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Abstract

We discuss Lurie’s (derived) bar and cobar constructions, the classi-
cal ones for simplicial groups and sets (due to Eilenberg-MacLane and
Kan), and the classical ones for differential graded (co)algebras (due to
Eilenberg-MacLane and Adams) and their relations, putting them into
an abstract framework which makes sense much more generally for any
cofibration of co-operads. Along these lines we give new and rather con-
ceptual existence proofs of Lurie’s adjunction (where bar is left adjoint)
and the classical adjunction (where bar is right adjoint). We also recover
various classical comparison maps, e.g. the Szczarba and Hess-Tonks maps
comparing Adams cobar with Kan’s loop group.
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1 Introduction

A small category I gives rise to a diagram

=N 0

where Y7 is the (dual) twisted arrow categoryﬂ This yields for a complete and
cocomplete oo-category C an adjunction

Bare := 7|'2Y17TI op
ct ct 2)

. *
Cobare :=m1 475

with 7 .75 right adjoint, where the 71 and 7y, are the left and right Kan
extensions along 7, and 7a, respectively. This is already (a simple special case)
of our derived bar and cobar adjunction. There is also an adjunction

cobarc =7y |
C”I B CI
-
bare := 7r’f

with 7y fully-faithful and 7y, left adjoint. This is already (a simple special case)
of our classical bar and cobar adjunction. Here we imagine a 1-category C, but
this is not necessary.

It might be surprising that these simple constructions can be useful. How-
ever, they have a straight-forward generalization to (co)fibrations of oo—operadsﬂ
such that for a monoidal co-category C - © and I = © (planar associative op-
erad) we have

‘ (Co) Barg_,» = Lurie’s (co)bar construction. ‘

Lsee Section for a discussion and legitimization of the unusual notation.
2In these notes, so far, I decided to work with planar (co)operads as opposed to symmetric
ones, but nothing special about planar operads is used in the general definitions.



In the presence of augmentationsﬁ and for I = 0, this yields a formula (where

*

p* is a certain equivalence of co-categories, see below)

Barc,o = mo omy = cg‘luilr)no(p*)_1 oy,

Here ’7}? — the “classical bar construction” barq_» in this case — is not a
simple pull-back as above anymore but a slightly twisted variant that transfers
an algebra into a coalgebra and also ™I, for an operad I, is a bit different from
the usual notion. This implies the existence of Lurie’s bar construction, as soon
as geometric realizations exist, and hence a simple alternative to the existence
proof presented in [41].

For the classical (co)bar construction, we have (justifying the name)

dec, o(p") " o bargacr .0 = W

with the functor W (Eilenberg-MacLane classifying space) and

cobar(geacr o op* odec” = M5

where M¥ is the geometric cobar construction, a simplicial monoid whose as-
sociated simplicial group is Kan’s loop group,
Also, we have for an Abelian tensor category (D, ®):

dec, o(p*) o bar ch,o(p),,,8)-0 & bar™

where bar™ is the Eilenberg-MacLane bar construction and

Adams oP

cobar (. (p),8)-0 °p" © dec” = cobar

Ad . . .
where cobar™“*™® is the Adams cobar construction and P is the functor “con-

nected cover” with its canonical coaugmentation.

The reader familiar with Lurie’s definition will have noticed that this is
not the definition in terms of a certain pairing of categories that Lurie gives.
However, the (co)bar adjunction in the simple case above (i.e. over a point) can
also be described (not completely obviously) by saying that the functor p; x po
in the diagram

(HC)I
% \ (3)
CI (CI °p )op
is a fibration represented by the the bifunctor

X,Y ~ Homgror (Bare X, Y) @ Homer (X, Cobare V).

3i.e. passing to a situation where the unit is final



with Bar and Cobar defined in . This also generalizes straight-forwardly to
the setting of cofibrations of operads, and gives precisely Lurie’s definition.

The primary aim of these lectures was to explain the facts mentioned so
far in detail. Eventually, however, they grew into lectures about many related
things:

1. An alternative approach to Eilenberg-Zilber theorems using the notion of
symmetry (Section . In particular, we give definitions that do not
need any combinatorics, of the Alexander-Whitney and Eilenberg-Zilber
morphisms, which work in the non-Abelian and Abelian setting alike, yet
give back the classical morphisms in the Abelian case. Similar ideas are
already in [43] §13].

2. An alternative description of the canonical simplicial enrichment on sim-
plicial objects (Section [4.3] cf. also [48]):

Hom(X,Y)[,] = Homg aopyn+t (decy, ., X,dec) ., Y).

This is used to construct, for instance, the homotopy (Shih operator)
Ez Aw = id using abstract principles (as opposed to specifying a formula,
or referring to the method of “acyclic models”).

3. A self-contained discussion of the Dold-Kan theorem with the least possi-
ble amount of calculation (Section [5.1]).

4. A comparison between different classical cobar constructions (Section.
In particular, we recover from abstract principles the Szczarba map [53)
from the Adams cobar construction to the “singular chains” on the geo-
metric cobar constructions or Kan’s loop group, and its (homotopy) in-
verse, the Hess-Tonks map [33]. This uses the functoriality of (a com-
pletion) of cobar in the Abelian case in morphisms of As-algebras. To
this end, we discuss a connection between coherent transformations in the
sense of Cordier-Porter [19] and Ae-morphisms (Section [6.9).

5. Using (dual) classical cobar to construct cofree coalgebras (Section .

I would have liked to base all constructions in these lectures on abstract prin-
ciples (as opposed to writing down a formula). This could be largely achieved,
but not in every case. The most notable exception is the definition of the map
from coherent transformations to A.-morphisms. Although the definition is
very simple it is by means of specifying a formula with signs... Another ex-
cepetion is the functoriality of the Abelian cobar in A-morphisms. This works
— in general — only after completion of the latter, thus one cannot expect a
too simple “abstract principle” behind. I hope to improve on these points in
the future.

Chapters 4-6 and the appendices deal almost entirely with 1-categories and
very classical constructions concerning them. The reader not familiar with oo-
categories can thus concentrate on this part. Some facts and definitions from



Chapters 1-3 are used, which are stated there for co-categories. However, the
relevant definitions and statements are not very different from the ones which
one would make restricting to 1-categories. Let me emphasize, however: Al-
though the definition of the derived (co)bar (as opposed to classical (co)bar)
could also be literally stated for 1-categories, it would be almost useless. Its
non-triviality is an entirely higher categorical phenomenon. Concerning pro-
functors, also a little care is needed’| therefore in the corresponding sections,
an explicit distinction of 1-categories and oco-categories is carried along anyway.

1.1 (Co)bar

Bar and cobar constructions are ubiquitous in mathematics, especially in alge-
braic topology and homological algebra, and there seems to be no general defi-
nition encompassing all their appearances. Several attempts have been made to
generalize and unify them in certain contexts. The first most general definition
of a (one-sided, two-sided) bar construction in the context of monads has been
given by Godement [28]. In the homological context the first bar construction
is due to Eilenberg-MacLane [22] and the first cobar construction due to Adams
[3], cf. also [10]. Boardman and Vogt defined a very general bar construction
for “theories” in [I5]. Meyer has suggested a unification of different kinds of
(co)bar constructions in [45] [46]. There are very general definitions of (co)bar
constructions in the context of differential graded (co)algebras and (co)operads,
cf. 38, 42]. In the oo-categorical context, Lurie has given a quite general defi-
nition of a (co)bar duality in [41].

1.2 General classical and derived (co)bar duality

Lurie calls a diagram such as a left and right representable pairing of cat-
egories (cf. Definition , if p1 x po is a fibration with groupoid fibers in
such a way that allows to extract the functors Bar and Cobar which are then
automatically adjoint.

Diagram has a straightforward generalization to co-(co)operads and more
generally to cofibrations of co-operads C — S, and a small co-operad I: Consider
the diagranﬂ

ch!

X

CI ((CV)IOP)op
\ ) /

4The “embedding” Cat"’F — CatDF is not compatible with composition.

5In which C¥ — S°P is the fibration of cooperads with the same fibers obtained from C - S
and C'' - S is the cofibration of operads whose fibers are the twisted arrow categories of the
fibers of C —» S.




which in the simplest case S = I = 0, when C is just a monoidal oco-category,
gives
Alg(*e)
/ X‘
Alg(C) Coalg(C)?

the diagram Lurie considers to define his (co)bar functors.

We show that also the diagram has a straight-forward generalization to
the relative setting of cofibrations of co-operads permitting thus to reduce the
existence of Lurie’s (co)bar functors to the existence of a certain relative (a.k.a.
operadic) Kan extensions. In fact has also an switched form involving ™I
and thus two generalizations:

it
CV) *Isop

TlI
/ \ / \ (4)
)k (") ke
and we have (cf. Proposition similarly that p; xps is the fibration represented
fiber-wise over S € S’ by equivalently

XY ~ Hom(;r\fX7 mY) 2 Hom(H§X7ﬁ§Y)~

Thus (the generalization of) Lurie’s (co)bar functors — which are, by definition,
functors such that p; x ps is the fibration represented fiber-wise by

X,Y » Hom(Bar X,Y") 2 Hom (X, CobarY’)

— exist, if suitable relative Kan extensions along mo and Il5 exist. The appearing
operad "I (resp. cooperad ‘'T) is a generalization of the notion of “twisted arrow
category” to operads. It is an operad whose “category of operators” is not
quite the twisted arrow category of the category of operators of I but merely a
localization of it. Its objects can be identified with active morphisms in I.

The classical (co)bar adjunction generalizes to

coba;
(CV)”I _copate cl
ﬂ—gsop <~ VS
barc =7}

Here bare always exists and is fully-faithful and cobare is its left adjoint.
In the simplest case S = I = O this gives

(CV)(Aacty*’)op



where (Aaet, *') is the monoidal category A,.t, the simplex category with endpoint-
preserving morphisms, equipped with the monoidal product *’ E It is quite un-
likely that w3 will have a left adjoint that commutes with the forgetful functor
(for § = I = 0 it certainly does not). However, if we replace C by the category
of augmented objects in C, which has the effect that the unit will become final

P () A (V) (B (6)

is an equivalence. Here (A, *) is not monoidal anymore, because it lacks a unit,
but still pro-monoidal or, as we say, an exponential (even co-exponential) fibra-
tion of operads over ©. (This suffices also to construct a Day convolution.) Now
w5 has a left adjoint that commutes with the forgetful functor under no assump-
tions at alﬂ (apart from existence of the colimit). In particular, on underlying
objects is just given by colimaocr (geometric realization). What happens here is
very simple. ;r\_l*’ maps an algebra A to the diagram of shape A, (all but one
degeneracy not depicted):

VT EAQAQRA T ARA — > A<— —1 (7)

whose morphisms are the structure morphisms of A with a canonical coalgebra
structure which extends thus, if the unit is final, canonically to a diagram of
shape A°P (all but one degeneracy not depicted):

%A@A@A:;A@AHA<771

with coalgebra structure now w.r.t. the monoidal product dec, — ® —. The bar
construction Bar(A) is then just the colimit of this diagram. The cobar con-
struction Cobar is precisely the dual construction.

The classical cobar construction cobar is a left adjoint to the (fully-faithful)
association which maps A to the coalgebra (7). We show (Theorem that
it can — under very general assumptions — be given as a certain colimit over
WASP  (which is essentially the category of necklaces [7, 20, 50]). In the I-
categorical context it is thus just given by mapping

T E Ay /= Ay —— Apy < - — Ao
(with its coalgebra structure) to the coequalizer of

HA[l] ® -+ X A[O] ® -+ ®A[1] 1 HA[l] ® - X A[Q] ® - ®A[1] = L[()A?ﬁ

with maps, for instance, given by A — Ap) (diagram map) and Apg —
A1 ® Apy (part of the coalgebra structure), i.e. a very simple quotient of the
free algebra in Af;]. You will immediately recognize the construction of the fun-
damental group (or better: monoid) of a connected simplicial set as a special
case. In the oo-categorical context the same construction works, only that we
have to take the full diagram of shape AP, into account here, including the
other A, as well.

61n fact, we have an isomorphism (Aact, *') = (AP, +) by the “duality of ordered sets and
intervals” (Lemma [4.9) and you may choose your favorite model among both.
"The technical reason is that %’ is not cofinal, whereas dec = * is cofinal.



1.3 Concrete instances of classical bar and cobar

In Chapter [6] we show, as mentioned above, that the quite simple classical bar
and cobar constructions (in case I = S = 0) agree with many constructions in the
literature, as for example the construction of Kan’s loop group and the Adams
cobar and Eilenberg-Maclane bar construction. However, these constructions
are not quite the same as the “classical bar” and “classical cobar” but have the
form of the (still adjoint) functors

dec, o(p*) ™! o bar

and
cobar op® o dec” .

(a way of thinking certainly inspired by Stevenson’s article [52]). Here p* is
the functor @ above. To make this precise, we must turn dec, and dec” into
functors of (co)operads and then explicitly calculate the composition. This will
be done for C = (Set®”", x) in and for C = (Chyo(D),®) with (D, ®) Abelian
tensor category in [6.6]

The derived (Lurie’s) bar construction Bar can in these cases (under mild
assumptions on D in the Abelian case) also be computed as

dec, o(p*)™* o bar

because dec, represents the (homotopy) colimit over A°P. This will be explained
in detail in Section

However, the left adjoint cobarop* o dec” is, a priori, not directly related
to the derived (Lurie’s) cobar construction Cobar. Note that the first is a left
adjoint before localization and the latter a right adjoint after localization. Of-
ten times, however, cobarop* o dec” also preserves weak equivalences at least
when restricted to a large subcategory, and the classical adjunction gives a de-
rived equivalence. Then, accordingly, also the (restrictions of the) two cobar
constructions agree.

The chosen notation “classical (co)bar” and “derived (co)bar” is thus prob-
ably a bit unfortunate. My motivation has been to stay as close to the existing
nomenclature as possible. Keep in mind, however, that while the classical bar
construction is really a component of the derived bar construction, the con-
structions denoted “cobar” denote something a bit different, yet related, in the
classical and derived case. Rather the following is true: The derived cobar is the
dual of the derived bar construction and thus the dual classical bar construction
bar” is a component of it.

1.4 Comparisons of Abelian and non-Abelian classical co-
bar constructions

One motivation of this work has been to understand the relation between the
geometric (Kan) cobar for simplicial sets and Adams cobar for complexes of



Abelian groups. Since they are formally given by exactly the same construction
“cobar op* odec™” one would expect a simple formal comparison. This is indeed
true, if one chooses on (non-negatively graded) complexes of Abelian groups
the monoidal product ® (i.e. under Dold-Kan the point-wise tensor product
on simplicial Abelian groups). In this case, the construction (quite obviously)
commutes with the free Abelian group functor Z[-], i.e. “singular chains”. Tt
remains thus to compare the two purely Abelian constructions in complexes of
Abelian groups w.r.t. ® and ®. This turns out to be fairly intricate:

e The difficulty in the construction of a map “cobarg — cobarg” is the fol-
lowing: The morphism given by abstract functoriality w.r.t. the Eilenberg-
Zilber map does not land in the cobar construction of the dg-algebra Z[ X ]
with its usual (diagonal) coalgebra structure w.r.t. ® but with its compo-
sition Z[X] - Z[X]®Z[X] — Z[ X ] ® Z[ X | with EZ o AW! This problem
has been dealt with by either giving explicit constructions (Adams [3],
Szczarba [B3], etc.) or using homotopy deformation theory (Shih [51],
etc.) We propose a more conceptual approach which is completely ex-
plicit. Roughly it is as follows (hiding here some details about the trans-
port along dec”): The Shih operator = : id = EZ o AW will be constructed
from abstract principles, and not by specifying a formula. For a coalgebra
C' it gives rise first to a coherent transformation exp(Z)(C') in the sense of
Cordier-Porter [I9], and then — via a very general comparison map from
coherent transformations to morphisms of A..-coalgebras — rise to a mor-
phism of A.-coalgebras exp(Z)(C)w. It turns out that the components
of this A.-morphism are essentiallyﬂ the Szczarba-maps [53]. It gives
thus a map between the cobar constructions (a priori, only a completion
of cobar is functorial in Ae-morphisms).

There are many other attempts to understand the Szczarba maps in the
literature, see for example [24] 25] 47].

o The difficulty in the construction of a map “cobarg — cobarg” is the fol-
lowing: We can make dec” naturally (lax) monoidal w.r.t. the respective
tensor products, but the resulting extensions decg and dec} are not com-
patible with the AW-morphism! It turns out, however, that one can plug
in the inverse of the A -morphism exp(Z)s, constructed before to get a
morphism in the other direction. It is however, in general, only defined
after a completion (or, a posteriori, localization) of cobar. It is very likely
that this is (up to the different indexing issue) the Hess-Tonks map [33],
although this remains to be checked in detail.

1.5 Plans

These lecture notes are far from complete and also far from how I would have
imagined them. The reason is mainly that they got quite long already and I

8Up to different indexing conventions

10



wanted to make them available before (hopefully) being able to elaborate on
the following points:

1. A motivation for the bar and cobar constructions, in particular, for the
classical cases discussed in detail. This omission can hopefully be excused
for the moment because many of the sources discuss this thoroughly.

