lemma 9.2.21. If D is a left derivator and I has a final object, or D is a right derivator
and I has an initial object, then the functor

p∗I ∶ D(⋅) → D(I)cart = D(I)cocart

is an equivalence.

Note that Cartesian=coCartesian here only means that all morphisms in the underlying
diagram in Fun(I,D(⋅)) are isomorphisms.

Proof. Assume we have a left derivator and I has a final object (the other statement is
dual). It suffices to show that the counit

pI,!p
∗
I ⇒ id

is an isomorphism and that the unit

id⇒ p∗IpI,!

is an isomorphism when restricted to the subcategory of Cartesian objects. Since I has
a final object i we have an isomorphism

pI,! ≅ i∗

and the unit and counit become the morphisms induced by the natural transformations
pI ○ i = id and id⇒ i ○ pI . Hence we have

i∗p∗I = id

and the morphism
id⇒ p∗I i

∗

is an isomorphism on (co)Cartesian objects by definition of (co)Cartesian.
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Corollary 9.2.22. If D is a left and right derivator and I has a final or initial object
then

p∗I ∶ D(⋅) → D(I)cart = D(I)cocart

is an equivalence, whose inverse is given by pI,! or equivalently by pI,∗.

Proof. The first part is just restating the above lemma. The fact that both the restriction
of pI,!, and the restriction of pI,∗, to the subcategory D(I)cart are an inverse to p∗I
follows because these restrictions are obviously still left, resp. right, adjoints to the
equivalence p∗I , hence both inverses, because of the uniqueness of adjoints (up to unique
isomorphism).

Lemma 9.2.23. Under the assumptions of Theorem 9.2.1, if α ∶ I → J is an opfibration
then the functors

D(↓↑↓J ×J I)π12−cocart,π13−cart
π∗23(S

op)

q∗2 // D(↓↑↓J ×(↓↑J)
↓↑I)π12−cocart,π13−cart

π∗23(S
op)

q∗1 // D(↓↑↓I)π12−cocart,π13−cart
π∗23(S

op)

are equivalences. In particular (applying this to J = ⋅ and variable I) we have an equiv-
alence of fibers:

ES ≅ DS .

Proof. We first treat the case of q∗1 . We know by Lemma 9.2.15 that q1 is an opfibration
with fibers of the form i3 ×/Ij3

Ij3 . Neglecting the conditions of being (co)Cartesian, we
know that q∗1 has a left adjoint:

q1,! ∶ D(↓↑↓I)π∗23(S
op) → D(↓↑↓J ×(↓↑J)

↓↑I)π∗23(S
op)

We will show that the unit and counit

id⇒ q∗1q1,! q1,!q
∗
1 ⇒ id

are isomorphisms when restricted to the subcategory of π12-coCartesian objects. Since the
conditions of being π13-Cartesian match under q∗1 this shows the first assertion. Since
q1 is an opfibration this is the same as to show that for any γ ∈ ↓↑↓J ×(↓↑J)

↓↑I with fiber
F = i3 ×/Ij3

Ij3 the unit and counit

id⇒ p∗F pF,! pF,!p
∗
F ⇒ id (54)

are isomorphisms when restricted to the subcategory of π12-coCartesian objects. Since
π12 maps all morphisms in the fiber F to an identity, we have to show that the morphisms
in (54) are isomorphisms when restricted to (absolutely) (co)Cartesian objects. This
follows from the fact that F has an initial object (Lemma 9.2.21 and Corollary 9.2.22).
We now treat the case of q∗2 . We know by Lemma 9.2.15 that q2 is a fibration with fibers
of the form (i2 ×/Ij2

Ij2)op. Neglecting the conditions of being (co)Cartesian, we know
that q∗1 has a right adjoint:

q2,∗ ∶ D(↓↑↓J ×(↓↑J)
↓↑I)π∗23(S

op) → D(↓↑↓J ×J I)π∗23(S
op)
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We will show that the unit and counit

id⇒ q2,∗q
∗
2 q∗2q2,∗ ⇒ id

are isomorphisms when restricted to the subcategory of π13-Cartesian objects. Since the
conditions of being π12-coCartesian match under q∗2 this shows the second assertion.
Since q2 is a fibration this is the same as to show that for any γ ∈ ↓↑↓J ×J I with fiber
F = (i2 ×/Ij2

Ij2)op the the unit and counit

id⇒ pF,∗p
∗
F p∗F pF,∗ ⇒ id (55)

are isomorphisms when restricted to the subcategory of π13-Cartesian objects. Since
π13 maps all morphisms in the fiber (i2 ×/Ij2

Ij2)op to an identity, this means that we
have to show that (55) are isomorphisms when restricted to (absolutely) (co)Cartesian
objects. This follows from the fact that (i2 ×/Ij2

Ij2)op has a final object (Lemma 9.2.21
and Corollary 9.2.22).

Lemma 9.2.24. Let the situation be as in Theorem 9.2.1 and let p′ ∶ E → Scor be the
morphism of 2-pre-multiderivators defined in 9.2.17. Let α ∶ I → J be an opfibration.

Then α∗ ∶ E(J)α∗S → E(I)S has a left adjoint α
(S)
! .

Proof. We have to show that

(↓↑↓α)∗ ∶ D(↓↑↓J)π12−cocart,π13−cart
π∗23(S

op)
→ D(↓↑↓I)π12−cocart,π13−cart

π∗23(S
op)

has a left adjoint. The right hand side category is by Lemma 9.2.23 equivalent to

D((↓↑↓J) ×J I)π12−cocart,π13−cart
π∗23S

,

hence we have to show that

pr∗1 ∶ D(↓↑↓J)π12−cocart,π13−cart
π∗23(S

op)
→ D((↓↑↓J) ×J I)π12−cocart,π13−cart

π∗23(S
op)

has a left adjoint. By assumption the functor

pr∗1 ∶ D(↓↑↓J)π∗23(S
op) → D((↓↑↓J) ×J I)π∗23(S

op)

has a left adjoint pr2,!. We claim that it maps π12-coCartesian objects to π12-coCartesian
objects and π13-Cartesian objects to π13-Cartesian objects. The statement then follows.
Let κ ∶ ν → ν′

j1
ν1 // j2

ν2 // j3

j1
ν′1

// j′2

κ2

OO

ν′2

// j3

be a morphism in ↓↑↓J such that π13 maps it to an identity. Denote

f ∶= S(π23(κ)) ∶ S(π23(ν)) → S(π23(ν′))
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the corresponding morphism in S(⋅)op. Denote by (ν), resp. (ν′) the inclusion of the one
element category mapping to ν, resp. ν′ in ↓↑↓I. We have to show that the induced map

(ν)∗ pr1,! → f●(ν′)∗ pr1,!

is an isomorphism on π13-Cartesian objects. Since pr1 is an opfibration, this is the same
as to show that the natural morphism

p!ι
∗
ν → f●p!ι

∗
ν′

is an isomorphism on π13-Cartesian objects where p ∶ Ij1 → ⋅ is the projection. Since f●

commutes with homotopy colimits by assumption 1. of Theorem 9.2.1, this is to say that

p!ι
∗
ν → p!(p∗f)●ι∗ν′

is an isomorphism. However the fibers over ν and ν′ in (↓↑↓J) ×J I are both equal to Ij1
and the natural morphism

ι∗ν → (p∗f)●ι∗ν′
is already an isomorphism on Cartesian objects by definition.
Let κ ∶ ν1 → ν2

j1
ν1 // j2

ν2 // j3

��
j1

ν′1

// j′2 ν′2

// j′3

be a morphism in ↓↑↓J such that π12 maps it to an identity. And denote

g ∶= S(π23(κ)) ∶ S(π23(ν)) → S(π23(ν′))

the corresponding morphism in S(⋅). Denote by (ν), resp. (ν′) the inclusion of the one
element category mapping to ν, resp. ν′. We have to show that the induced map

g●(ν)∗ pr1,! → (ν′)∗ pr1,!

is an isomorphism on π12-coCartesian objects. This is the same as to show that the
natural morphism

g●p!ι
∗
ν → p!ι

∗
ν′

is an isomorphism on π12-coCartesian objects where p ∶ Ij1 → ⋅ is the projection. Since
g● commutes with homotopy colimits, this is to say that

p!(p∗g)●ι∗ν → p!ι
∗
ν′

is an isomorphism. However the fibers over ν and ν′ in (↓↑↓J) ×J I are both equal to Ij
and the natural morphism

(p∗g)●ι∗ν → ι∗ν′

is already an isomorphism on coCartesian objects by definition of coCartesian.
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Proof of Theorem 9.2.1. It is clear that the 2-pre-multiderivator E as defined in 9.2.17
satisfies axioms (Der1) and (Der2) because D satisfies them. Axiom (FDer0 left) holds
by construction of E. Instead of Axiom (FDer3 left) it is sufficient to show Axiom (FDer3
left’) which follows from Lemma 9.2.24. Axiom (FDer4 left’) follows from the proof of
Lemma 9.2.24. (FDer5 left) follows from the corresponding axiom for D and the fact
that pull-back along 1-ary morphisms in Sop commutes with homotopy colimits as well,
by assumption.