2. A discussion of the concrete properties of the bar and cobar adjunctions
(classical and derived) in the main cases simplicial sets and complexes and
Gpd,, (spaces).

3. A discussion of the vast generalizations in the dg-setting: (co)bar for dg-
operads, Sweedler theory [0], and so on. Many of these features should
generalize (cf. also [I7, [34] [49]).

4. A discussion of the classical and derived (co)bar for LMod, the planar
operad encoding (left) modules over algebras over ©. For example, the
classical (co)bar (for simplicial sets) should recover the theory of prinicipal
twisted Cartesian products. The derived (co)bar should give a generaliza-
tion of Lurie’s duality to modules and comodules (cf. also [I1]).

5. A concrete discussion of the derived (Lurie) (co)bar for other operads than
© and for non-planar (i.e. symmetric) operads. Whereas the abstract part
carries over to symmetric operads without modification, I would have liked
to include an extistence proof in the same spirit for Eg-(co)algebras at
least.

2 Categorical prerequisites

This chapter discusses several categorical concepts that will be used in the sequel
of these lectures. It is intended for referential purpose and to fix notation. Proofs
are only occasionally sketched. The reader is advised to skim over it on a first
reading.

2.1 Pro-functors

2.1.  In this lecture Kan extensions which are the left adjoints ay or right
adjoints a, of pre-composition o* : C/ - C! with a functor a : I — J, are
ubiquitous. They comprise in particular all limits and colimits. The collection
of all o and i (say), where « runs through all functors o : I — J between small
categories (or small co-categories) fulfill a rich algebra. This algebra is encoded
in the 2-category Cat™™ (resp. (o0,2)-category CatL!) of small categories and
pro-functors. The reader who is not completely at ease with pro-functors should
keep in mind that they are all of the form Sia* for suitable o and 8 and the 2-
morphisms between compositions are precisely those, that these functors acquire
universally for all categories C, or which amounts to the same, for C = Set (resp.
for C = Gpd,, when working with co-categories). However, as definition, a more
concrete approach is convenient:

11



2.2. Pro-functors v: I — J are functors
JP x I - Set

(resp. oo-pro-functors are functors J°P x I - Gpd,,, where I and J can be

oo-categories themselves) with composition given by

00

soa= [ 55 xali-).

While this is a proper definition in the 1-categorical context, it is of course more
involved in the oo-categorical setting (cf. [6] for a precise construction). There
are canonical functors

v: Cat — Cat"F (resp. Cat,, — CatL!)
mapping «a: I — J to j,i— Hom(j, (%)), a pro-functor I — J, as well as
by Cat!t™oP27oP o Cat™ (resp. Cat;°P27°P - Cathl)

mapping o : I - J to ‘a : 0,5 = Hom(a(i),5), a pro-functor J — I. The
pro-functor *a is, in fact, right adjoint to a.

2.3. A cocomplete category C gives rise to a functor

Le: Cat™17°P . Cat (resp. Catt"17°P = Cate,)
I - !

mapping a to a* and its adjoint ‘o to ay (left Kan extension), and more generally
L(y):¢? - ¢!
X TG xx0).
A complete category C gives rise to a functor

Re: Cat™™2™°P o (at (resp. Catl#™°P - Cato,)
I - c!

mapping ‘a to a* and a to a, (right Kan extension), and more generally
R(y):¢t - ¢’
X = [Hom(y(=1), X(0).
2.4. There is an operation

op: Cat"™17°P - CatP¥ (resp. CatL ' 17oP - Catt!)

oo

I —» I®
’y]—>J = ’y:Jop—>10p

12



making the following commutative (and similarly in the co-categorical context)

_ _ L
Cat?™P — Lt 5 CatPFl=oP =€ o (Cat

l“’ l l ®)

¢ R
_ _ . cop _
Catlop:2-op CattF Cat?°P

Furthermore, we have L¢t = Re %.

We discussed pro-functors separately for usual categories and oo-categories
for a good reason: Although they behave completely analogously, there does not
exist an embedding Cat™F — CatfoF because the inclusion Set - Gpd,, does not
commute with colimits and thus the compositions of pro-functors are different.
This reflects the fact that there much less relations between (co)limits and Kan
extensions in the oo-categorical context than in the classical context.

2.5. A 2-morphism

y=7
is an isomorphism precisely, if L¢(y) = Le(y') is an isomorphism for all cocom-
plete categories (resp. oo-categories) C or precisely, if Lget(7) = Lset (') (resp.

Lapa_(7) = Lgpa_ (7)) is an isomorphism. In fact, even more is true: The
functor on morphism categories:

Lset : Homg,pr (I,.J) - Hom(Set”, Set”)
(resp.Lapa,, : Homeyerr (1,J) > Hom(GpdZ, GpdL))

is full. The essential image is precisely the category of colimit preserving func-
tors.

2.6. There is a similar picture for additive categories and additive pro-functors
(only in the 1-categorical setting discussed and needed)

JP x> AB
forming a 2-category AbCatPF. There is an embedding
Cat™ < AbCat™™
applying Z[-] (free Abelian group) to the pro-functors. This is compatible with
composition because Z[-] commutes with coproducts and maps x into ®. We
have then

Lc : AbCatFF17°P & AbCat  Re : AbCatPF27°P 5 AbCat

into additive categories when C is additive and (co)complete and (co)tensored
over Abelian groups. Actually this will be applied to Abelian categories only.

These are automatically (co)tensored over Ab when they admit infinite (co)products.
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2.7.  Consider an arbitrary pro-functor v : J°P x I — Set (resp. v : JP x [ —
Gpd,,). It gives rise to a category

v/
SN
1 J
(applying the Grothendieck construction, and its dual, respectively) equipped
with a cofibration [, and a fibration 7, respectively. We have then an isomor-
phism
yer, 1,

i.e. all pro-functors can be expressed in this form. Fora: 1 - K and g: J - K,
letting v = ‘a3, i.e. ¥ = Hom(a(-),5(-)), we get the diagram

1 X/K J
/ \
1 J
(comma category) and hence an isomorphism ‘a8 = r%. This is commonly
known as Kan’s formula (For 8 : - - K and applying L¢ it gives a point-
wise formula for the Kan extension because, being a cofibration, L( ) =1, is
computed fiber-wise). Here, when I, J and K are l-categories, for both compo-

sitions, it accidentally does not matter whether they are considered in Set or
Gpd,,. More generally, we have

Definition/Lemma 2.8. A diagram of small categories (resp. small oo-categories)
of the form

1

|

K ——
§

[e3
_

J
g Q
L

is called exact (resp. co-exact) if the following, equivalent statements hold true:

1. The mate
alf—-"s

is an isomorphism in Cat™¥ (resp. Catl;F), i.e. for all objects (j, k) € JxK
the canonical morphism

[ Hom (G, a(i)) x Homic(5(3), k)  Homy, (47, 6(k))
s an isomorphism.

2. Bra* = 6"y is an isomorphism for diagrams in any cocomplete 1-category
(resp. oo-category).

14



8. ¥ 0. = ay B* is an isomorphism for diagrams in any complete 1-category
(resp. oco-category).

4. For all objects (j, k) € J x K, the canonical functor

JxppIxck—>3jx;k (=Homp(v(j),d(k)))
has connected fibers (resp. becomes an isomorphz’snﬂ in Gpd,, ).

In particular, those conditions are satisfied (for 1-categories and co-categories
alike) if the 2-morphism is an isomorphism, the diagram is Cartesian, and one
of the following holds true:

1. v (hence B) is a cofibration,
2. § (hence a) is a fibration.

Observe that for squares of 1-categories, by criterion 4. for instance, oco-exact
implies exact but not vice versa.

2.9. A special case are diagrams of the form

I—=J
In this case, we say that « is cofinal (resp. co-cofinal), if this diagram is exact
(resp. oo-exact) or — in other words — if the pull-back a* does not change
colimits (resp. co-colimits).

Similarly, if

[——-

| ]

J——"

is exact (resp. co-exact), we say that « is final (resp. co-final) or — in other
words — if the pull-back a* does not change limits (resp. oo-limits).
Warning: This notation varies according to source.

Example 2.10. Let I be a small 1-category. Consider the nerve of I, i.e. the
simplicial set N(I) with n-simplices being sequences of morphisms ig — -+ = i,
(i.e. functors [n] — I). This is, in fact, the usual nerve construction associated
with the cosimplicial object in 1-categories [n] — [n]. As functor N(I): A% —
Set, it has an associated cofibration (unstraightening) which is equipped with a
functor

a:fN(I)—»I

Yor if I, J, K, L are 1-categories, expressed more classically by saying that the nerve applied
to this functor is a weak equivalence of simplicial sets
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mapping a pair [n],{ig = -+ = in} t0 in. One can show that it is oo-coﬁnam.
Since p: [ N(I) » A°P is a cofibration, p is computed fiber-wise by a coproduct
(because p is discrete) and the equation

cglcgn Do =Ty
shows that any oo-colimit over I can be computed by a fiber-wise coproduct (py)

followed by a co-colimit over A°® (called “geometric realization” by Lurie [{0]).
Also, it is well-known that the inclusion

A% o A

is cofinal (but, of course, not co-cofinal) hence every 1-colimit can be computed
by a fiber-wise coproduct followed by a colimit over A} (i.e. a split coequalizer).

Example 2.11 (Variant). Also the morphism
a’:/N(I)—>”I

mapping a pair [n],ig > -+ = iy to ig —> iy 1S m—coﬁnaﬂ. This shows that a
1-coend (resp. oo-coend) can be computed directly by the formula

I
. I* % . *
colim pya’ " ¢ :cq}lmb =f
I

op

(where 1 is the fibration "I — I°P x I) as a coequalizer of the last two maps
(resp. “geometric realization”) of the diagram

Hioﬁilﬁh A(iOa i2) —_— Uioﬁil A(iO; il) - S Uz A(i, Z)
In fact, more generally, for a functor A:™I —C:
cof}iImA = Colim( Wiy iy in Ao = i2) ——= s, Alio > 1) ——2 11; A(idy) ) .

In the I-categorical case one can even restrict the 11;,_,;, to a generating set
of morphisms.

2.2 Commutative diagrams and correspondences

We are often in need to show commutativity of a diagram of 1-morphisms and
2-morphisms in a (2,1)—categor C (in the examples: Cat or Cat™™) in which
the 1-morphisms are compositions of a 1-morphism and the adjoint of another.

10Criterion 4. of Proposition boils down to “N [ N(I X/r i) contractible”. However,
for any 1l-category J with final object N(J) is contractible, and there is a weak equivalence
X - N [ X for any simplicial set X [I8].

M Criterion 4. of Proposition boils down to “N [ N((i x/1 I x5 j)a) contractible” for
any «:1— j. However also (¢ x;r %1 j)a has a final object.

12The section has an analogue for (co,2)-categories, that we will not mention because it is
not needed in these lectures.
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Definition 2.12. Let X and Y be objects. We define the 2-category

Cor(X,Y)

X/Z\Y

in which f has a right adjoint 'f. 1-Morphisms h : (f,g) = (f',¢') and 2-
Morphisms h = h' are 2-commutative diagrams

NG N

DN N4

Lemma 2.13. There is a 2-functor

with objects diagrams

can: Cor(X,Y) - Home(X,Y),
(f,9)="fog,
hos (fog—tfohohog—tfog)  (unit).

In particular, since the target category is a 1-category, any two 1-morphisms that
are connected by a chain of 2-morphisms are mapped to the same morphisrrﬂ.

2.14. A diagram in the image of “can” is called of standard form and to
check its commutativity is thus a matter of checking the commutativity of two
diagrams involving only the left adjoints.

Of course, there is a dual construction, where f is assumed to have a left
adjoint, which we leave to the reader to state. If the f and g are of the form
¢*,~v* and hence 'f = ¢, (or their corresponding 1-morphisms in CatPF) a
composition Cor(X,Y)xCor(Y, Z) - Cor(X, Z) can be defined, such that “can”
is compatible. And there is an operadic version of this, see e.g. [35].

2.3 Preliminaries on pre-sheaves

This section contains some basic facts about pre-sheaves. It should be consulted
only when needed, except for the following definition:

13In the analogous (o0,2)-categorical construction, 2-morphisms become isomorphisms.
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Definition/Lemma 2.15. Let C be a I-category and I a I-category. The
category CT" is enriched in (Setl P, x) by the formula

Hom(C, D)}, = Llﬂom(ﬂom,(i,k),Hom(C(zyD(i)).

If C has coproducts then it is left-tensored via
(C x D)(k) =C(k) x D(k).
This is called the canonical enrichment in pre-sheaves.
2.16. Consider an adjunction in 2 variables
F:CxD-€& G:C*xE->D H:ExD® = C.
It yields functors
cl x D’ glxJ (C1yoP x g7 - I gl x (D7)yop & eI

by applying F,G, H point-wise. Assuming that suitable Kan extensions exist,
we also have again an adjunction in 2 variables

CI X DJ s SIXJ (CI)Op X gIXJ s DJ 5I><J % (DJ)OI) s CI
where, for instance, the second functor is the composition
(CI)op x EIxJ = Dlopxlx.] N DJ

in which the second functor is R¢ applied to the product of id; with the pro-
functor I°P x I — - given by Homj (-, -) which is equivalently r % for

IOPXI .

In fact, Re(r'l) = [, (the end). (Pre-)composing with the diagonal and its
adjoint, we get in particular an adjunction in two variables:

F:C'xD' - &8 G ()P xE -D H:E x(DHP .

All this is nicely explained by the fact that the functor op : I — I°P ([2.4)
can be seen as the internal Hom Homg,gpr (=,-) (resp. Homgygpr(—,-)) in pro-

functors, the “evaluation morphism” being 7%, but we will not discuss this
connection here.

Lemma 2.17. 1. Let a : I - J be functor and F,G,H an adjunction as
above. We have
a'F(-,-)zF(a"~a"-) (10)

or equivalently

G(-,a) 2 a.G(a"-,-) H(ay—,-)2a,H(-,a"-)
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2. If « is fully-faithful, we also have:

o G(ay,a,) 2 G(-,-) o H(aw—,c0-) 2 H(-,-)

3. For cofibrations a:: I — J the mates of (@)
aF(-,a"-)=F(a,-) aF(a*-,-)=F(-,a-)
are isomorphisms as well, or equivalently:
Glay,—) 2 a,.G(—,a"-) o G(-,-) 2 G(a*—,a")
H(-,a) 2a.H(a"-,-) o"H(-,-)2H(a"-,a")

Proof. 1. is clear, 2. follows by observing that the assumption implies that a,
and oy are fully-faithful, and 3. follows because the left Kan extension along
cofibrations is computed fiber-wise and F', being a left adjoint when regarded
as a functor of any of the two variables, commutes with colimits. The other
morphisms are the formal adjoints of the morphisms involving F'. O

2.18. For example: For a complete and cocomplete 1-category C, we have the
(co)tensoring adjunction

x:Set xC - C Hom; : Set°? xC - C Hom, = Hom : C°? x C — Set
which induces as in [2.16] an adjunction on pre-sheaves

op

x:Set!” x> ¢! Homy : (Set!")Pxc!™ - ¢'™  Hom, : (C'")Pxc"™” - Set!™
with formula (which can be extracted from the discussion in [2.16]):
(C xD)(k)

Hom,.(C, D) (k)

C(k) x D(k)
fi _ Hom(Hom, (i, k), Hom(C (7). D(1))

The formulq) pfor Hom, is valid even without any assumption on C and turns C’ o
into a (Set” ", x)-enriched category. This gives 2.15L

2.4 (Co)operads

2.19. In these notes we adopt a very flexible notion of co-operad. However,
the purpose is clearly to discuss either oo-(co)operads or planar co-(co)operads
in the sense of Lurie. Planar (co)operads (Definition are combinatori-
ally very pleasant to discuss the classical bar and cobar constructions, whereas
more general oco-operads will be important, for instance, for generalizations to
(co)algebras over the E; (little discs) operads.

For simplicity, we understand in the sequel for the moment

‘ (c0-)(co)operad = planar (oo-)(co)operad. ‘
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This may change in a future version of these notes.

2.20. Let A be the simplex category. We adopt the convention that its
objects are precisely the ordinals [n] = {0,...,n}. (One can include all finite
non-empty ordinals, obtaining an equivalent category, of course). Define Ay
be the category of the [n], including [-1] := @. Call a morphism in A of the
formi<i+1l<--<i+k=0<--<ninert and a morphism a : [n] - [m]
active, if a(0) =0 and a(n) = m. Every morphism factors uniquely as an active
morphism followed by an inert one. A morphism also factors uniquely into a
surjective map (called a degeneracy) followed by an injective map (called face
map). Call the subcategory of active morphism A,.. This is sometimes called
the category of finite intervals. Both Ay and A, are symmetric monoidal
with products * and *’, given by

[n] *[m]:=[n+m+1]
concatenation and
[n] *" [m] = [n+m]

concatenation with identification of the extremal points. The units being &, and
[0], respectively. The restriction of * to A, comes equipped with a natural
transformation

Sean : * = % (11)

the canonical degeneracy, identifying the extremal points.