9.2.25. Let α ∶K → L be a functor in Dia and let ξ ∶ (I1, S1), . . . , (In, Sn) → (J,T ) be a
1-morphism in Diacor(Scor). If we have a 1-opfibration and 2-opfibration

Diacor(E) → Diacor(Scor)

then the isomorphism of Lemma 5.5.6, 3. is transformed into an isomorphism

(α × id)∗ ○ (ξ ×L)● → (ξ ×K)● ○ ((α × id)∗, . . . , (α × id)∗)

which turns K ↦ (ξ ×K)● into a morphism of usual derivators

ξ● ∶ DI1,S1 ×⋯ ×DIn,Sn → DJ,T . (56)

Lemma 9.2.26. The morphism of derivators (56) is left exact in each variable, i.e. the
exchange

(ξ ×j L)● ○j (α × id)! → (α × id)! ○ (ξ ×j K)●
is an isomorphism for any α ∶K → L.

Proof. This follows from Lemma 5.5.6, 4.

Proof of Theorem 9.2.2. The first assertion is a slight generalization of Theorem 8.2.3.
Using Definition 5.4.1 of a left, resp. right fibered multiderivator over 2-pre-multiderivators
we give a different slicker proof. We have to show that, under the conditions of Theo-
rem 9.2.2, the constructed 1-opfibration

Diacor(E) → Diacor(Scor)

is a 1-fibration as well. The conditions imply:

1. Dia,E and Scor are infinite,

2. the fibers of E→ Scor (which are the same as those of D→ S) are stable and perfectly
generated infinite left derivators with domain Dia, and also right derivators with
domain (at least) Posf.

Any multimorphism in (I1, S1), . . . , (In, Sn) → (J,T ) in Diacor(Scor) gives actually a
morphism between fibers which are usual left and right stable derivators which are
perfectly generated:

DI1,S1 ×⋯ ×DIn,Sn → DJ,T .
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Lemma 9.2.26 shows that this morphism commutes with homotopy colimits in each
variable. Thus by Theorem 8.2.1 it has a right adjoint in each slot j, which, in particular,
evaluated at ⋅ yields a right adjoint functor in the slot j:

D(I1)op
S1
×⋯ ×D(J)T ×⋯ ×D(In)op

Sn
→ D(Ij)Sj

for each j. This establishes that the morphism

Diacor(E) → Diacor(Scor)

is 1-fibered as well.
The lax extension of this 1-fibration is given as follows. For each diagram I we again spec-
ify a 1-fibered, and 2-opfibered multicategory with 1-categorical fibers E′(I) → Scor,G,lax.
The category

E′(I)

has the same objects as E(I), i.e. pairs (S,E) consisting of an admissible diagram S ∶
↓↑I → S and an object

E ∈ D(↓↑↓I)π12−cocart,π13−cart
π∗23(S

op)
.

The 1-morphisms are the morphisms in Scor,G,lax(I), i.e. lax morphisms, which can be
given by a multicorrespondence

A
f

��

g

yy
(S1, . . . , Sn) T

in which f is type 2 admissible, and g is arbitrary, together with a morphism

ρ ∈ HomE(I) ((E1, S1), . . . , (En, Sn), (F , T )) = HomD(↓↑↓I)π∗
23
(Top)

((π∗23f)●(π∗23g)●(E1, . . . ,En),F) .

Note that the multivalued functor (π∗23g)● does not necessarily have values in the sub-
category of π13-Cartesian objects.
A 2-morphism (f, g, ρ) ⇒ (f ′, g′, ρ′) is given by a morphism of multicorrespondences

A

h

��

X1, . . . ,Xn

yy

f

ee

f ′

Y
  

g

??

g′

A′
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where h is an arbitrary morphism (which is automatically type 2 admissible, cf. Lemma 9.2.10)
such that the diagram

(π∗23f)●(π∗23g)●(E1, . . . ,En)
ρ

,,

OO
∼

(π∗23f
′)●(π∗23h)●(π∗23h)●(π∗23g

′)●(E1, . . . ,En)OO
F

(π∗23f
′)●(π∗23g

′)●(E1, . . . ,En)
ρ′

22

commutes, where the lower left vertical morphism is the unit.
A functor α ∶ I → J is mapped to the functor (↓↑↓α)∗ which obviously preserves the
(co)Cartesianity conditions. Natural morphisms are treated in the same way as in the
plain case because no lax morphisms are involved.
We will now discuss the axioms:
(FDer0 right): It is clear from the definition that