Recall that

Definition 2.21. A planar (co-)operad is an (oo-)category C equipped with
a functor p:C — A°P such that

1. coCartesian morphisms over inert morphisms exist,

2. for the standard family a; : [n] < [1] of inert morphismslﬂ the morphism
(choosing push-forward functors along these inert ones)

Crmp — [ICn
X o (Xie.X,)

is an isomorphism such that it induces (via composition with the corre-
sponding coCartesian morphisms X — X;) an isomorphism

Hom((Z,X) =Homy, (Z,X;) x - x Homy, (Z,X,,)

for all objects X, Z € C and f:p(Z) - p(X).
We denote by (co)Op (resp. (co)Op,, ) the (1,2)-category (resp. (o0,2)-
category) of planar (co)operads. We denote by © the associative planar

operad, i.e. the category A°P equipped with the identity, considered as op-
erad.

Mgiven by the inclusions oy : {i <i+1} = [n]
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A planar (co-)cooperad is an (oo-)category equipped with a functor p:C — A
such that C°P,p°P is a planar (oo-)operad.

2.22.  The morphisms over the unique active morphism [n] - [1] may, via
the identification C[,,j = [1Cf1], be seen as as sets (resp. oo-groupoids) of multi-
morphims

Hom(Xy,...,X,;Y)

for all Xy,...,X,,Y € () that are composed as in a multi-category. In fact
a planar l-operad is the same as a non-symmetric multi-category and a planar
oo-operad is a non-symmetric multi-category which is “weakly enriched in oco-
groupoids” in the same way that an oco-category is a usual category “weakly
enriched in co-groupoids”.

2.23.  Already, in general statements, only the following facts about operads
will be used, which are true for co-operads and planar co-operads alike, and
even in generalizations of these concepts:

1. There is an oo-category O (in both cases we are interested in, in fact, a
1-category) with a unique factorization system in the sense of [40] 5.2.8.8]
into inert and active morphisms.

2. An operad X is an oo-category with a functor X — O satisfying certain
conditions (as in Definition for instance) including the existence of
coCartesian morphisms over inert morphisms. Such morphisms are again
called inert in X and arbitrary morphisms lying over active ones in © are
called active. They form thus again a unique factorization system in X
[41, Proposition 2.1.2.5].

3. A functor of operads X — Y is a functor of oco-categories over © which
maps inert morphisms to inert morphisms. It is called a cofibration of
operads if it is, in addition, a cofibration of co-categories.

4. There is an operad Cat., — O with functor x : Cat), — Cats of oco-
categories such that a cofibration X — I, where X is an arbitrary oo-
category and I an operad, is a cofibration of operads if and only if the
straighening I — Cato, classifying X — I factorizes into

I - Catl, —» Cateo .

and the functor I — Cat, is a functor of operads. In that case, it factors
in an essentially unique way. In other words, Cat), (as operad) classifies
cofibrations of operads.

5. For two morphisms between cofibrations of operads classified by F,G : [ —
Cat}, with compositions with x denoted F* and G* we havﬂ

X X\ lax,inert — pseudo X X\ ~ lax,inert — pseudo
Homopm/M(fF ,fG ) = Hom ™) (F*,G ):Hom(Catx ) (F, @)

15where the first equivalence is induced by the usual one for cofibrations of co-categories,
cf. Proposition below.
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for Cat, is considered as (oo, 2)-category in the obvious way.

6. For an operad I the functor
i Iact ></Iact i

(comma category) which, by the unique factorization, extends to a functor
I - Catq, factors through a morphism of operads I — Caty,.

2.5 (Co)fibrations, exponential fibrations, and Day con-
volutions

2.24. Recall the definition of fibration and cofibration for a functor F': J — I.
The definition can be split up into two conditions of which one is shared by both
of them. Functors satisfying only the shared condition are a very convenient
class. First observe that any functor F' : J — I defines for every morphism
o 11— j a pro-functor a® : J; — J; between the fibers given by

a®: JP x J; - Set (resp. a®: JP x J; - Gpd,,)

z xy > Hom, (z,y)

where J; is the fiber of F' over i. In fact, there is an equivalence of categories
between pro-functors from X to Y and the category of functors C — [1] with
fibers Y and X (this is a 1-category (resp. (oo, 1)-category) because the fibers
are fixed).

For composable morphisms a and 3, composition in J yields a morphism:

a* f* = (Ba)". (12)

(One could say that F' yields a laz functor I°° - Cat"" (resp. I°P - Catl}!) but
we will not use this unless it is an actual functor). We consider the following
conditions:

Definition 2.25. 1. F is called locally coCartesian (resp. locally Carte-
sian), if for all a, the pro-functor o® is of the form '8 (resp. B) for a
functor p:J; = J; (resp. B:J; - J;).

2. F is called an exponential fibration (resp. an co-exponential fibra-
tion), if (@ 18 always an isomorphism.

3. F is called a cofibration (resp. a fibration) if it satisfies condition 2.
and the corresponding version of 1.

One does not have to distinguish between fibrations and oco-fibrations for a
functor I — J of 1-categories because here fibration already implies co-fibration.
Similarly for cofibrations.

Exponential fibrations (resp. co-exponential fibrations) without necessarily
satisfying a version of condition 1. are thus a natural generalization of both
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cofibrations and fibrations and they are classified by functors I — Cat®® (resp.
I - Cat};F). Many important constructions that work for cofibrations and
fibrations alike have generalizations to exponential fibrations. The first is the
internal Hom in categories over I. Its existence is in fact equivalent to being
“exponential fibration” (cf. [6]):

Proposition 2.26. F is an exponential fibration (resp. co-exponential fibration)
if and only if the functor
CwJ X1 C

has a right 2-adjoint in Cat; (resp. Cateo /1)
Cw D[(J,C)
In particular, sections of Di(J,C) - I are equal to Homy(J,C).

The objects and morphisms in the category D;(J,C) can be explicitly de-
scribed: Objects are pairs of an object i € I and a functor X € (C;)7" and
morphisms (X,i) — (Y,4') are morphisms « : ¢ - ¢’ in I together with an
element in

Homgyer (a7, (X,Y) 0g) = /jlj,Hom(a}(jd'LHom(X(jLY(j')))

where a§ : C{P xCyr is the pro-functor extracted from C as in[2.24] (C does not have
to be small to extract it). One sees immediately that those can be composed,
if the o} are functorial (and not only laxly functorial). The af can be laxly
functorial though. Taking this as a definition in the 1-categorical context, one
can show that it satisfies the universal property above. For the co-categorical
generalization, see [6].

For (co)operads (resp. oo-(co)operads) the same is true mutatis mutandis.
See section for a discussion of the definition, and of generalizations and an
axiomatization.

Definition 2.27. Let J — I be a morphism of (co)operads.

1. F is called locally Cartesian (resp. locally coCartesian), if o® is of
the form B (resp. *B) for a functor B : Jiu — J; (resp. B : J; — Jy)
for all active morphisms a: i — 1'.

2. F is called an exponential fibration (resp. co-exponential fibration ),
if is always an isomorphism for active o and (3.

3. F is called a cofibration (resp. a fibration) if it satisfies conditions 1.
and 2.

Remark 2.28. Usually, we state the definition of coCartesian for operads (over
I = O this is equivalent to being a monoidal category considered as operad) and
the definition of Cartesian for cooperads (over I = O it is also equivalent to
monoidal category, but considered as cooperad). In these cases, it is equiva-
lent to claim that the whole functor of associated categories (of operators) is a
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(co)fibration in the usual sense, because the locally (co)Cartesianity for the in-
ert morphisms holds by definition and the exponential fibration condition follows
for compositions involving inert morphisms from the other axioms. A fibration
of operads will also occasionally be considered. Be aware that, in the monoidal
case, say, this is different from the existence of a right adjoint w.r.t. to one of
the arguments, i.e. the existence of internal Homs.

Warning 2.29. For a general exponential fibration of operads according to the
above definition, (@, in general, does not have to be an isomorphism for com-
positions involving inert morphisms. This is related to the fact that x is not a
product in Cat™" and - is not a terminal object.

The proposition holds also true for (co)operads:

Proposition 2.30. F:J — I is an exponential fibration (resp. oo-exponential
fibration) if and only if the functor

CwJ Xr C
has a right 2-adjoint in (co)Op,; (resp. (co)Op,,, ;)
Cw~ D;(J,C).

In particular, sections of Di(J,C) — I (e.g. I-(co)algebras) are equal to
Hom;(J,C).

See e.g. [41], 2.2.6]. D;(J,C) is called the Day convolution of the (co)operads.

The objects and morphisms in the (co)operad D;(J,C) can be explicitly
described in the same way as before. E.g. in the cooperad case, objects (over
[1]) are pairs of an object i € I;1) and a functor X € (C;)”* and morphism
(X,3) - (Y1,4}),...,(Y,,i,) are morphisms «: ¢ — 4f,...,4, in I together with
an element in

Homgypr (a7, (X;Y1,...,Y0) ag)

- f L Hom(@3(7.gh.. . J0) Hom(X () Y (). Y (71))
1 n

.....

where ap : Cfp x Cz-fl x -+ x C;ris the pro-functor extracted from C as in M (c
does not have to be small to extract it).

In the following case, we have more control over the morphism spaces in this
(co)operad:

Definition 2.31. An arbitrary functor C — I of oo-categories or oo-cooperads
18
1. L-admissible, if the fibers are cocomplete and the canonical morphism

Hom(colIimX;Yl, L YR) > l}mHom(X;Yl,...,Yn)
. Jop

via composition with the canonical element in lim joo Hom(X, colim; X) is
an isomorphism for allieI,J, X eC/,Yy,..., Y.

24



2. R-admissible, if the fibers are complete and for any small category J
Hom(X;Y,.. .,li?Yk, I li§nH0m(X;Y1,.. S Y)
via composition with the canonical element in limy; Hom(limy Yy, Y:) is an
isomorphism for all X, Y1,... Y, i€l k, J, Yy € CZ-J.
Similarly for oo-operads.
The following is clear from the definition:

Lemma 2.32. IfC — I is a functor between oo-categories (not co-(co)operads)
then the L-admissibility (resp. R-admissibility) amounts to C — I having (co)complete
fibers such that the inclusion of the fibers preserves (co)limits.

2.33. Definition may be stated (for cooperads) as follows: Let « :

i — i},...,i" be a morphism in I and X € CX Y} € Cf,(k. We have for each
k

me{1,...,n} and a pro-functor 3 : K,, - K’ a morphisms of pro-functors
(X, Y1,...,R(B)Ym,...,.Yn) ot > R(B)((X;Y1,....Y) ag)
and for each pro-functor 8: K' - K
(L(B)X; Y1, ..., Vo) ag = R(BP)((X; Y1, ..., Vo) ag)
which are isomorphisms if and only if C is R, resp. L-admissible.
2.34. We also have a canonical morphism
(X;Y1,..., ) ac = R(BP)(R(B)X;Y1,..., V) ac (13)

which is the composition with the counit L(8)R(5) — id, if L(f5) exists. How-
ever, the morphism always exists.
We also have canonical morphisms

(X;Yh'"ayn)*ac - R(B)(X73/173L(5)Yka7yn)*ac (14)

which is the composition with the unit id — R(3)L(8) if R(S3) exists. However,
the morphism always exists.

2.35. By (slight) abuse of notation we continue to write x for the usual product
of two categories also as objects in CattY. Notice, however, that (Catl;F, x) is
not Cartesian (as monoidal (oo, 2)-category, i.e. x is not the product), yet there
is a natural morphism

Hom,er (11, . In; J) = Home,er (I ) x -+ x Homgyger (I J)

given by composition with the pro-functor - - I; given by the final object in
Hom(I”,Set). Similarly for (Catll, x), there is a natural morphism

Homgyer (511, ..., In) = Homeyer (J; 11) x -+ x Homgaer (5 1)
given by composition with the pro-functor I; — - given by the final object in

HOHl(Ii7 Set)
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Lemma 2.36. 1. Let C = I be a cofibration of oco-operads. Then it is au-
tomatically R-admissible if it has complete fibers and L-admissible if it
has cocomplete fibers and the push-forward functors are cocontinous in the

sense that for all a:i —dY,... 4, and all entries € {1,...,n} the diagram

CxxClxxC—2C% 07

id x---xcolim ><-~-><idl lcolim

is commutative (and no condition on the 0-ary morphisms, e.g. units).

2. Let C - I be a fibration of co-operads. Then it is automatically L-
admissible if it has cocomplete fibers and R-admissible if it has complete
fibers and the pull-back functors are cocontinous in the sense that for all
a:ii—>1iy,..., 0, the diagram

)y bns

]
[e3%

CJ c Cklxmxc.l

limt llim x-+-xlim
ot

C—C s (Cx--xC
are commutative (and no condition on the 0-ary morphisms).
Similarly for cooperads.

In particular, for cofibrations of co-operads, the notion of L-admissible is the
same as a “cofibration compatible with K-indexed colimits” (for all K) in the
sense of [4I], Definition 3.1.1.18]. For example, a monoidal category (C,®) - O
is L-admissible, if and only if it is cocomplete and ® commutes with colimits in
each variable separately.

Proposition 2.37. Let J — I be an (oo-)exponential fibration of (oo-)(co)operads,
and iy, ... 0y > 1 (Tesp. i —iY,...,1 ) be an active morphism in I with as-
sociated pro-functor o : J,pr"'XJ,ZpXJi - Gpd,, (resp. af : JPxJ;, x---xJ; -
Gpd,, ).

1. If C - I is an L-admissible cofibration of (co-)(co)operads. Then also

Di(J,C)~>1
s a cofibration with push-forward along o given by
L(a%)oaec(—,...,—) Tesp. (L(afm), ce L(oz}m)) o c(-)
2. IfC— I is an R-admissible fibration of (co-)(co)operads. Then also
D;(J,C)~ 1

s a fibration with pull-back along o given by

(R(ad1),- - R(ag,,)) o ag(=) resp. R(ag)eag(=,. ., ).
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Here the aJk are the projections of the pro-functor Jy x - x Jir = J; (resp.
i g x5 ) (5

Proof. We prove the statements for cooperads, the others are dual. If C - I is
an L-admissible cofibration then

[” |, Bom(@3 (7t .30, Hom(X G ¥i (), - Y (7))

= [ Hom(a}(iif.....30) Hom((a . X (1)) Vi (7)) x -
x Hom((a',C,nX(j))7Yn(];)))

J
= [, Hom( [ a3 (ist ) (e ca X (VI GD) x
17 Jdn

<Hom( [ 035134 % (0o X (1) Yali)))

= [ Hom((L(ay)(aec1X(51)));Y1(41)) x -

/
J1

x fj Hom(L(a} ) (0e.cn X (33)), Ya (1))

(notice that the end is just a limit, once the argument depends on the variable
only contra- or covariantly). If C - I is an R-admissible fibration then

I o, Hom (@G ), Hom(X (Y (), Ya(i)))
= [ Bom(@i (i 30 Hom(X (7): 02 (). Ya ()
[Hom XQ): [, Hom(@3 (st o) 020G ValG))
g[jHom X(j);R(aI)(ac(Yl,...,Yn))(j)).

In each case is an isomorphism by a formal calculation using the L—, resp.
R-admissibility. O

Of course, instead of the L- or R-admissibility one needs only to assume the
existence of certain (co)limits and compatibility for them. We will not put this
into an explicit statement.

Example 2.38. Let J — O be an exponential fibration of operads (sometimes
J is then called a pro-monoidal category). For (C,®) a monoidal category with
C having the relevant colimitﬁ such that ® commutes with them entrywise,
D(J,(C,®)) is again monoidal, with product

—®-:=L(m") -&-

6 more precisely, the Kan extensions L(~v), where ~ is one of the pro-functors encoding J

must exist
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where

®:C/ x ¢l o o

N
=c’121

is the point-wise application of ®. If J is itself monoidal (i.e. J - O a cofibra-
tion) with product dec : Jpi7 x Jpi = Jpy then —® — = decy-® —. If C has the
relevant colimits but ® does not commute with them then D(J,(C,®)) — O is
locally coCartesian but not a cofibration.

Similarly, if J - O is an exponential fibration of cooperads. For (C,®)" a
monoidal category (considered as cooperad) with C having the relevant limits such
that ® commutes with them, D(J,(C,®)") is the monoidal category (considered
as cooperad) with product

~®-:= R(m") - =~

If J is itself monoidal (i.e. J — O°P a fibration) with product dec: Jp1y x Jp1p -
J1y then — ® — = dec, — = —.

This example is central for the understanding of the differences between the
two natural tensor products on non-negatively graded complexes in the Abelian

case (cf.[4.16)).

Example 2.39. If J — I is a fibration and C — I is a cofibration of operads or
vice versa then Dy(J,C) is a cofibration (or fibration, respectively) and we have

(D1(J,C))" 2 Dy(JY,CY).

Moreover, if they are classified by functors Z; : I°P - (Cateo, %) and Z¢ : [ —
(Cateo, x) then Dy(J,C) is classified by the functor

I - (Cateo, %)
i~ Hom(Z(4),2c(4)) for i€ Iq.

Dually, the same holds true, of course, for cooperads.