E′(I) → Scor,G,lax(I)

is 2-opfibered and has 1-categorical fibers. It is also 1-fibered because we have

HomE(I)((E1, S1), . . . , (En, Sn), (F , T ))
≅ HomD(↓↑↓I)π∗

23
Top

((π∗23f)●(π∗23g)●(E1, . . . ,En),F)

≅ HomD(↓↑↓I)
π∗

23
S

op
j

(Ej ,◻∗(π∗23g)●,j(E1,
ĵ. . .,En; (π∗23f)?F)).

Here ◻∗ is the right coCartesian projection defined and discussed in Section 9.3 and
(π∗23f)? is a right adjoint of (π∗23f)●, which exists by the reasoning in the first part of
the proof. (Note that (π∗23f)? would be denoted f !, i.e. exceptional pull-back, in the
usual language of six-functor-formalisms. Our notation, unfortunately, has reached its
limit here.) Therefore Cartesian morphisms exist w.r.t. to any slot j with pull-back
functor explicitly given by

◻∗(π∗23g)●,j(−, ĵ. . .,−; (π∗23f)?−).

The second part of (FDer0 right) follows from the corresponding statement for D and the
fact that ◻∗ is “point-wise the identity” (cf. Proposition 9.3.5). The axioms (FDer3–4
right) do not involve lax morphisms. (FDer5 right) follows because the corresponding
axiom holds for D, because (π∗23f)?, as right adjoint, commutes with homotopy limits,
and because ◻∗ is “point-wise the identity” (cf. Proposition 9.3.5).

9.3 Cocartesian projectors

9.3.1. We will show in this section that the fully-faithful inclusion

D(↓↑↓I)π13−cart,π12−cocart
π∗23(S

op)
→ D(↓↑↓I)π13−cart

π∗23(S
op)
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(cf. Definitions 9.2.16, 9.2.17) has a right adjoint ◻∗ which we will call a right coCarte-
sian projection (cf. also Definition 7.4.4).
A right coCartesian projection (or rather its composition with the fully-faithful inclu-
sion) can be specified by an endofunctor ◻∗ of D(↓↑↓I)π13−cart

π∗23(S
op)

together with a natural

transformation
ν ∶ ◻∗ ⇒ id

such that

1. ◻∗ has values in the subcategory of π12-coCartesian objects and

2. ν◻∗E = ◻∗νE holds true.

This, in particular, gives a pullback functor

◻∗f● ∶ D(↓↑↓I)π13−cart,π12−cocart
π∗23(S

op)
→ D(↓↑↓I)π13−cart,π12−cocart

π∗23(T
op)

for any morphism (not necessarily type 2 admissible)

f ∶ S → T

of admissible diagrams in S(↓↑I).
Note that, of course, f● preserves automatically the condition of being π13-Cartesian.
Proposition 9.3.5 below shows that this is still computed point-wise, i.e. that we have
for any α ∶ I → J

α∗ ◻∗ f● ≅ ◻∗(α∗f)●.

9.3.2. We need some technical preparation. Consider the projections:

π123, π125, π145, π345 ∶ ↓↑↓↑↓I → ↓↑↓I.

We have obvious natural transformations

π123 ⇒ π125 ⇐ π145 ⇒ π345

and therefore
π∗123 ⇒ π∗125 ⇐ π∗145 ⇒ π∗345

If we plug in π∗23(Sop) for an admissible diagram S ∈ S(↓↑I), we get morphisms of
diagrams in Sop:

π∗23(Sop) g // π∗25(Sop) oo f
π∗45(Sop) π∗45(Sop)

and therefore natural transformations

g●π
∗
123 ⇒ π∗125

f●π∗125 ⇐ π∗145

of functors between fibers.
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Lemma 9.3.3. π123 and π345 are opfibrations.

Proof. This was explained in 9.2.5.

Lemma 9.3.4. The natural transformation

π
(π∗45S)

345,! π∗145 ⇒ id

induced by the natural transformation

π∗145 ⇒ π∗345

of functors
π∗145, π

∗
345 ∶ D(↓↑↓I)π∗23(S

op) → D(↓↑↓↑↓I)π∗45(S
op)

is an isomorphism.