2.40. A functor F : C - D over I between (oco-)exponential fibrations of
(c0-)(co)operads gives rise to an oplax transformation

jak Homoplax,inert —pseudo

Ty ron (EC7 ED) (resp. e Homoplax,inert —pseudO(Ec’ ED))

(CatLFxyrep

where Z¢, Zp : I°° - (Cat™™, x) (resp. (CatLl, x)) are the classifying functors
and Cat"™™* (resp. Catt"*) is the underlying (1,2)- (resp. (co,2)-) category (of
operators) of (Cat"™, x) (resp. (Catly, x)) with components for active o : i — i:

Fi OLE —>Oé;)Fi/ (15)
or equivalently, gives rise to a lax transformation (its mate):

e Homlax,inert — pseudo

lax,inert —pseudo /—m  —
(CatPF-x)I°P ('—Da—'C))

(Ep.Zc)  (resp. F: Hom[ X oy
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with components:
Ot(.: tFil —>tFi a'D. (16)

?i’)x (not Ca’t?oz))' Therefore the

formation of mate lands in the full subcategory of inert — pseudo transformation
again. Notice also (Catf’oFo), x) is to be considered as cooperad, if I is an operad

Notice that the functors have values in Cat

and vice versa. Catii’)X depends on this!

Definition 2.41. We call F' Cartesian (resp. co-Cartesian), if 18 an
isomorphism for active morphisms and coCartesian (resp. co-coCartesian), if
(@ is an isomorphism for active morphisms.

Note that a functor is a morphism of fibrations in the usual sense (i.e. maps
Cartesian morphisms to Cartesian ones) if and only if it is Cartesian according
to the Definition above. Similarly, a functor is a morphism of cofibrations (i.e.
maps coCartesian morphisms to coCartesian ones) if and only if it is coCartesian
according to the Definition above.

Proposition 2.42. If C — [ is an L-admissible functor of cooperads then the
functor Day convolution extends to a functor of 2-categories:

—oplax,1-i - _ L¢
Homl oplax,l—inert pseudO(Iop’ (CatPF, X))l op COOp/I

If C - I is an R-admissible functor of cooperads then the functor Day convolu-
tion extends to a functor of 2-categories:

Homl—laxJ—inert—pseudO(Iop, (CatPF, X)) Rc (COOp/I)2—Op

The same is true with the decoration oo everywhere and for operads.

To be clear: The 2-category on the left hand side has as objects functors of
operads Z¢ : I°? - (Cat"F, x) and morphism categories are given by
oplax,inert — pseudo

Hom(catPF,x)IOP (EDaEC)

and
lax,inert — pseudo fm =
Hom(catPF,x)IDP (‘—‘C;‘—‘D)

where Cat"T* is as before.

Proof. We will not rigorously prove this and be content with specifying the map
on morphism spaces. Let J — I, K — I be exponential fibrations of cooperads
classified by functors Zj,Ex : I°P - (Cat"™, x) and assume given a lax trans-
formation p : £y = ZEx. For a morphism « : ¢ — i},...4,, in I this yields a
diagram

Jig %o x Sy o

Ki’ X eee X Ki' HKZ
1 n (X;(
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Let a:4 —if,...,i, be a morphism in I. Then the map is given by:

a%, (X;Y1,...,Y,) ag]

- [a%, R(B®) ((R(B)X;Y1,...,Yn) ad)] canonical map
= [L(B)ay, (R(B:)X:Y1,..., Y ) ag] L/R-adjunction
= [L(Bir,- -, Bir )age, (R(B:) X3 Y1, ..., Yu) ag] laxness constraint

%, R(Birs -, Bir) (R(Bi) X5 Y1, Yo.) az)] L/R-adjunction
oy, ((R(B:)X; R(Bir )Y1, ..., R(Bir )Yn) g )] R-admissibility

— o/ o/ o

112

Similarly for the L-functoriality:

[ad, (XY, Vo) ag]
- [af, (R(ﬁizl), o, R(Bir)) ((X;L(ﬁirl)Yl, .. .7L(ﬁi/n)Yn)*a5)] canonical map
= [(L(Biys -+ Big )ad, (X5 L(Bir )Y, ..o, L(Bir, )Yn) " ag] L/R-adjunction
- [L(BP)a%, (X; L(ﬁifl)Yl, o LB YY) ag] oplaxness constraint
= [o%e, R(B{®) (X5 L(Bi YA, ..., L(Bir )Yn) *ag)] L/ R-adjunction
= [k, ((L(B)X; L(Biy )Ya, ..., L(Bir ) Ya) )] L-admissibility

The operad case is dual and everything works the same with co-cooperads. [

2.43. If C - I and D — I are exponential fibrations, an oplax transformation
(and inert-pseudo) of the associated functors Z¢ = Zp is called an oplax pro-
functor of (co)operads C - D, and a lax transformation (and inert-pseudo)
Fp = Fg is called a lax pro-functor of (co)operads C — D. We call an oplax
pro-functor Cartesian, if it a natural transformation (not only oplax) and a
lax pro-functor coCartesian if it a natural transformation (not only lax).

As just seen, a usual functor F : C — D of (co)operads over I can be seen as
a either of these morphisms. This mirrors the situation over a point discussed in
In fact, if C - I is L-admissible, the whole diagram extends to fibrations
of (co)operads over I:

. L
(CO)Op?}(p’liop v > Homl—oplax,l—lnert - pseudo(Iop7 (CatPF, X))lfop HC (CO)OP/]

lop lop lop
t, . Rco
(CO)OP/IOF,) 2-op Y Homl—lax,l—lnert—pseudo([7 (CatPF, X)) é (CO)OP7;§§)
where Op and coOp are interchanged in the two rows. Here L¢ and also R¢, for
a category or (co)operad C — I, are given by the Day convolution on objects,
and on morphisms by Proposition [2.42
Also ¢ and 1 agree on objects. More generally, if F, G : I°P - (Cat"F, x) are

functors and
oplax,inert — pseudo
CatPF”‘ (F7 G)

p € Hom
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has a point-wise right adjoint, then they assemble to a mate

tp c Homlax,inert — pseudo (G, F)

CatPF*X

(and vice versa) and for C - I we have

Le(p) = Re(‘p).

In particular, Let = Re % also on morphisms. The same is true in the oo-
categorical context.

2.44. Let C —» I be an (oco-)exponential fibration of (co-)(co)operads with
associated pro-functors a® : C;y — C;. Let ¢ : C" - C be a full embedding. Then
the pro-functors associated with C’ — I are obviously given by (a/)® = % a® and
the transition morphism

bt uft = W(fg)e (17)

is induced by the counit ¢% — id. Thus C’ is an (oco-)exponential fibration
again, if and only if is an isomorphism. This is obviously the case if ¢ is
(co-)Cartesian (i.e. if +% f*¢ — f* ¢ is an isomorphism) or (oco-)coCartesian (i.e.
if % f*1% — " f* is an isomorphism). We have proven:

Lemma 2.45. Let C — I be an (oo-)exponential fibration of (co-)(co)operads
and 1 :C" = C be a full embedding. If v is (co-)Cartesian or (co-)coCartesia
then C' — I is again an (co-)exponential fibration.

2.6 Twisted arrow categories for operads

2.46. Let Z € {|,1}" be an ordered sequence of directions. For an co-category,
or more generally, an oco-operad I, we will define co-categories (resp. oco-operads)
=1 such that for co-categories:

T=1,'T=1°P T = tw(I), ™I =tw°P(I)

where tw(I) is the twisted arrow category [41), 5.2.1] and such that, more gener-
ally, the active morphism spaces in =1 are equivalent to the space of commutative
diagrams of the form

xr1 o T
| | &

in which all morphisms are active, and where the arrow directions are dictated
by Z. For operads, the equation *'T = tw(I) does not hold true when one under-
stands by tw(I) the usual twisted arrow category associated with the underlying
oo-category (of operators). The two are related, however, see Lemmabelow.

17¢f. Definition , which is not literally applicable as stated, thus interpreted as in M
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Definition 2.47. Let I be an oo-operad or co-category. Define inductively:

A / = (Tact X100 )

the unstraightening construction associated with the functor of oo-categories (of
operators):

I — Cate

= act X/l

the functoriality being obtained by unique factorization into inert and active.
Finally set:
ETI . (E'lI)op

4

where in Z' all arrow directions are reversed.

This defines recursively =I for all operads I. Notice that the oo-operad
structure only plays a role in the first step; the comma category Ilact x/z,., @

is just to be considered as a plain oco-category and does not carry any operad
structure.

Lemma 2.48. =1 is an co-operad again, if the last arrow of Z is |, and other-
wise an oo-cooperad. The last projection w, : =1 — I is a cofibration of operads,
resp. a fibration of cooperads m, : =1 — I°P.

Proof. By basic facts on oo-operads [2.19] 6. the association

act

i Tact /I {

factors
I - Catl, —» Cato

where the first is a functor of co-operads, and thus the corresponding cofibration
is a cofibration of co-operads (cf. 4.). O

Definition 2.49. An active morphism which corresponds to a diagram @
in which all vertical morphisms, except for the i-th one, are isomorphisms, is
called a type-i morphism. With respect to the recursive definition, those are
precisely the morphisms that lie in the fiber for n — i steps and are coCartesian
for the next unstraighening (resp. for i =1 are just any morphism in the fibers
for the last step). In particular, all type-i morphisms for i < n lie over an
isomorphism in O.

Lemma 2.50. Let I be an oo-category. Let Z' ¢ 2 be a non-empty subsequence
of arrow directions. Then the projection

— ’

i N |

is a localization, i.e. it exhibits the target as the localization of =I at those
morphisms that are mapped to isomorphisms under m.
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Proof. By induction, it suffices to show the following. Let = = L|{ R be a sequence
of arrow directions and let 2 = LR. One of R or L may be empty, but not
both. Then the projection
is a localization. We first discuss the case in which the right-most arrow of L is
| or the leftmost arrow of R is |. Then there is even a section

=7 L 87

which turns =7 a (co)reflective subcategory. Now assume that the condition is
not satisfied. If L or R is empty then this projection is actually a (co)fibration
with fibers of the form @ x,; I, resp. I x,r i, hence contractible. The morphism
from a (co)fibration with contractible fibers to its base is a localization. If R
and L are not empty consider the projection

LlRI .

\/

This is a morphism of (co)fibrations (i.e. mapping (co)Cartesian morphisms to
(co)Cartesian ones) and the morphism between the fibers is of the form:

LlIX/Ii—)LIX/li

hence of a form discussed already. A morphism of (co)fibrations which is fiber-
wise a localization is a localization itself [6], 4.1.11]. O

Lemma 2.51. Let I be an oco-operad. There is a functor

I:twoP(I) - ™
which is a localization. Here tw°P(I) denotes the usual (dual) twisted arrow
category of I considered as oco-category (of operators).

Proof. The functor is the unstraightening (in the sense of co-categories) of the
fiber-wise (over I) functor

I X/T 1= Loaet X1,

act

given by unique factorization. This is even a reflective localization. One checks
that for a morphism « :7 — ¢’ in I one has a commutative diagram

I /1 1 ——> Laet X1,

| l

IX/IZ — Lt X1,

act

act

where the left vertical functor is composition and the right hand side is the
functoriality used to define ™I which also stems from the unique factorization.
They assemble to a natural transformation of functors I - Cateo. O
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2.7 (Co)fibrations of (co)operads and (op)lax limits

This section contains a brief discussion of the relation between (co)fibrations
of (co)operads and the corresponding notions of (op)lax morphisms of their
classifying functors (more background, explicit constructions in a particular
model of (o0, 2)-categories, and proofs can be found in [T, 2} [6] T4] 26| 27, 30, [31]).

2.52. Let C be an (o0,2)-category and I a small co-category. We denote by
Homg (F,G)

the (o0, 1)-category of lax natural transformations (cf. e.g. [2, 14} [31]). We adopt
the convention that for a lax transformation and for each morphism ¢ — 4’ in I
there is a diagram in C' of shape

F(i) — F(i")

o

G(i) —= G(i")

as opposed to the other direction of the 2-morphism). For F e CI"" and G € C!
(as opp P

we also denote by
Dinat'™(F, G)

a similar construction in which for each morphism 7 — 4’ in I there is a diagram
in C
G(i) —— G(i")

We have the notions of (op)lax limit and colimit which are the 2-adjoint to
the constant functor. They exist with decoration for a set C' of morphisms in
I, ie.

Hom (OP)1ax,C-pseudo (F,a*G) 2 Homcat,, ((op) laxcolimc_pseUdOF, G)

Catl
(op)lax,C'-pseudo lax
where Hom, 7 € Hom,,: means the full subcategory of lax trans-

formation in which the constraint is an isomorphism for all morphisms in C'
and

Homg;),lax’cfpsewo (o F,G) 2 Homgggs,, (F, (op)laxlimc_pSQUdoG) .

They are called partially (op)lax limits in [I} [14].
This allows to write also

C—pseudoG _ HOm(Op)lax’C_pSEUdo(-, G)

(op)laxlim Catl.
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Furthermore, we have
laxcolim F' = / F oplaxcolim F' = \ F.

the unstraightening construction, and its dual, respectively. These are a cofi-
bration, resp. a fibration over I. Then

C-pseudo

laxllim G =Homgy, /r(1, laxclolim G)Ccocart

oplaxlim G = Homg,_ ;7 (1, oplaxcolim G) ™"
1 I

Here C - (co)cart means the full subcategory of functors that map morphisms
in C to (co)Cartesian morphisms.
We have also

C-pseudo C-pseudo
laxc?hm YG-= laxc;)lim G[{C-cart} '] oplaxcolim G = oplaxcolim G[{C'—cocart} ]
I I

(localization at the Cartesian morphism over morphisms in C') which will no be
needed in the sequel, though.

Lemma 2.53. If F,G : I - (Cate,x) are functors of co-operads then the
associatior]

twoP(I) - Cate
aii—>i > HomP®) (F(i),G(i))

Cat},
where p: I — O is the structural morphism, factors through "I and induces an
isomorphism of (o0, 1)-categories:

1-pseudo,inert — pseudo

laxlim Hom?") (F(i),G(i")).

lax,inert — pseudo ~
(F, G) = piiteth T Caty,

Hom(Cat;)I

Proof. Recall from Lemma that
I: twoP(I) - MT

is a localization. Thus, we have to show that the functor maps morphisms (3,
which are mapped to isomorphisms under II, to isomorphisms. Such a £ induces
a diagram

. L1 .y o7 .
1 —=1 —>1

| A

19

8Here CatX, denotes the underlying (oo, 2)-category (of operators) of the (oo, 2)-operad
(Cateo, x), i.e. with (Catd,)[n] = Caty,.
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where 11 and 9 are inert and « is active, and which in turn induces a commu-
tative diagram

[e72} . . F(B)o- aly ; 1
Hom {5 (F (i), G/(i)) Homg 12 (F (1), G()
- () F(i Gli 0 p(a) F(i G(i
OmCat;,(Lz,- (i2),G(i)) OmCatio(Ll" (1), 6(0))

\ /

Hom?{3) (F(i"),G(i))
Here ¢4 and ¢2 o are the (2-categorical) push-forward along the inert morphisms
t1, t2. Since F is a functor of (oo, 2)-operads the diagonal morphisms are iso-
morphisms as well.

The last assertion boils down to that statement that this following morphism
induces by the localization functor I : tw°PI — M1 is an equivalence:

1-pseudo,inert — pseudo 1-pseudo,inert — pseudo

laxlim Hom?{*) (F(i),G(i")) = laxlim Hom?{*) (F(i),G("))

oi—>i’etwoP (1) Cats, aii—i’eN T Cats,
From the first part follows that

1-pseudo,inert — pseudo ()
laxlim Hom?, %) (F(i),G(i"))

X
ai—i'etwoP (1) Catg,

= Homiyen (1) (tw°P (1), TT* laxccolim (Hom{{3) (F(i), G(i'))) ! -eocertinert-eoeart

=Homu  (tw°P (1), 1ax%ohm(Homgg";Z (F(i),G(i")))"cocart-inert = cocart,
I o

IT is a localization at inert type-1 morphisms. Those are mapped to isomor-
phisms by functors that map inert morphisms to coCartesian (here iso-) mor-
phisms. Hence this is the same as:

_ HOInN[(NI, lax%olim(Hom’é(;él (F(’L), G(i/)))l—cocart,incrt—Cocart. O
T %

Proposition 2.54. Let F': [ - Cato, be a functor.

1. Let I be an oo-category and F,G : I — Cate be functors. Denote by
Cateo /I the slice (00,2)-category (not lax slice) over I. Then we have a
natural isomorphism of (oo, 1)-categories

Homeu/1( [ F. [ G) = Hom& (F.G).
2. Let I be an oo-category and F' : I°P — Cate, and G : I — Cato be functors.

Then
Homgy,_ /I(\F, f G) 2 Dinat'™(F, G).

36



8. Let I be an co-category and F,G : [°P — Cats be functors. Then
Homcyg_ /I(\ F, \ G)z Homg::?f}p (F,QG).

4. Let I be an oo-category and F : I — Cato, and G : [°P - Cats, be functors.
Then

HomCat/I(/ F, \ G)z DinatoPlaX(F, Q).
2.55. 1If C is a class of morphisms in I then more generally
HomGt ([ F, [ G) = Homl 0 P (F,G)

where the LHS is the full subcategory of of those functors which map coCarte-
sian morphisms lying over morphisms in C' to coCartesian morphisms and the
RHS is the full subcategory of those lax natural transformations where the cor-
responding 2-morphism is an isomorphism for every morphism in C. The same
is true dually.