Proof. Since π345 is an opfibration, we have for any object α = {i→ j → k} in ↓↑↓I:

α∗π345,!π
∗
145 = p!π

∗
145

where p ∶ ↓↑(I ×/I i) → {⋅}. We can factor p in the following way:

↓↑(I ×/I i)
π1 // I ×/I i

P //// {⋅}

The functor π1 is an opfibration with fibers of the form β ×/(I×/I i)
(I ×/I i). Since these

fibers have an initial object, and the objects in the image of π∗145 are constant along it,
the homotopy colimit over objects in the image of π∗145 along it are equal to this constant
value by Corollary 9.2.22. Furthermore, the homotopy colimit over I ×/I i is the same as
evaluation at idi because idi is the final object.

If E is an object in D(↓↑↓I)π13−cocart
π∗23(S

op)
we have that the morphism

f●π∗125E ← π∗145E

is an isomorphism.

Proposition 9.3.5. Using the notation of 9.3.2, denote ◻∗ ∶= π345;!f
●g●π

∗
123. This

functor, together with the composition

E π345;!π
∗
145E

∼oo ∼ // π345;!f
●π∗125E π345;!f

●g●π
∗
123E = ◻∗Eoo

νE

jj ,

defines a right coCartesian projection:

D(↓↑↓I)π13−cart
π∗23S

→ D(↓↑↓I)π13−cart,π12−cocart
π∗23S

.

This projection has the following property:
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• For each i ∈ I the natural transformation

(↓↑↓i)∗◻∗ → (↓↑↓i)∗

is an isomorphism. (Here i denotes, by abuse of notation, the subcategory of I
consisting of i and idi. Hence ↓↑↓i is the subcategory of ↓↑↓I consisting of i = i = i
and its identity.)

Proof. We have to show that ◻∗E is coCartesian and that

◻∗νE = ν◻∗E .

The first assertion follows immediately from the fact that the values of π345,! at an
object i → j → k of ↓↑↓I are the homotopy colimits over the diagram ι∗i,j,kf

●g●π
∗
123E for

ιi,j,k ∶ ↓↑(I ×/I i) ↪ ↓↑↓↑↓I as follows: For any morphism to i → j → k′, or any morphism
from i → j′ → k, i.e. any morphism such that π12 (resp. π13) maps it to an identity, the
induced morphism

g●ι
∗
i,j,k′f

●g●π
∗
123E → ι∗i,j,kf

●g●π
∗
123E

resp.
f●ι∗i,j′,kf

●g●π
∗
123E ← ι∗i,j,kf

●g●π
∗
123E

is obviously an isomorphism. Therefore the statement follows because base change holds
and homotopy colimits commute with pull-back and push-forward by assumption.
To see the second equation, consider the diagram:
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E
π

3
4
5
;!
π
∗ 1
4
5
E

oo
// π

3
4
5
;!
f
●
π
∗ 1
2
5
E

π
3
4
5
;!
f
●
g ●
π
∗ 1
2
3
E

oo

π
3
4
5
;!
π
∗ 1
4
5
E

��OO

π
3
4
5
;!
π
∗ 1
4
5
π

3
4
5
;!
π
∗ 1
4
5
E

oo

��OO

// π
3
4
5
;!
π
∗ 1
4
5
π

3
4
5
;!
f
●
π
∗ 1
2
5
E

��OO

π
3
4
5
;!
π
∗ 1
4
5
π

3
4
5
;!
f
●
g ●
π
∗ 1
2
3
E

oo

��OO

π
3
4
5
;!
f
●
π
∗ 1
2
5
E

π
3
4
5
;!
f
●
π
∗ 1
2
5
π

3
4
5
;!
π
∗ 1
4
5
E

oo
// π

3
4
5
;!
f
●
π
∗ 1
2
5
π

3
4
5
;!
f
●
π
∗ 1
2
5
E

π
3
4
5
;!
f
●
π
∗ 1
2
5
π

3
4
5
;!
f
●
g ●
π
∗ 1
2
3
E

oo

π
3
4
5
;!
f
●
g ●
π
∗ 1
2
3
E

OO

π
3
4
5
;!
f
●
g ●
π
∗ 1
2
3
π

3
4
5
;!
π
∗ 1
4
5
E

oo

OO

// π
3
4
5
;!
f
●
g ●
π
∗ 1
2
3
π

3
4
5
;!
f
●
π
∗ 1
2
5
E

OO

π
3
4
5
;!
f
●
g ●
π
∗ 1
2
3
π

3
4
5
;!
f
●
g ●
π
∗ 1
2
3
E

OO

oo

We have to show that all squares commute. This is immediate for all squares except the
(2,2) and (3,3)-squares on the diagonal.
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Note that the following diagrams are Cartesian