This can be used to establish analogues of the preceding equivalences for
operads:

Let I be an operad and F': I - (Catoo, x) a functor of co-operads. We write
Cat, — O for the category of operators of the target, i.e. with (Catzo)[n] =
Catl,. The composition I - Cat), — Cate with x is denoted by F*. Then F
classifies a cofibration of oco-operads [ F' — I whose underlying oo-category (of
operators) is given by [ F* =laxcolim; F’*.

Proposition 2.56. 1. Let I be an co-operad and F,G : I - (Cate, x) be
functors of co-operads. Then

~ lax,inert — pseudo ~ lax,inert — pseudo X x
Homopm/l(f F,/G):Hom(cat;)§ Pendo( 7, G) = Hom{ or =P eo (7, )
2. Let I be an oo-cooperad and F,G : I°°? - (Cate,x) be functors of co-
operads. Then

Homcoopm /I( \ F, \ G) = Hom?gizi)nleorg —pseudO(F’ G) > Hom%};l:g)gnert —pseudO(Fx’ GX)
Proof. Follows immediately from Proposition [2:54] the discussion in [2.55] and
basic facts on operads O

See [14, Proposition 5.2.] for a similar statement.

2.57. Let I be a small co-category. The twisted arrow categories *'I, and I,
discussed in Section may be used to transfer between lax and oplax natural
transformations. This construction is at the heart of the (co)bar constructions
discussed in the next chapter. For ™I, or more generally for categories of the
form =1, for Z € {1,]}", we write i — pseudo instead of C' - pseudo (2.55)) for C
being the class of type i-morphisms ([2.49)).
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Fi) 2L peny

Hom¢,, u(i)l f lu(i')
G(i) m G(i')

P(i) = F(i)
Hom¢P'# : u(i)l I lu(i')
G(1) ?a)) G(l )

F(i) <= F(i) =L p(i")

. O ax,l—pseudo |
DinatoPlax;1-pseudo . u(i)l = u(i')f(a) Lu(i')

Gi) 5 G <= G(@)

F(i) <= F(i) L p(i")

. O ax,z—pseudo |
Dinat°Plax,2-pseudo . u(i)l G(ailu(i) = n(i")

G(i) 3 G ==—G()

Homg:jff}l_pseudo : (i) < u(i')\f(a) u(i’)
Hom(F' (i), G(i)) — Hom(F (i), G(i')) =<—— Hom(F'(i"), G(i"))
oplax,z—pseudo |
Homci’llti}2 pseudo., u(z‘)l G(a‘i’“(i) - (i)

Hom(F (i), G(i)) — Hom(F (i), G(i')) ~—— Hom(F ('), G(i'))

(squares without depicted 2-morphisms commute, i.e. have invertible 2-
morphisms)

Figure 1: Illustration of the different categories appearing in Proposition [2.58
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Proposition 2.58. Let F,G ¢ Catio. There are canonical isomorphisms:

2—-pseudo
Hom[* , (F,G) = Dinat°P**2pseude (2% o 7 ) = oplaxlim Hom(F (i), G(i'))
tr

Catl
oplax ~ T oplax,1-pseudo " " N 17PSCU€10 . .
Hom /7 (F, G) 2 Dinat (7} F, 3 G) = oplaxlim Hom(F (i), G(i))
= Ny

The same holds true with lax and oplax interchanged. The terms on the right
might be called (op)lax ends of Hom(F,G) as functor on I°? x I — Cate,.

Mutatis mutandis the Proposition holds also for co-operads:
Proposition 2.59. Let I be an oo-operad and F,G € (Cato,, x)!.

inert — pseudo,2—-pseudo

Homl(é&ltgjﬁ “psendo (o @) opkﬁ);lim Horng(a’i?io (F(i),G("))

inert — pseudo,l1-pseudo

oplax,inert — pseudo ~ . . .
Hom(gat;), b (F,G) = opl::mﬁl(hm Homg(;); (F(i),G(i"))

Notice that the expression Homg(a’ft)x (F(i),G(i")) factors through "I — Cate, as
shown in Lemma[2.53.

Proof. Follows immediately from Proposition 2.58 the discussion in [2.55] and
basic facts on operads O

Remark 2.60. In the special case F' = - we get, in particular:

1-pseudo
oplalxlim(G )= oplixlim(ﬂ'g G),
I

2—-pseudo
oplalxlim(G‘)p) S (laxllim(G))Op S (oplixlim(ﬂgG))‘)p.
1

Translated to the corresponding (co)fibrations this gives a way to relate cofibra-
tions of operads with fibrations of cooperads, which will be at the heart of the

(co)bar constructions, see[3.4)

2.61. We need a simple fact about compositions of fibrations that is, however,
a bit tricky to state: Recall that the composition K — J — I of two fibrations
is a fibration. If J — I is classified by G : I°? —» Cat. and K — J is classified
by F : J°P = (oplaxcolim ., G)°P — Cats then K — I is classified by a functor
I°? - Cats which is a left oplax Kan extension along J°° — I°P? of F. It
maps ¢ ~ oplaxcolimg;yor F|G(i)0p. We get a corresponding functor between
categories of sections

(I,J). (19)

Homcatw/l (I, K) i HomCatN/I
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This has fibers over a : I — J given by Homcas,,,, ({,@"K) = oplaxlim; F' o a®P
where a* K is defined by the Cartesian diagram

oK ——K

L

I—2 s

actually because the whole Hom-categories commute with fiber products (and
not just their groupoids of invertible morphisms). We claim: The construction
gives a functor

(I,J)°? - Cate,

a +— oplaxlim F o o°P,
I

and the functor is a fibration classified by this functor. A rigorous proof is
omitted for the moment. Translated purely in terms of the classifying functors
it means:

Proposition 2.62. Let G e Catl be a functor and F e Cat{oPlaxcolimor G
functor. Then there is a canonical isomorphism:

Homcatm”

op
) a

oplaxlim(oplaxcolim F'(i,x)) oplaxcolim (oplaxlim F'(i,2(4))).
ieloP zeG(i)°P (z(i)eG(i))ie(oplaxlimop G)°P ielop

A similar statement holds true with a set C' of morphisms in I:

C-pseudo C-pseudo
oplaxlim(oplaxcolim F'(i,x)) oplaxcolim (oplaxlim F(i,z(4))).

iel°P zeG(i)°P (2(i)€G(4))i€(oplaxlim P20 Gyor  ielP

Remark 2.63. One can also construct the map (almost) purely by abstract
adjunction properties of lax limits and colimits. Because we have for F : I —
Cateo:

oplaxcolim F' = \ F

and
oplaxlim F' = Homcyg_ /700 (I°P, \ F)

we have a canonical morphism
eval : I°P x oplaxlim F' — oplaxcolim F.

Then consider the diagram

I x oplaxlim;op, G eval oplaxcolimyop, G

T2 ™
oplaxlim jop G I
\L

P
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The non-horizontal functors are either cofibrations (the map ) or projec-
tions (in particular, fibrations and cofibrations). Therefore there exist fiber-wise
oplaz limits and colimits (oplax Kan extensions) along these maps which we
denote here by py and p.. They form 2-adjunctions

Cat[,oplax < Cat],oplax
in the sense that there is an isomorphism of co-categories (not just groupoids)

Hom™(F,a*G) = Hom®™ (a F, G).

Therefore, we can calculate with them like with usual Kan extensions. First
obuviously
mipt = myp”
therefore there is a mate
PPy = T

which is an isomorphism because Ty . is computed fiber-wise. Hence we get a
morphism
PIT2 « = PxT1!

and finally:

Py« eval® = p,myieval” = pom
This is the functor in the statement.

Proposition 2.64. Let F ¢ Catio be a functor and
X,Y e oplaxlim F
I

then we have a canonical equivalence

HOInoplaxlim; F(Xa Y) L) lllfl’}l HomF(i)(X(Z'), F(N’)Y(Z,)) = lllgl Homgplaxcoliml F(X(Z)v Y(Z,))

where p1:1 — i’ denotes an object in ‘11,

Proof. This has nothing to do with fibrations and is a simple consequence of

the end formula for morphisms in functor categories. Actually, for any functor
C-S§, for X,Y eCé7 for S €S, we have

Home; (X,Y) = lim Home,s(,,) (X (1), Y (i')).

Indeed, we have

Homer (X,Y) I}Tl}l Home (X (i), Y ("))
and, by definition, the Cartesian diagram

Home 5,y (X (4), Y (")) —— Home (X (i), Y (i"))

l |

{S(n)} ——————Homs(5(i),5(i"))
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Applying limii7, we get a Cartesian diagram

limy:; Hom3 " (X (i), Y (i')) — Home: (X, Y)

| |

{ids} Homyg: (5, 5) O

Corollary 2.65. Let I be a small co-category. For a functor G € Cat; there is
an isomorphism

oplaxlim *'G 2 ! (oplaxlim 7} G) (1:2):(2:1)-pseudo
I NI
where the RHS is the full subcategory of objects X — Y e Y(oplaxlimy,; 5 G)
such that X € (oplaudimi}pSCUdO m3G) and Y € (oplaxlim}l}psc'ldo w3 G). Sim-
ilarly, let I be a small co-operad. For a functor G € (Cate,x), inducing
G* : I - Catl, — Cate classifying the categories of operators, there is an
isomorphism
inert — pseudo inert — pseudo

oplaxlim Y'G* = (" oplaxlim WEGX)(LZ)’(Z’I)"’SCMO
I NI

where "I means twisted arrow category in the sense of co-operads , ob-
serving that in all other occurrences it is applied to just co-categories.

Proof (sketch): Consider the functor ‘Hom’: (oplaxcolim; G x G°P)°P — Gpd,,
given by Hom fiber-wise, where G°P is the composition of G with op. To see
that this is a valid morphism, observe that

‘Hom'’ € Homlg;‘tl (G°? x G, 7] Gpd,,) 2 Homcat.. (lacholim G? x G,Gpd,,).
® Homgat, ((oplaxcolim G x G°P)°P Gpd,,)
I
Apply Proposition with (I, G, F') being (I°?,G x G°?,‘Hom"):

oplaxlim(oplaxcolim ‘ Hom’) = oplaxcolim (oplaxlim Hom(X (7),Y (4))).
I G(i)°PxG(i) (X,Y)e(oplaxlim; GxGoP)op I

1G()

Using Remark identify

1-pseudo 2—-pseudo
oplaxlim G x oplaxlim G° 2 oplaxlim 75 G x (oplaxlim 73 G)°P. (20)
I I tnr s

We have to show that there is a commutative diagram

1-pseudo

2-pseudo _x
Nr G

(oplaxlim; G x oplaxlim; G°P)°P —=—= (oplaxlim 75 G)°P x oplaxlimy;; 5
loplaxliml Hom LHom

Hom(I, Gpd,,) fim Gpd,,
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By Proposition and using the identification ‘'(*'7) = "I (denoting an

object by 11 - D) e i3 re i4 ), and denoting by X,? the image of

the pair X,Y under :

Homoplaxnmw (X, ?) = Tlilun} Homg(u)(X(il - i4), G(Mg)?(lg — 23))

2 lim Homgs,) (X (44), G(p3)G(12)Y (i2)) = lim Homg,) (X (1), G(W)Y (i2))

(using Lemma and numbering Y1 with the corresponding subindices of
HWHT) and this is
= li}nHomG(i)(X(i), Y (3)).

In the operad-case we get by Proposition

inert — pseudo inert — pseudo
oplaxlim (oplaxcolim ‘Hom’) oplaxcolim oplaxlim Hom(X (2),Y (¢)).
I G(i)°PxG(i) (X,Y)e(oplaxlimilncrt7ps°“d° GxGop)op

HG(i)
and refining the argument above:
inert — pseudo inert — pseudo

oplajxlim TlG;”( (zplale)im 7T§G)(172)’(2’1)_pseud°.
twop I)op

Then notice that

inert — pseudo
. * . *
oplaxlim 75G = Homyyop; (tw°P I, oplaxcolim 7
(twoP I)oP

G) inert — cocart

= Hom; (tw°PI, oplaxcolim G )™mert ~cocart
I

and that the morphism that go to isomorphisms under tw°?I — "I are pre-
cisely the type-1 inert morphisms which go thus to isomorphisms, hence by
Lemma [2.53] this is the same as

= Hom; (*'I, oplaxcolim G)™ert ~ cocart
I

i inert — pseudo
G)lnert —cocart

~ oplaxlim 73G. O
Ny

= Homyt; (*'T, oplaxcolim 73

2.8 Relative (operadic) Kan extensions

Let C - S and a : J — I be functors of co-(co)operads, the latter small. Let
S e ST. By pre-composition, it gives rise to a functor

at i Ch-Clg.

Definition 2.66. If a left adjoint a!(s) (resp. right adjoint ais)) of o exists,
we call it a relative left (resp. right) Kan extension.
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Note that this comprises, in particular, the functors called operadic Kan
extensions by Lurie [41] 3.1.2]. Various sufficient criteria for their existence will
be discussed in Sections [2.9H2.11!

2.67. We call a relative left Kan extension, if it exists, fiber-wise, if for any
object i € I[1], the mate

colim¢; — ¢~ a!(s)
where ¢; : J; = J is the inclusion, is an isomorphism. Similarly for right Kan
extensions. Somewhat informally, we say that a relative left or right Kan exten-
sion is F())int-wise, if there is a simple formula & la Kan, cf. Proposition [2.76
S

for i* ay

2.9 Relative Kan extensions — fiber-wise case

Proposition 2.68. Let C,I,J, K be (co-)(co)operads, the latter three small. Let

C — I be a functor and
1

be a morphism of (co-)exponential fibrations over I.

J K

1. IfC - I is L-admissible (Definition[2.31) and o is (c0-)coCartesian (Defi-
nition[2.41)). Then the functor o* : D;(K,C) - D;(J,C) has a left adjoint
in the (o0,2)-category (co)Opoo/I (resp. in the (1,2)-category (co)Op/I).

2. IfC — I is R-admissible (Definition and a is (0o0-)Cartesian (Defini-
tion[2.41]). Then the functor, o* : D;(K,C) - D;(J,C) has a right adjoint
in the (o0,2)-category (co)Op,,,; (resp. in the (1,2)-category (co)Op, ).

o lax,inert - pseudo /= =
Proof. The functor o can be seen as a morphism in Hom} 370 ™ P (Ek, =)

: . lax,inert - pseudo = = :
or (via passing to the mate) as Hom} Tp/0" P (2, 2k). The functor in

question is given equivalently by applying L to the first or R to the second
(cf. Proposition assuming that C - I is L-, resp. R-admissible). If «
is (oo-)coCartesian we can also apply Rc to the first, being a natural trans-
formation (not only oplax) in this case. This yields a right adjoint. If « is
(o00-)Cartesian, we can apply L¢ to the second, being a natural transformation
(not only lax) in this case. This yields a left adjoint. O

Corollary 2.69. 1. IfC — S is L-admissible (Definition and o : J -
K is a (o0-)Cartesian morphism of (co-)exponential fibrations over I.
Then for each S € ST, the functor

*'CK

J
o p*KS_)Cp’}S
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has a left adjoint a!(p"s), i.e. a relative left Kan extension exists. It is

computed fiber-wise over I, i.e. the mate

: « (S
colim ¢} —w*a!( )

where 1; : J; > J denotes the inclusion of the fiber, is an isomorphism.

2. IfC - § is R-admissible (Definition(2.31]) and a: J - K is a (00-)coCartesian
morphism of (co-)exponential fibrations over I. Then for each S € ST, the

functor
* . K J
(67 CP*KS d Cp*JS
has a right adjoint a§p3s), i.e. a relative (operadic) right Kan extension

exists. It is computed fiber-wise over I, i.e. the mate

i*ozis) — lim ¢}

where t; : J; > J denotes the inclusion of the fiber, is an isomorphism.

Proof. We can pullback C — S along S : I — S which preserves L/ R-admissibility,
and assume w.l.o.g. that S = I and S = id. Then we have Cﬁ( = Homcat,, (I,D;(K,C))
and C{D’J = Homca,, (I, Dr(J,C)) by the universal property of the Day convo-
lution. Hence the adjunction from Proposition [2.68| gives the required Kan
extension adjunction. O

2.70. Let p:J — I be an (co-)exponential fibration. Then the functor is,
in particular, a morphism of (oco-)exponential fibrations. It is (co-)Cartesian
(Definition [2.41)), if

a*py, 2pr,
and (oco-)coCartesian (Definition [2.41)), if

s, a2 'pr,.
Obviously a fibration is always co-Cartesian and a cofibration is co-coCartesian.
A fibration is (oco-)coCartesian if and only if the pull-back functors are (oco-)cofinal
and a cofibration is (oo-)Cartesian, if and only if the push-forward functors are
(oo-)final. This shows the following:

Remark 2.71. Let C,S,1,J be (o0-)(co)operads (all of the same type), the
latter two small.