↓↑↓↑↓↑↓I
π12345 //

π34567

��

↓↑↓↑↓I

π345

��
↓↑↓↑↓I

π123 // ↓↑↓I

↓↑↓↑↓↑↓I
π12347 //

π34567

��

↓↑↓↑↓I

π345

��
↓↑↓↑↓I

π125 // ↓↑↓I

↓↑↓↑↓↑↓I
π12367 //

π34567

��

↓↑↓↑↓I

π345

��
↓↑↓↑↓I

π145 // ↓↑↓I

Consider also the following commutative diagram in which the square is Cartesian:

π∗67(Sop)
f2

��
f3

}}

π∗45(Sop) g4 //

f5

��

π∗47(Sop)
f1

��
π∗23(Sop)

g2

::g3

// π∗25(Sop) g5

// π∗27(Sop)

The (2,2)-square is identified with

π567,!π
∗
167E //

��

π567,!f
●
3π

∗
127E

��
π345,!f

●π34567,!π
∗
147E // π345,!f

●π34567,!f
●
2π

∗
127E

and, using the commutation of pull-back with left Kan extensions, also with

π567;!π
∗
167E //

��

π567;!f
●
3π

∗
127E

��
π567;!f

●
2π

∗
147E // π567;!f

●
2f

●
1π

∗
127E

This last diagram is clearly commutative.
The (3,3)-square is identified with

π345,!f
●π34567,!f

●
1π

∗
127E //

��

π345,!f
●π34567,!f

●
1g2,●π

∗
123E

��
π345,!f

●g●π34567,!f
●
5π

∗
125E // π345,!f

●g●π34567,!f
●
5g3,●π

∗
123E

and, using the commutation of pull-back with left Kan extensions, also with

π345,!f
●
2f

●
1π

∗
127E //

��

π345,!f
●
2f

●
1g2,●π

∗
123E

��
π345,!f

●
2g4,●f

●
5π

∗
125E // π345,!f

●
2g4,●f

●
5g3,●π

∗
123E
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and using base change

π345,!f
●
2f

●
1π

∗
127E //

��

π345,!f
●
2f

●
1g2,●π

∗
123E

��
π345,!f

●
2f

●
1g5,●π

∗
125E // π345,!f

●
2f

●
1g5,●g3,●π

∗
123E

This diagram is clearly commutative.
For the additional statement observe that π345,!E at an arrow i→ i→ i is the homotopy
colimit over the diagram ι∗E for ι ∶ ↓↑(I×/I i) ↪ ↓↑↓↑↓I pulled back to S(i). The projection

pr1 ∶ ↓↑(I×/I i) → (I×/I i) is an opfibration with fibers of the form β×/(I×/I i)
(I×/I i). These

categories have an initial object and the restriction of the diagram π∗123E is constant on
it, because of the assumption that E is π13-Cartesian already. Hence the homotopy
colimit over the restriction of π∗123E to these fibers is the corresponding constant value
by Lemma 9.2.21. The colimit over (I ×/I i), furthermore, is evaluation at idi because it
is a final object. In total, the natural morphism

(↓↑↓i)∗ ◻∗ E → (↓↑↓i)∗E

is an isomophism.

9.4 The (co)localization property of a derivator six-functor-formalism
and n-angels

9.4.1. Let S be a category and S0 a class of “proper” morphisms. Let

D′ → Scor,0,oplax resp. D′′ → Scor,0,lax

be a proper derivator six-functor-formalism (cf. Definition 9.1.1) with stable fibers (cf.
Definition ??). The multi-aspect will not play any role in this section. The reasoning in
this section has an “etale” analogue that we leave to the reader to state.

9.4.2. If S is a category of some kind of spaces, we are often given a class of elemen-
tary squares as follows. Assume that in S there are certain distinguished morphisms
called “closed immersions” or “open immersions” respectively, with an operation of tak-
ing complements. For a morphism f ∶ X → Y in S we denote by f , resp. fop the
correspondences

f ∶
S

f

��
S T

fop ∶
S

f

��
T S

in Scor. Let

U �
� i // V �

� j // X
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be a sequence of “open embeddings”. And let i ∶ V ∖ U ↪ V , resp. j ○ i ∶ X ∖U ↪ X be
“closed embeddings of the complements”. For now these morphisms can be arbitrary,
but to make sense of these definitions in applications they should satisfy the properties
of 9.4.3 below.
We then have the following square in ΞU,V,X ∈ Scor(◻):