Let C - S and J — I be (co)fibrations of (co-)(co)operads (not necessarily of
the same fibration type), we may summarize the assumptions of C’orollary
as follows:

1. Relative left Kan extensions (that are computed fiber-wise) exist along J —
1, if C has cocomplete fibers, and
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J-1
C-S

fibration

fibration cofibration

pull-backs for J - I

are (o0-)cofinal

always

ush-forwards for C - S

. - p
cofibration both properties hold are (o0-)cocontinuous

2. Relative right Kan extensions (that are computed fiber-wise) exist along
J = I, if C has complete fibers, and

C>3S ST fibration cofibration
. pull-backs for C - S .
fibration are (o0-)continuous both properties hold
. push-forwards for J - I
cofibration always are (co-)final

Note that it does not matter whether the objects are operads, or cooperads,
respectively, apart from the fact that fibrations of operads as well as cofibrations
of cooperads are not as commonly considered as the other cases.

2.10 Relative Kan extensions — point-wise case

The calculus of left relative Kan extensions is particularly rich for L-admissible
cofibrations of cc-operads C — S. Recall that L-admissible here means that
the fibers are cocomplete and that the push-forward functors commute with
colimits (argument-wise). Similarly, of course, the same holds for right relative
Kan extensions for R-admissible fibrations of co-cooperads. In particular, they
always exist, and a point-wise formula holds true (analogous to Kan’s formula
for usual Kan extensions). See Proposition below.

Definition 2.72. Let I and J be co-operads. A generalized morphism [ — J
s a 2-commutative diagram

such that o maps inert morphisms to inert morphisms and such that the 2-
morphism consists of active morphisms. Denote the corresponding (oo, 2)-category
by OpZ,.

Definition 2.73. Let S be an oo-operad. We define the (o0,2)-category Dia(S)
as the full subcategory of the lax slice category Op?, [[S in which the objects are
honest morphisms of operads with small source. Similarly, we define Dia’®(S)
as the oplax slice category.
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A morphism in Dia(8S) is thus represented by a diagram

M—*— =N

\U“ /
S
in which p consists point-wise of active morphisms. If y is an equivalence,

we say that the morphism is of diagram type. The corresponding « is then
necessarily an honest morphism of operads.

2.74. Let C - S be a cofibration of co-operads. It gives rise to a functor of
(00, 2)-categories
y(C) : Dia(S) — Cate,

mapping (I,5) to C}, the fiber of C! — ST over S. A morphism of diagram
type a: I - J is mapped to the functor ‘composition with a’:

a*:c’ >l

A morphism with components a = idy, u : X — Y is mapped to the corresponding
push-forward functor
te : Ch = CL..

Definition 2.75 ((Co)operadic comma category). For two morphisms of oo-
(co)operads J — I and K — I we define a (co)operadic comma category
together with a 2-commutative diagram in the 2-category OpZ, :

Ix K -1

Wzl 174 ja
K——J

B

where the morphism w1 : I x;; K — I is only a generalized morphism of operads

in the sense of Definition [2.73
For any S € 87 this yields a diagram in Dia(S) of the form
(Ix) K,m38°8) —"= (I,a"$)

ML o L

(K,8'S) ——(J,5)

We can define it as the limit of the following diagram of (co)operads and
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generalized morphisms:

A% JELEN

y

K——J

i

where **J has been defined in Definition . One can also mimic the definition
of WJ and define a functor of operads

K — (Cateo, x)

ke Loct %), B(K) usual comma category

using factorization into inert and active. I x;; K — K is then the associated
cofibration (unstraightening).

Proposition 2.76 (relative (operadic) Kan formula). IfC - S is an L-admissible
cofibration of co-operads (or just co-categories) then relative left Kan extensions
exist along any functor a : I — J of small co-operads whatsoever. Moreover,
there is an isomorphism

7ot = colim S()ur} (21)

IX/J]

for objects ke K and S € SX.
There is a similar dual statement for R-admissible fibrations of co-cooperads.

Proof. We have an adjunction in the (oo, 2)-category Dia(S)

71=(m1,5(n))
_

(IX/J J77T§S) ﬁ (,[7(1*5)

and an isomorphism
S S) (n3S

in the strong sense that the existence of the RHS adjoints implies the existence
of the LHS. By the adjunction in Dia(S), we have

WP 77 = S(p)ary

giving the formula:
S S *
a!( ) o wéy!) S(p)em

7o is a cofibration of cooperads and thus a relative Kan extension exists and is
computed fiber-wise by Proposition The formula follows. O
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Example 2.77 (Free algebra). Consider the morphism - — O where - is the
final category. Let (C,®) be a monoidal co-category such that ® commutes with
colimits (in each variable separately). Then the left relative Kan extension

¢ (C,®)° = Alg(C,®)

exists. Notice that this is (by definition) a free algebra functor (left adjoint to
the forgetful functor). Ezamining the proof, is suffices to see that C has count-
able coproducts and that ® commutes with them (in each variable separately).
Formula is the usual formula for the free algebra. For, observe that

: X/O o= (N07 +)

(as discrete operad). If ® does mot commute with countable coproducts then

the construction of a left Kan extension becomes more difficult but not always
impossible (see Section and Section [3.7 for a dual ezample).

2.11 Relative Kan extensions — general case

The last section settled the case of left Kan extensions along arbitrary functors
I - J of oco-operads w.r.t. an L-admissible cofibration C - S of oco-operads
(say). The L-admissibility of course can be weakened to the existence of certain
colimits (depending on I - J) and the commutation of the push-forwards in C —
S with those. Often times, however, the push-forward in C does not commute
with these colimits!

For example, dually, the functor “cofree coalgebra” is a special case of a
right relative Kan extension. Its construction by the general machinery accord-
ingly assumes that ® commutes with countable products. This already fails in
(Ab,®)V.

However, assuming (w.l.o.g. — by using the yoga of Section that
I - J is a cofibration, and using the equivalence of [3.4] we may pass to the
corresponding fibration C¥ — S°P:

i
I ~ vy" JxjI,2-cart
Ca*S (C )ﬂ';a*sop

[ feor

J ~ J,2—cart
e () e
where ¥.J x ; I - 1] is a cofibration (sic) of cooperads constructed similarly to
the operadic comma category (cf. Definition [2.75]).

Assume, that the fibers of C — S have all relevant colimits (but no commu-
tation!). Then, for fibrations, there is no further obstacle to construct left Kan
extensions, hence a left adjoint (o/)!(ﬂzs ") exists (Corollary and especially
Remark [2.71]). However, it is only a functor

(C\/)“JXJI,Z—cart N (C\/)“J

Ty ar Sop Ty SOP
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It will land in the full subcategory (Cv)i:f é?);cart
2

if the commutativity of the push-forward in C with (the relevant) colimits is
satisfied. Hence this seems like circular reasoning. However, we gained some
additional information:

of 2-Cartesian objects precisely

Proposition 2.78. Let C - S be a cofibration of co-operads with cocompletﬂ
fibers (not necessariy L-admissible). Then relative left Kan extensions along the
cofibration I — J exists, if the fully faithful inclusion

it _ it
(Cv)ngg"pcart g (Cv)rrgs’op

has a (partial) left adjoint (a Cartesian projector) defined on the essential image
of ()55

As an illustration we will construct the cofree coalgebra using the (dual)
classical cobar construction in section

2.12 Pairings
Definition 2.79 (cf. [41], Definition 5.2.1.5]). A fibration of co-categories
P - CxDP
with groupoid fibers, or equivalently, a functor
C® xD - Gpd,,

is called a pairing of co-categories. An object M € P over (C, D) is called left
universal, resp. right universal, if it is a final object in the fiber over C,
resp. D. The pairing is called left (resp. right) representable if for each C
there exists a left universal object over C' (resp. for each D there exists a right
universal object over D).

The distinguished example is the twisted arrow category *'C — C xC°P. Here
id¢ is left universal over C € C and right universal over C' € C°?. A pairing which
is left (resp. right) representable gives rise to a functor

F:C->D,

respectively

G:D-C,

in such a way that the pairing is classified by the functor
C,D ~ Homp(FC,D) resp. C,Dwr~ Home(C,GD).

In particular, if P is left and right representable then F' is left adjoint to G. The
distinguished example corresponds to F' and G being both the identity C — C.
This characterizes the distinguished example up to equivalence:

190r such that at least the relevant colimits exits...
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Lemma 2.80 ([4Il Corollary 5.2.1.22]). T.f.a.e. for a left and right repre-
sentable pairing:

1. The functors F' and G are equivalences;
2. The pairing is isomorphic to the distinguished one given by *'C — C x C°P;
3. An object of P is left universal if and only if it is right universal.

If these conditions are satisfied the pairing is called perfect.

3 Classical and Lurie’s (co)bar

This chapter, which forms the abstract heart of these lectures, discusses the
definitions of the derived and classical bar and cobar constructions. It contains
an existence proof of classical cobar in full generality, and an existence proof of
derived bar and cobar for monoidal co-categories.

3.1 The general classical and derived (co)bar

In this section, we define the notion of classical bar and cobar constructions
with cobar left adjoint (mainly for 1-(co)operads, but not necessarily) and the
derived bar and cobar constructions with cobar right adjoint. The latter are a
generalization of Lurie’s definition. We consider an arbitrary cofibration of oo-
operads C — S, classified by a functor of co-operads Z: S - (Catoo, x). Denote
by C'' the cofibration given by composing = with the functor I ~ ‘' (twisted
arrow category, cf. Section .

Denote by C¥ — §°P the fibration of cooperads which is classified by the same
functor Z. Then (C¥)°P — S is the cofibration classified by composing = with
the functor I — I°P.

We thus get a diagram of cofibrations of operads over &

cy
c / (cv)°P (22)
S /

Notice that C* is not the twisted arrow category *'C of the operad C in the
sense of Section [2.6| unless S is the terminal oco-category.
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3.1. For each small co-operad I and S € ST this gives rise to a diagram

(€5

% X (23)

Cs ((C¥)§or)®

The derived bar and cobar adjunction can be derived from the fact that that
this is a pairing of oco-categories which is left and right representable. We will,
however, proceed to give a more explicit definition of the bar and cobar functors
and then prove that is isomorphic to the left- and right representable pairing
defined by their adjunction.

In the special case S = I = © and S =id, the diagram is the one of Lurie
[41, Theorem 5.2.2.17]:

Alg(*e)

PN

Alg(C) Coalg(C)?

because the cofibrations C - 0, (C¥)°P - 0, and C'' » 0, are just monoidal oco-
categories in this case and their associated co-categories (forgetting the monoidal
structure) are just Cpq3, (Cp17)°? and H(C[l]), respectively. The monoidal struc-
ture are, in all cases, the obvious induced ones, e.g. for ”(C[l]): X1-1)e®
(XQ —>Y'2) = (X1®X2 —>}/1®}/2)

3.2. For S eS8’ there are two natural diagrams

" t
(C¥) i gon Ciis
7 X V V\H (24)
Cs ((CV)kow)P  CL ((C¥)gan)®

where I15, 73 are of the form discussed in lb (precomposition) but I} and
Ef are slightly twisted variants (see Definition below). See Section for
the definition of the twisted arrow (co)operads "I and Y'T for operads I. The
diagrams (24) are linked to the preceding by the following:

Proposition 3.3. The pairing is isomorphic to the pairing defined by the
two (isomorphic) groupoid valued functors
(C8) x (C*)5or > Gpdos

(C,D) —» Hom ) (77C, w3 D) = HomCTt,S(H;C, I D).
T2

vyt
@,
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Before giving the proof, we have to discuss the precise definition of the
functors 7 and II7.

3.4. To define the functors ;rf and ﬁ_f and to prove Proposition and
Lemma, first observe the following. Let C — S be a cofibration of oo-
operads which is classified by a functor of co-operads Z: & - (Cateo, x). We
can associate with it a fibration of cooperads C¥ — S°P which is classified by the
same functor. It may be described more directly by the following procedure:
Let I be a small operad and consider the pull-back:

C”I,Q—cocart C“I,Z—cocart

“ |

P B L
Here 2—-cocart denotes the full subcategory of those functors mapping type-2
morphisms (Definition [2.49)) to coCartesian ones. Then we have for the fibers

VAT ., A"I,2-cocart
() et

the identification being given by the composition:

v I°P ”I,Q—cocart
(C )SOP Cw; S

oplax,inert — pseudo lax,inert — pseudo,2—pseudo

Hom(cat;)l (CatX)*1

(aE) —— Hom ('aﬂ-QE‘

where the bottom equivalence is Proposition [2.59]
Definition 3.5. Using the discussion z'n the functor bar := 7r~i*

~ “1,2— i
Ch —> (C") g (C) pf oo
is called the classical bar construction, and a left adjoint (if it existstill
be called the classical cobar construction. Dually, the functor bar” := I} is
the composition

v\ I°P ~ NT,2-cocart N1
(c Gop —> Cfr;’S G Cﬂ_;s

is called the dual classical bar construction, and a right adjoint (if it exists)
will be called the dual classical cobar construction.

The names are justified by the discussion in Chapter [6] where we will see
that these functors are closely related (up to composition with total decalage,
and its right adjoint, respectively) to the classical bar and cobar constructions

93



of Kan for simplicial groups/sets and Eilenberg-MacLane and Adams for dg-
(co)algebras.

It would be equally reasonable to discuss the functor ICIE (dual bar construc-
tion) and its (potential) right adjoint, but this was rarely done classically. As
an illustation, however, section [3.7] uses this dual cobar construction to con-
struct the cofree coalgebra. Any statement concerning them can abstractly be
obtained by replacing C - S with (CV)°? - S. This interchanges Lurie’s bar
and cobar constructions but not the classicial bar and cobar constructions!

Corollary 3.6. The following are equivalent:
1. The pairing is left representable;
2. ﬁf has a (partial) left adjoint defined on the essential image of II;;

3. w3 has a (partial) left adjoint defined on the essential image of ;T\_l;
and dually:
1. The pairing is right representable;

2. ;r:*’ has a (partial) right adjoint defined on the essential image of 75 ;

3. II; has a (partial) right adjoint defined on the essential image ofﬁ?

Definition 3.7. We call the composition
Bar := ﬂ;fop) ’T_d:l;

the derived (Lurie) bar construction if 7T§S!0p) (relative left Kan extension,
cf. exists on the image of ;rf We call the composition

Cobar := Héi) I

the derived (Lurie) cobar construction if Héi) (relative right Kan exten-
sion, cf. exists on the image ofﬁv;,

It is clear from Corollary and [41l Theorem 5.2.2.17] that for I =S =0
these are precisely the (co)bar constructions defined by Lurie in [4I], Definition
5.2.2.1].

Remark 3.8. The above discussion already makes sense, if S is a usual oo-
category — considered as a trivial oco-operad with only 1-ary morphism spaces
— or even if S = - is the terminal category. In the latter case C is just an oco-
category and I a diagram (small co-category). Then the discussion boils down
to the following statement: The diagram

(HC)I

/ N 25)

CI (Cop)l
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defines a pairing classified by
(C,D) = Homgn, (75;C, 77 D) = Homgu, (77 C, w5 D).

Thus this pairing is always left and right representable, i.e. the derived bar and
cobar constructions exist, if w5 or mi has a right adjoint resp. left adjoint, i.e.
if C has the relevant limits and colimits.

Exercise 3.9. For I =1 the pairing is perfect if and only if C is stable.

Proof of Proposition[3.3 By the discussion in [3.4] and Corollary [2.65] the dia-
gram is identiﬁed w1th

“ —=car
lT((CV)ﬂgsop)(l,Q),(Z,l) t

/ \
it it
vy ' I,2—cart I,1-cartyop
(C )ﬂ-gscp (Cﬂ-;SOp )

where the functors are induced by the projections p; and ps, and where

”(C )(1 2),(2,1)~cart ¢ ”(CNI

is precisely the full-subcategory of the objects that map via p; and ps to the
full subcategories in the diagram. One sees immediately that p; x py is, as full
subcategory of the twisted arrow category, a fibration with fiber over (£, F) in

“(C“fsop) being the groupoid

Homg i, (&,7m3F)
T\'; sop

where & is considered via 77 as an object in C% = C fsipcart and F an object

n (CV)L Sop The other statement is obtained dually by replacing C - S by
(CV)OID - S. O

3.2 The derived (co)bar for (co)algebras

In this section we discuss the derived (co)bar for plain (co)algebras i.e. the case
I =S = 0. In particular, we establish easy criteria for the derived (Lurie’s)
(co)bar functors to exist. This gives an alternative (to [4I]) approach to the
proof. For some statements concerning basic 1-operads appearing, which are
purely combinatorial, we refer to the subsequent Chapter [4] where these fact are
discussed thoroughly.

Hence let I = S = O be the associative planar operad and S = id. In this
case, a cofibration C — O is the same thing as a monoidal co-category C and

cL =~ Alg(C) (C¥) 5o = Coalg(C)
The following is clear by construction (cf. also [4.10)):
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Lemma 3.10. There is a canonical isomorphism of 1-cooperads (cf.
HO (Aact’ */)V
where *' is concatenation, identifying the extremal points.