V
j //

i
op

��

X

j○i
op

��
V ∖U j // X ∖U

Assume that the “closed embeddings” lie in the class S0 which was fixed to define
the notion of proper derivator six-functor-formalism. Then the above square comes
equipped with a morphism ξ ∶ ΞU,V,X → p∗X in Scor,0,oplax(◻) represented by the cube
(as a morphism from the front face to the back face):

X X

V

j
;;

i
op

��

j // X

j○i
op

��

X X

V ∖U

j○i
;;

j // X ∖U
j○i

;;

The top and bottom squares are 2-commutative, whereas the left and right squares are
only oplax 2-commutative, e.g. there is a 2-morphism making the diagram

X
j○i

op

//

⇙

X ∖U
j○i
��

X X

commutative, which is given by the morphism of correspondences

X ∖U
j○i

{{
j○i

��

j○i

##
X X

X

From now on, we forget about the provenance of these squares and just consider a proper
derivator six-functor-formalism (more precisely, its oplax left fibered derivator)

D→ Scor,0,oplax
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with a class of distinguised squares Ξ ∈ Scor(◻) with given morphisms ξ ∶ Ξ → p∗X in
Scor,0,oplax(◻).

Definition 9.4.3. Let S be a 2-pre-derivator with all 2-morphisms invertible. We call
a square Ξ ∈ S(◻) Cartesian, if the natural functor

Hom(X, (0,0)∗Ξ) → Hom(p∗X, i∗⌟Ξ)

is an equivalence of groupoids for all X ∈ S(⋅), and coCartesian if the natural functor

Hom((1,1)∗Ξ,X) → Hom(i∗⌜Ξ, p∗X)

is an equivalence of groupoids for all X ∈ S(⋅). We call a square Ξ ∈ S(◻) biCartesian
if it is Cartesian and coCartesian.

Remark 9.4.4. If S is a usual derivator then this notion coincides with the usual notion
[Gro13].

9.4.5. One can show that the squares ΞU,V,X ∈ Scor(◻) constructed in the last paragraph
are actually Cartesian in Scor provided that for all pairs U,X ∖ U of “open and closed
embeddings” used above we have

HomS(A,U) = {α ∈ HomS(A,X) ∣ A ×α,X (X ∖U) = ∅}

and coCartesian provided that we have

HomS(A,X ∖U) = {α ∈ HomS(A,X) ∣ A ×α,X U = ∅}

where ∅ is the initial object.

9.4.6. There is a dual variant of the previous construction (not to be confused with
the transition to an etale six-functor-formalism). We consider instead the square Ξ′

U,V,X

with morphism
X

j○i
op

{{

X

X ∖U

iop

��

j○i // X

jop

��

X

(j○i)op{{

X

jop
~~

V ∖U
i

// V

In this case the top and bottom squares are only lax 2-commutative, e.g. there is a
2-morphism making the diagram

X

j○i
op

��
⇗

X

X ∖U j○i // X
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2-commutative. This means that for a stable proper derivator six-functor-formalism
it is also reasonable to consider a class of distinguished squares with given morphisms
ξ′ ∶ p∗X → Ξ in Scor,0,lax(◻). The morphism p∗X → Ξ′

U,V,X is just the dual of the
morphism ΞU,V,X → p∗X for the absolute duality on Diacor(Scor) (cf. 9.1.2).

Let i⌜ ∶ ⌜ ↪ ◻ and i⌟ ∶ ⌟ ↪ ◻ be the inclusions. Analogously to the situation for stable
derivators [Gro13, 4.1] we define:

Definition 9.4.7. A square E ∈ D(◻) over Ξ ∈ S(◻) is called relatively coCartesian,
if for the inclusion i⌜ ∶ (⌜, i∗⌜Ξ) → (◻,Ξ) the unit E → i⌜,∗i

∗
⌜E is an isomorphism, and

it is called relatively Cartesian if for the inclusion i⌟ ∶ (⌟, i∗⌟Ξ) → (◻,Ξ) the counit
i⌟,!i

∗
⌟E → E is an isomorphism30. E is called relatively biCartesian if it is relatively

Cartesian and relatively coCartesian.

If Ξ is itself (co)Cartesian in the sense of Definition 9.4.3 then E relatively (co)Cartesian
implies (co)Cartesian in the sense of Definition 9.4.3.

Lemma 9.4.8. Assume V = U and let D(◻)bicart
ΞU,U,X

be the full subcategory of relatively

biCartesian squares. Let (1,0) ∶ (⋅,X) → (◻,ΞU,U,X) be the inclusion. Then the functor

(1,0)∗ ∶ D(◻)bicart
ΞU,U,X

→ D(⋅)X

and the composition

D(⋅)X
1∗ // D(→)U→X

0! // D(◻)bicart
ΞU,U,X

define an equivalence of categories.
Also if V /= U the functor 1∗0! takes values in relatively biCartesian squares.

Recall that the functor
0∗ ∶ D(◻)bicart,0

p∗X → D(→)p∗X

is an equivalence, where D(◻)bicart,0
p∗X is the full subcategory of (relatively) biCartesian

objects whose (1,0)-entry is zero. (This is a statement about usual derivators.)

Definition 9.4.9. We say that a distinguished square Ξ together with ξ ∶ Ξ → p∗X is a
localizing square if the push-forward ξ● maps relatively biCartesian squares to relatively
biCartesian squares. We say that a distinguished square Ξ together with ξ ∶ p∗X → Ξ is a
colocalizing square if the pull-back ξ● maps relatively biCartesian squares to relatively
biCartesian squares.

If every object in D(⋅) is dualizable w.r.t. the absolute monoidal product in Diacor(D)
then ξ ∶ Ξ→ p∗X is localizing if and only if ξ∨ ∶ p∗X → Ξ∨ is colocalizing.

30The functors i⌟,! and i⌜,∗ are in both cases considered w.r.t. the base Ξ.
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Remark 9.4.10. If the proper derivator six-functor-formalism with its oplax extension

D→ Scor,0,oplax

has stable fibers, and the square ΞU,V,X constructed above is distinguished, then the
property of being a localizing square implies that for E ∈ D(⋅)X the triangle

j!j
!E // (j ○ i)!i

∗
j!E ⊕ E // j ○ i∗j ○ i

∗E [1] //

is distinguished. If U = V this is just the sequence

j!j
!E // E // j∗j

∗E [1] //

Remark 9.4.11. If the proper derivator six-functor-formalism with its lax extension

D→ Scor,0,lax

has stable fibers, and the square ΞU,V,X constructed above is distinguished, then the
property of being a colocalizing square implies that for E ∈ D(⋅)X the triangle

j ○ i!j ○ i
!E // (j ○ i)∗i∗(j ○ i)!E ⊕ E // j∗j

∗E [1] //

is distinguished. If U = V this is just the sequence:

j!j
!E // E // j∗j

∗E [1] //

Definition 9.4.12. We say that the proper derivator six-functor-formalism with its
extension as oplax left fibered derivator

D→ Scor,0,oplax

satisfies the localization property w.r.t. a class of distinguished squares ξ ∶ Ξ→ p∗X
if these are localizing squares.
We say that the proper derivator six-functor-formalism with its extension as lax right
fibered derivator

D→ Scor,0,lax

satisfies the colocalization property w.r.t. a class of distinguished squares ξ ∶ p∗X →
Ξ if these are colocalizing squares.

There is an analogous notion in which an etale derivator-six-functor-formalism w.r.t. a
class of “etale morphisms” S0 in S satisfies the (co)localization property

9.4.13. Consider again the situation in 9.4.2. More generally we may consider a sequence

X1
� � // X2

� � // ⋯ � � // Xn
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of open embeddings. They lead to a diagram Ξ

X1
//

��

X2
//

��

⋯ // Xn

��
∅ // X2 ∖X1

//

��

⋯ // Xn ∖X1

��
∅ // ⋱

��

⋮

��
∅ // Xn ∖Xn−1

in which all squares are biCartesian in Scor. Starting from an object E ∈ D(⋅)Xn we may
form again

0∗(n)!E

where (n) ∶ ⋅ → [n] is the inclusion of the last object and 0 ∶ [n] → Ξ is the inclusion
of the first line. It is easy to see that in the object 0∗(n)!E all squares are biCartesian.
There is furthermore again a morphism ξ ∶ Ξ→ p∗Xn in Scor,0,oplax such that all squares
in ξ●0∗(n)!E are biCartesian with zero’s along the diagonal. This category is equivalent
to D([n])p∗Xn by the embedding of the first line. It can be seen as a category of n-angels
in the stable derivator DXn (the fiber of D over X).
Hence for an oplax derivator six-functor-formalism with localization property, and for
any filtration of a space X by n open subspaces, and for any object E ∈ D(⋅)X we get a
corresponding (n + 1)-angle in the derivator DX in the sense of [GS14, §13].
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[SGA72a] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des
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[SGA72b] Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes
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