The bar diagram RHS) has the following form in this case:

(€Y@t

-y *
T \

Alg(C) Coalg(C")
If the fibers of C — S have finite limits and ® commutes with them, we have
(CV)(A““* yop ~ D((Aact, >el)op7c\/)(’)°!’ _ COalg(CAZEt)'

where D((Aact, *')°P, CV) is the Day convolution coalgebra (Proposition [2.30))
which, in this case is C2ac equipped with the new monoidal product

(A,B) > (+).Am B

considered as cooperad (cf. Proposition [2.37]).

™ . . op

7F is a functor which maps an algebra A to a coalgebra in C2act of the form
(not depicting all but one degeneracy):

S AQARA—Z AQA— A<— -1

in which the non-degenerate morphisms are given by the multiplication in A
and the degeneracies by inserting units.

By applying Proposition 75 has a left adjoint, i.e. a relative (operadic)
left Kan existension T ,Op) as soon as C is L-admissible. However, we do not
want to assume the commutation of ® with any colimits, and this is also too
general, because we did not discuss augmentations so faﬂ Notice that it is not
reasonable to expect that 75 has a relative left Kan existension wéfop) that is
computed fiber-wise (i.e. here compatible with the forgetful functors forgetting
the coalgebra structure, i.e. given as the colimit of the underlying diagram of
shape AJL). By Corollary [2.69| - cf. also Remark -7 a sufficient criterion
would be that *" : AP x A — Aagt is co-cofinal, which is not true. Notice
also that the colimit of the underlying diagram of shape AP would be just
evaluation at [1] because that is a final object in Ay, and A does not carry a

coalgebra structure in general.

act?

20We ignore whether it would make sense to consider this in the absence of augmentations.
It amounts probably to applying the augmented construction that we are about to discuss to
a freely (co)augmented (co)algebra.
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3.11. For the remaining part of the section we assume that C is a monoidal
oo-category admitting geometric realizations, and that in C the unit 1 is a final
object. Notice: This can always be achieved by considering augmented objects
in C (cf. 411, 5.2.3.9]). We do not assume any compatibility of ® with geometric
realizations (no L-admissibility).

Theorem 3.12. 1. Under assumption
Pt (L) AR L (V) Bae )T

(cf. is an isomorphism.

2. Furthermore, a fiber-wise relative left Kan extension

cqlim+ (€) 3™ Coalg(C)

exists, and hence Lurie’s bar construction Bar = colimaer o(p*)™! o 7}
exists.

Proof. 1. is Corollary 2. follows from Corollary because a) C¥ —
S°P is, as fibration of cooperads, automatically L-admissible (and geometric
realization is the only colimit needed) and b) by Lemma (A, %)°P > O°P
is an oco-exponential fibration of cooperads (it is almost monoidal w.r.t. the
product *, i.e. a fibration of cooperads, but lacks counits) and the morphism is
oo-coCartesian (this amount to dec = * : A°P? x A°? - A°P being co-cofinal). [

Corollary 3.13 (Lurie [4I, Theorem 5.2.2.17]). If C is a monoidal co-category
such that 1 is final and initial and which admits geometric realizations, and such
that C°P admits geometric realizations, then Lurie’s bar and cobar constructions
exist and form an adjunction

Bar

Alg(C) 4>C Coalg(C)

with Bar left adjoint.

3.14. Under assumption Lurie’s Bar is thus given by the composition:

bar=r* op (p*) 71 op imao
Alg(C) 2T (V) @aeey? O @y _cdma _ qoa0(c)

The composition (p*)™! o7} maps an algebra A to a coalgebra in C2” of
the form (not depicting degeneracies):

T AQA—=A—=x1

in which the non-degenerate active morphisms are given by the multiplication in
A, the inert morphisms by the (canonical) augmentations, and the degeneracies
are given by inserting units. This will be discussed in more detail in Section [3.4]
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3.3 General classical cobar — existence

Theorem 3.15. Assume that C — S is an L-admissible cofibration of operads
(i.e. has cocomplete fibers and the push-forward functors respect colimits in each
variable separately) then for each small co-operad I and S € S?, the classical bar

functor (Definition
_ % .l AT
bar =} : Cg = (C*) 7z 00

has a left adjoint cobar (classical cobar construction) given by the restriction of
the relative left Kan extension

(S8) . "M 1,3—cocart 1
7T37! :C *g d Cs.

The oo-categories (C¥ i{sop and C:ig’?’_cocart are canonically equivalent.
2 3

We stated the Theorem in its most simple form. It is easy to extract from
the proof, exactly which colimits need to exist and have to be preserved by the
push-forward functors.

Note that 75 : ¥*I — T is a cofibration and thus the Kan extension ﬂéﬁ)
exists by Corollary (assuming L-admissibility) and is computed fiber-wise.
For I =S = 0, for instance, where there is only one fiber, is is given by a colimit
over " A%P which is essentially the category of necklaces . See Section

act
for a thorough discussion of classical cobar for I =S = 0.

There is a morphism 77 : ("I, 7}9) —» (I,5) in Dia(S) (cf. [2.73) given by
the obvious diagram

Wy ” S

: I
S(p)
S

Be aware that 71 is only a generalized morphism of co-operads (in the sense of
Definition [2.72)). Nevertheless, 77 induces a pull-back functor

~ % * I Wy
1" =S(p)emy : Cy > Cw;s

as explained in [2.74]
Lemma 3.16. We have a commutative diagram:

—_ *
71 =S(p)emy W 3—cocart

I
Cs T3S
3 Ty = L
= ~
_
—
—
_ -

" lax,inert,3—pseudo *=
. cvy'I Ho ’ ) T o
( )ﬂ-;sop (Catx )1 ¢ 3 )

~ * ~

j 7"234L

oplax,inert — pseudo

Ho lax,inert — pseudo (
(Catx )1

lax,inert,1,4—pseudo ( 7T*'_')
(Catz)! ’

,E£) — Hom (nmE) —— Hom(Catéc)”NI =

=
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where Z: I - § - Cato, is the morphism classifying the pull-back of the cofi-
bration C — S wvia S, and where the lower horizontal morphisms are given by
Proposition using the obvious isomorphism “(NI) = "I, The dashed
morphism is defined by this diagram.

Proof. Follows from Propositions[2.54] and 2.58 examining the construction. For
the fact that 754, is an isomorphism use Lemma and reason as in the proof
of Lemma 2511 O

Lemma 3.17. Let I be a small co-operad. Consider the oo—coCartesimE func-
tor
FSTRALY SLY |

of cofibrations over I (via ws). It has a transpose over I°P:

7l (MDY > (1)
(which, by construction, can be identified with the functor of cooperads mis :
wr lT]).

1. The functor

*
HI T3 Hl[
- >
C‘n'gS C7r§S

has a left adjoint ﬂig%s) (i.e. a relative left Kan extension).

2. An object € € CE ¢ for either category K € {"I,""I} is S-Cartesiaﬁ if
3
and only if for all active a:4d" — i in I

ace(tir) € > (e k) ()" E

s an isomorphism where vy : K — K, resp. 1; : K; & K are the inclusions
of the respective fibers.

3. The functor s is oo-coCartesian (Definition as well, i.e. for all
active a2 i’ - i in I
t .t
Qg ] 13 S 13 Qg 7.

Notice cg ur =ty and similarly for WT.

4. The functor ngls) preserves 3-coCartesian objects.

Proof. 1. follows from Corollary
2. follows from the definitions.

21Because both are cofibrations this means just: it maps coCartesian to coCartesian mor-
phisms
22 e. type-3 morphisms (choosing the same indexing in both categories) in K are mapped

to Cartesian morphisms
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3. Consider an active morphism « : ¢ — ¢’ in I. The assertion is the statement
that the commutative diagram

oy 1t _
”IX/IZ'%-”IX/IZ'

e

IX/[i IX/]i,

Qo W1

be exact. By Lemma [2.8] 4., this is the case, if for all objects 79 - i; — i’ of
NI x,r i’ and objects iz — i of I x;; i the morphism

{io = i1 =i} i (reginy (I %y 8) %00y {ia = i} = Hompuir (ig > @' ig — i)

is an equivalence after forming groupoids. The left hand side is a category of
diagrams in I of the form

i0 x Y i1

]

19 S ——i

contravariant in x and covariant in y. There is chain of adjunctions to the
category of diagrams of the form

7’6.0 ’i() *>’L.1

L

’L.QHZ.HZ'I

10

which is equivalent to HOmIX/Ii'(iO — 14/ iy = i"). Therefore the diagram is
exact.
4. Let &€ be a 3-coCartesian object. Using 2., we have to prove that

ac7.(Li/)*7T13)1€ - (a.,K)*(Li)*ﬂ'mJg

is an isomorphism. Since 73, is computed fiber-wise (w.r.t. m3) this is the same
as
acem13,1(ti ) E = (e, ic) m13,1(4:)*E.

Examining the proof of Proposition 2.:68 we have a commutative diagram:

QC eT13,! (Li/)*g —_— (Oz.’K)*ﬂ'lg’I(Li)*S

T |

m13,10¢,0 (i) E — 13,1 (e, 10 ) (1) E
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where the lower morphism is 713 applied to the isomorphism expressing the 3-
coCartesianity of £ and the vertical maps are the obvious mates. The left hand
side morphism is an isomorphism because of the L—a*dmissibility of C and the
right hand side is an isomorphism by 3. Therefore Wigjs)é‘ is 3-coCartesian. [

Proof of Theorem[3.15. By Lemma the functor bar = 7} is isomorphic to
the functor
I 7 =8(p)emy W T,3-cocart
cf T e .

It is not reasonable to expect that 77* has a relative left Kan extension on all of
C:g( (notice that 77 is not of diagram type). In the statement of the Theorem
3

it is claimed that the relative left Kan extension wésl) is left adjoint to 71" when

restricted to the full subcategory of 3-coCartesian ébjects.
Observe that the functor in question factors:

FT*=9 * *

el T (n)em] ot s o
_— —_—

S ni8 S

where we have numbered the indices in **I and ‘I in a coherent way. The left
functor is an equivalence onto the subcategory of 3-coCartesian objects of the
category in the middle and 71 "3 = 71 70* = w70 is, in fact, a right coCartesian
projector, or in other words, 73 is a right adjoint to the fully-faithful inclusion
71%. The relative left Kan extension wigﬁs) exists and is computed fiber-wise
over 3 by Lemma , 1. It thus suffices to see that wigg’!s) preserves the
condition of being 3-coCartesian. This is Lemma [3.17] 4. O

3.4 Classical cobar for coalgebras

In this section, we discuss the classical cobar construction (Definition as-
sociated with the operad O for arbitrary monoidal (co-)categories, i.e. letting
(C,®) — © a monoidal (co-)category (considered as cofibration of operads) and
I:=0 and S :=1id in the abstract setting .

Assume that C is countably cocomplete and such that ® commutes with
countable colimits. Assume also that C is finitely complete, and such ® com-
mutes with dec, (in the Abelian 1-categorical case this means only that ® has
to commute with finite products which we always assume anyway).

Recall the abstract classical (co)bar adjunction:

cobar
((C,®)")'"° ————(C,®)°.

bar

We will always apply cobar to an object in the image of p*:

*

((C,@)) A" — L~ ((c,8))"°

(cf. and [4.12)).
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3.18. The source of p* is just Coalg(CAop, ®) under suitable R-admissibility.
If C is an Abelian 1-category, an object in Coalg(CAop, ®) is thus a coalgebra
in non-negatively graded complexes (a dg-coalgebra) w.r.t. to the usual tensor
product of complexes. In ((C,®)")**)™ it translates to an object A € CA™
with comultiplication and counit

finm * Afplaim] =~ A @ Ay Ay = 1

in such a way that

i i

A, ® A,

A’VH—T)’L Mn,m
is commutative, where in the bottom row, my, ,,, is the component of the comul-
tiplication in the complexes viewpoint (cf. Proposition [5.39)).

Back in the general case, pulling back under the morphism p : 410 = (A% | +") —

act?
A, *)°P we get an object p* A in ((C,®)Y HO, i.e. the same Ay, with structure
[n]
maps
Hom  Alnlsm] > A) © Ay Aoy = 1

which are nothing else then the composition with the canonical degeneracy
(considered before in the Abelian case) and the counit is the corresponding
restriction to Apg). If 1 is final in D, Lemma below implies, that A can be
recovered from p* A.

To compute cobar p* A using Theorem we have to identify

((Ca ®)V)“O = (C, ®)Hloa3—C0Cart

and then take the relative Kan extension 73). See below for a more
thorough discussion of Y which is essentially the category of necklaces cf.
7, 20, [50].

Since 73 is a cofibration this is computed fiber-wise (Corollary [2.69) and thus
its underlying object in C is given by a colimit over the category C[ll]o =c"'a%
p* A corresponds to the following object B € ¢ ¢ Active morphisms are
mapped

[n] < [m] = Ap,®-®Ap,)

where [n] = [nq] #' -+ #' [ny,] is the induced decomposition of [n] (which cor-
responds to taking fibers identifying AP = Ay via Lemma [1.9). A type-1
morphism

[n] <—[m]

L

[n] <——[m]
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maps to the factor-wise structure morphism
A[nl] ®--® A[nm] - A[n’l] ®:-® A[”'m]

while a type-2 morphism corresponds to applying the structure morphism of the
algebra, for instance
[na] *" [n2] <—[1]

b

[na]*" [ng] <—[2]

maps to the component of the comultiplication:
Fnyng Al @ Ana] > ApnyJxr[na)-

3.19. The colimit over *'ASP can be computed using the observation If
C is a 1-category then this colimit is very simple: In it suffices to restrict
to the cokernel of the last two maps and we may restrict to a generating set of

morphisms and get:

AR ® - xAp)®-®An)
)

* A : I ®n
cobar p* A = colim (UA[1]®MXA[O]®W®A[1] = 7];LAD]) (27)

where the two morphisms are induced by
A2 = A © Apy

(comultiplication) and by
A(d1) = A2y > Ay

resp.

(counit) and
A(So) : A[o] g A[l].

In Chapter [6] this colimit is computed explicitly for a number of mostly
1-categorical examples.

3.5 Functoriality of (co)bar — non-connected (co)bar

3.20. Let C - S, D - S be cofibrations of oco-operads and R:C — D be a
functor of co-operads over S. Assume that R has a fiber-wise left adjoint. Then
those assemble to a functor of fibrations

Q:D' =Y
over S°P. For S € 8!, we get functors

I°P

R:C{~>Dg  Q: (D)o > (CV)5on
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which are — in terms of the classifying functors Z¢,Ep : I > S — (Cateo, X)
given by composition with R:E¢ = =p which is a lax morphism:

o lax,inert — pseudo

lax,inert — pseudo ( —_
(Cat2)!

(+Zc) ~ Hom(Cat;)I » =D

and gives via composition with @ : Ep = Z¢ (its mate), which is an oplax
morphism, a morphism

oplax,inert — pseudo

oplax,incrt—pscudO(_ o )
(Catx)! »=CJ-

Hom (Cat’)!

(,Zp) - Hom
3.21. In this situation we can refine the (co)bar diagrams:

(Q-Rr)M

SR
D (cVyer (28)
where (Q 4 R)" is classified by the functor

S - Cate
SHXS

where X is the pairing defined by the adjunction Qg - Rg, i.e. classified by

DP xCs — Cate
D,C ~ Hom(Q(D),C)=Hom(D,R(C))

For each small co-operad I and S € ST this gives rise to a diagram

((Q-R)")§

/ K (29)

Dy ((C¥)§an)®

3.22. For S e8!, there are two natural diagrams

" Q i N R LN
(Dv)ﬂ;{sop — (Cv)ﬂfsop Dpis == CH;S
Dy ((CV)gw)®  D§ ((C¥)§en)®

(30)
We have then similarly:



Proposition 3.23. The pairing (@) s isomorphic to the pairing defined by the
two (isomorphic) groupoid valued functors
(D) = (C")§or ~ Gpd,
(D,C) ~ Hom g s (QmiD,m5C) = Hom ;- (I3 D, RIT;C).
5 P 5

The proof is omitted for the moment.

Definition 3.24. We call

Barg := wés!mp) 0oQo E Cobarg := H;S;) oRo ﬁf
the derived (co)bar constructions w.r.t. the adjunction Q 4 R, when the respec-
tive Kan extensions exist.

As before, the Proposition shows that if Barg and Cobarp exist, then the
pairing is left and right representable with those functors associated.
For the special case I =S = © one can deduce exactly as in Corollary

Corollary 3.25. If D is a monoidal co-category such that 1 is final and which
admits geometric realizations, and If C is a monoidal oco-category such that 1 is
initial and such that C°P admits geometric realizations, then the derived bar and
cobar constructions w.r.t. the adjunction QQ 4 R exist and form an adjunction

Barg

Alg(D) Coalg(C)

Cobarg
with Barg left adjoint.

__ Notice that, if @ preserves the monoidal product (not only laxly), then
w7 o Q = Q om} and thus Barg = Baro() and we gain nothing new.

Example 3.26 (Non-connected (co)bar). Let C be a monoidal co-category such
that 1 is final (but not necessarily initial) and let X € Coalg(C) be a coalgebra.
Consider the following adjunction between monoidal co-categories:

Q
Bimodx(C)X/ <T CX/

Here Bimod x (C) is equipped with the monoidal product - ® x — described in [/,
4.4.2], ¢f. [{1, Proposition 4.4.3.12], and unit X (considered as X -bimodule) and
BimodX(C)X/ 18, as undercategory under the unit, monoidal itself. However,
also the undercategory Cx is monoidal because X is a coalgebra (two morphisms
X - Y] and X - Y are mapped to the composition X - X @ X - Y1 ®
Y2). @ is the forgetful functor which forgets the bimodule structure but keeps
the coaugmentation. R is the free-bialgebra functor [[1|, Proposition 4.3.3.12]
transferring the coaugmentation by means of the adjunction

HomBimde (X, RY) = HomC(QX, Y)
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where X is considered as bimodule over itself (= unit in Bimodx ).

Then X is initial in Bimodx (C)x; and X — 1 is final in Cx,, hence if C°P
has geometric realizations and Bimodx (C)x, has geometric realizations (it has
by the dual of [{1, 4.3.3.9] as soon as C has) then we have a derived (co)bar
adjunction

Barg

Alg(Bimodx (C)x/) Coalg(Cx/)

obarpr

Definition 3.27. We call Alg(Bimodx (C)x/) = Alg(Bimodx (C)) the category
of category objects of C with objects X in this cascF_gI.

See Section for the Cartesian case, explaining the notion.
We proceed to discuss a functoriality of the classical (co)bar which will be
important for comparisons between different such construction (Section [6.10)).

Proposition 3.28. There is an adjunction
cobaro() 4 baroR
which is to say there are morphisms
Q obaroR — bar cobar — R o cobar o()
satisfying suitable compatibilities.
Proof (sketch). We have for the fibers

I . VA" T,2—cocart
CS’ = (C )ﬂ—gsop

the identification being given by the composition:

it
I v I,2—cocart
c (e

) |

lax — ~ oplax,inert — pseudo,2—pseudo *=
Hom(Catzo)I("“) — Hom(catx NG (=)

and similarly dually. There is a commutative diagram where the natural trans-
formation is given (essentially) by the units of the point-wise adjunction.

oplax,inert — pseudo
(Catx )1

R ft TQ

oplax,inert — pseudo
(CatX, )”I

Homl(%‘at;)l(~7Ep) —— Hom (,7m3Ep

Homl(&gat:o)f(-,Ec) ——> Hom (-, m3=e

231 just became aware of the articles [39] 4] which contain related theory.
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and similarly with (op)lax exchanged.
This defines the 2-morpisms in the following diagrams

*

cf —— (")

* Gop
w58

|t

1t
D§ = (DY) 1 gor
1

and
- (S)
* T
v lTI Tio HLI 3,! I
(C )‘n';'S“P CTA’;S CS
QT ) lR f \R
it i
DV M D I DI
(P s —— S a® 8

with the morphism 7?1*; from Lemma The proof that these two 2-morphisms
yield an adjunction is omitted for the moment. O

3.6 Classical and derived (co)bar in the Cartesian case

We consider again the classical and derived (co)bar for I =S = O in which case
(C,®) — 0 is just a monoidal co-category. We investigate the Cartesian case in
this section, i.e. ® = x.

Recall that if (C, x) is a Cartesian monoidal co-category then we have

Alg(C, x) = Mon(C), Coalg(C,x) =C.

We will consider the non-connected case (cf. [3.26) right away. The connected
case can be obtained as the special case X =-. Let X be an object of C which
we can see as “coalgebra” in this case. Bimodx (C) is, in this case, nothing but

C’/X><X

with product My, My = My Xpr, x pr, Ma. Objects in Alg(Bimodx (C)x,) =
Alg(Bimodx (C)) are thus category objects in C in the usual sense with ob-
jects X. In the adjunction

Q
Bimde(C)X/ - Cx/
R

the functor @ is given by forgetting the morphism M — X x X (but remembering
the unit = coaugmentation) and R associates with X — Y the “free bimodule”
X xY x X with obvious augmentation X - X xY x X.
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Proposition 3.29. We have for X —Y in the category Cx/

| Cobarp(X V) = X xy X

with product given by the canonical “concatenation” operation:
(XXyX) X x (XXYX) * X xy X xy X - X xy X.

In particular, for X = -, we obtain the functor £ (loop space).

Consider the morphism p : A = A%, ¢ A% (cf. [1.12)). Considering [n] as
discrete category {0,...,n}, p°P gives rise to a fibration p : A - A with fiber
over [n] being {0,...,n+1}. There is a morphism

E:A >
mapping fiberwise 0 to (0,1), n+1 to (1,0) and everything else to (1,1).
Lemma 3.30. The morphism £ is oo-final.

Proof (Sketch) of Proposition . Consider the non-connected cobar diagram
(3-22) in this case:

(CX/a x)(Aact,x—') L (BlmOdX (C)X/) XX)(Aact,*l)

Cx, = Coalg(Cx/, x) Alg(Bimodx (C) x/, xx)

where bar" is the dual classical bar construction or, in other words the functor
IT; from Definition In the monoidal co-category Bimodx (C)x/, we have
(dual of Corollary |4.14]) because the unit X is initial:

p* : (Bimde(C)X/)(A’*) ~ (BimodX(C)X/)(Aacm*’)
and we have by construction of bar” — for the underlying objects

X
(0) o Robar'(X = Y) = p.&* L
X —Y

(note that p is a discrete fibration and thus p.£* computes fiber-wise the product
X xY" x X) and therefore

Cobarg(X - Y) = lim o(p*) o Robar(X - Y)

X X
;hgnp*g L ;hin L
X—Y X——Y
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(Lemma [3.30)) or in other words:
Cobarp(X -Y)=Xxy X

and a bit more refined argument shows that the induced algebra structure is as
claimed. O

3.31. Let A e Alg(Bimodx(C)x/,xx). Then bar(A) is a coalgebra B of shape
AL of the form

act

where the morphisms are the structure morphisms of the algebra with canonical
coalgebra structure

Blivj) = By xx Byj)-
Then apply the forgetful functor @ and then (p*)™' (in Cx, the unit becomes
final!) to get a simplicial diagram (with redundant coalgebra structure by the
trivial Eilenberg-Zilber Theorem

>

J— — —_— B

B — — 2 p——
;AXXAXXAHAXXA A= X.

This is a simplicial diagram in Cx/, not in Alg(Bimodx (C))! Examining the
definitions, one can easily determine the morphisms. For instance, the two
morphisms A — X are given by the left and right comodule structure, i.e. by
the given morphism A — X x X (which are not bimodule morphisms themselves,
for instance). Barg(A) is then the colimit over this diagram.

Remark 3.32. If C = Gpd,, and for X = -, we have 1 xy 1 = Homy(1,1),
where 1 € Y denotes the distinguished object given by the coaugmentation with
the product given by composition.

Corollary 3.33 (Connected case, cf. also [41], Corollary 5.2.2.13]). There are

adjunctions
b

F Bar
C 41\4 n(C) >’c

(0)

< Cobg.rj

c
where ¥ : X — 1ux 1 is the suspension, i.e. the left adjoint of L: X — 1xx 1,
and F is the free monoid functor.

Of course dual statements are true for a coCartesian monoidal co-category
(C,u), i.e. where 1 is the coproduct.

3.34. Consider the diagram

((Bimodx (C) x/, xx)")"O

o

((Crxs )"0 = (€, <)) B s Conlg(C %) — > CA
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where the middle equivalence is given by the trivial Eilenberg-Zilber Theo-
rem Unraveling the definitions, we see that the composition induces an
isomorphism:

. i —car °p
((Bimodx (C)x/, xx)") ©2-cart (C)Ac/ )Segal.0

where the index “0” means the full subcategory in which X — Y]¢ is an iso-
morphism and where “Segal” means the full subcategory of the Y satisfying the
Segal condition, that is, the induced morphism

Yinem) = Y] ¥vie) Ym]
is an isomorphism for all morphisms [n +m] = [n] *' [m] = [n] * [m] given by
the canonical degenericy. In particular Y[,,) = Y[1] Xy, = X}y, Y[1]- Notice that
((Bimod(C) x/,xx)") O.2-cart i5 precisely the image of the (fully faithful) clas-
sical bar construction in this case and thus isomorphic to Alg(Bimod(C) x/, xx)

(category objects). In the connected case, this implies:

Proposition 3.35. The connected (i.e. for X =) classical (co)bar adjunction
has the following form in the Cartesian case:

Mon(C,) —2" > (€™ )sgar o= €4

cobar

Note that the left adjoint “cobar” exists by Theorem [3.15] if C has geometric
realizations and x commutes with them in each variable, which is true in any
oo-topos, for example. The Proposition is a special case of results of [7] (see
also [32]).

Proposition 3.36. Via the identification Q o (p*)™! o bar of category objects
with Segal objects, we have for X -Y €Cx,

Cobarg(X - Y) = Cech nerve of X - Y

and if C is an oco-topos (e.g. C = Gpd,, ), the restriction of the derived (co)bar
adjunction is an isomorphism

Barg

(C)A(;p)Gpd,O <b—” (CX/)(—l)—conn
obarpr

where Gpd indicates the full subcategory of (Cf{;p)segal,o of groupoid object
and where (Cx /) (-1)-conn 5 the full subcategory of morphisms X —Y which are
(-=1)-connected.

Proof. The first part is clear from Proposition [3.29] and the definitions. The
fully-faithfulness of Barg on groupoid objects is thus actually part of the axioms
of an co-topos. The characterization of the essential image is in [40, Proposi-
iton 6.2.3.15]). O

24

meaning, in the picture above, that, in addition to the Segal condition, Y[, 1] = Y[n] XYio)
Y[yn] is an isomorphism induced by any partition of [n +m] sharing one vertex.
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3.7 Using cobar to construct Kan extensions — e.g. the
cofree coalgebra

In Section an idea to construct relative (operadic) Kan extensions has been
discussed, even in situations which are not L- resp. R-admissible. This leads
precisely to the (dual) classical cobar construction discussed in this chapter and
is included as an illustration. It is otherwise not related to the main aims of
these lectures.

We will prove the following classical theorem using (the dual) cobar, not-
ing that this method to construct problematic relative Kan extensions can be
applied in far greater generality.

Theorem 3.37. Let (C,®) be an Abelian tensor category. Assume
1. ® is exact;

2. the mate

(JX)eY ->[][(X;®Y)

ieN ieN
18 a monomorphism;
3. ® commutes with countable intersections.
Then the forgetful functor
Coalg(C,®) = C
has a right adjoint (cofree coalgebra functor).
Proof. Denote ¢ : - = 0°. As in the proof of Proposition 2.76] we have an

adjunction in the 2-category Dia®”(0°P)

m2=(m2,5 (1))
- - 5

(Oop X jO°P '77T1) D
(¢,id)

and an isomorphism
(1)

Cix =71 % Ly

in the strong sense that the existence of the RHS adjoints implies the existence
of the LHS. By the adjunction, we see that

™ = S () 3.

We have 0°P x,por - = (Ng, +)" as discrete cooperad and X' := S(u)*73 X is the
object
X! = xen

with the coalgebra structure given by the isomorphisms

X, eXl®X,  Xjxl.

i) =
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A right relative (or operadic) Kan extension 7y . exists in general only if ®
commutes with infinite products. However, in we saw that it suffices to
construct a (dual) cobar functor for the object X’ pulled back to ("0) xper
(Np, +)Y and then right Kan extended along the fibration (!) of operads

(NO) X (op (No,+)v - No.

By the dual of Theorem we have (C,®)NO = ((C,®)V)MO’3’C&“, and
the dual cobar is given by the Kan extension 73 . which is computed fiber-wise,
i.e. as limit over ((Cgﬁs))v)r[f](9 ~ 'A% if ® commutes with the relevant limits.
We will argue that the same colimit works in this case as well without that

op

hypothesis. The corresponding object X" € C"AL: s the following;:

([n1] ol oyt (] < [m]) ~ X[,;n] @@ X"

[nm]

(the [nq] *" -+ *" [n,,,] is the induced decomposition, cf. |4.10) with

Xig= I X®"e-ex®n
k1, kn

Thus the dual of the cobar formula (3.19) would give

(32)

cobar” X' = lim(H(XE'l])@m 3

I X[47®-x X580 X[} )
u
n=0

" " ”
L X[17®xX[0)®® Xy

From 2. follows that the object X’ has the property that type-2 morphisms go
to monomorphisms. Hence is essentially a countable intersection.

The general existence Theorem [3.15] (better: its dual) cannot be applied as it
stands because ® does not commute with limits (here countable products would
be sufficient, which we do not want to assume either). Examining the proof, we
see that this is used at two places:

1. to construct the Kan extension along 73 : *'© - 0°P. However the relevant
object X" has the property that type-2 morphisms go to monomorphisms.
To have a fiber-wise Kan extension the limit over the fiber must commute
with ®. This is Lemma 2.

2. to see that the (fiber-wise for m3) Kan extension 7y, : WA, — Ay
commutes with ®. This is Lemma 1. O

Lemma 3.38. Let (C,®) be an Abelian tensor category with ® exact and com-

tA©
muting with countable intersections. If € € Ab Al maps type-2 morphisms to
monomorphisms then

1. the Kan extension £ = m € € Ab2t commutes with —® X for any X €C,
2. the limit £ » lim & commutes with — ® X for any X €C.

Proof. Exercise. U
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Remark 3.39. In [J|], for instance, it is shown for a large class of Abelian
tensor categories that, in fact, already

144
Xy

cobar” X" = lim L

® XII ( XII

14
X 1] (2]

(1]

4 Non-Abelian foundations

This chapter discusses basic properties of simplicial sets and simplicial objects
in categories culminating in the non-Abelian Eilenberg-Zilber Theorem It
deals almost exclusively with 1-categories. Some facts from Sections
have already been used in Chapter [3]

4.1 The simplex category

4.1.  Recall from the definition of the simplex category, the notions of
active and inert morphism, and the definition of the concatenation products *
and *'.

4.2. Let C be a Barr-exact category ([8], we will here only be interested in
Set, and Abelian categories), and let X « CA™. Then there is a filtration by
subobjects

FOX[n] cC-C FnX[n] = X[n]

such that each F*X|,,] is the smallest subobject over which all X () for degen-
eracies v : [m] — [n] with m < k factor. We define

nd ._ n—1
Xn) = X [F" Xpa)-

the quotient of non-degenerate elements. In fact, the F*X [n] @ssemble to
simplicial objects F*X themselves and are called the skeletal filtration.

For any n and k, consider a subset S c {s: [k] « [n]} of the degeneracies.
Since each such degeneracy can be written uniquely as s = s;,---s;,_, with 4 <
@2 < -+ <ip_k, the lexicographic ordering of the i; defines a total ordering on S.

Lemma 4.3. Fiz integers m and n. For each subset S c {s: [m] « [n]} of
degeneracies, there is a face morphism D : [n] < [m] such that Ds = id for
s €S precisely if s is the smallest element of S.

Proof. Let s; be the smallest degeneracy occurring as a left-most factor of s € S
and decompose
S=s,5uS8"

where S’ is a set of degeneracies [m + 1] « [n] and S” is a set of degeneracies
in which only s; for j >4 occur. By induction, there is a face D" : [n] « [m+1]

73



which is a section of the first element of S’ and not of any other. Then D := D’d;
does the job, because D’d;s;s = D's = id precisely for the first element of s € S’
and not for any other, while D'd;s;,--s;,, s = D'sj,-1-+8;,,-1d; for ji >4 cannot
be the identity. O

4.4. The Lemma is usually stated in a weaker form saying “the set of sections
of a degeneracy s : [m] « [n] is non-empty and determines s”. This follows
obviously from the previous Lemma, because it shows non-emptyness for #5 =1,
and, for #S5 = 2, that for each pair of degeneracies there is a section of the first
which is not a section of the second.

Lemma 4.5 (Eilenberg-Zilber). If C is Barr-ezact and has a zero object (we
will be interested in Set, and Abelian Categories only), then

g' X, ] xpd (33)

s:[m]«[n]
where the coproduct runs over all degeneracies.

Proof. We will show this for C Abelian (by suitably embedding a suitable small
subcategory of C, this actually suffices, but we won’t discuss the technical de-
tails). Consider the morphism

@ XM FTX,FIX,.

s:[m]«[n]

It is an epimorphism by definition of the filtration, so we have to see that it is
a monomorphism. Let K be the kernel. If it is non-trivial, consider a minimal
subset S c {s:[m] « [n]} with the property that
Kc@xrd
seS

By the Lemma, there is D such that Ds = id precisely for the smallest s € S.
All other Ds factor thus through a degeneracy and hence the composition with
D

DX > F"X, [F" X, - Xpd

seS

maps the first (w.r.t. the lexicographic ordering) X2 isomorphically to X2d
and all others to zerd®] Thus

Kc @ xpd
s'eS\{s}
in contradiction to the minimality. This shows that K is trivial. O

Let X € Set®” be a simplicial set. Applied to C := Set,, the category of
pointed sets, and X,, the statement of Lemma [4.5] translates to

X, =[[F" X, ~F™ ' X, 2 [ XN F77' X,
m [m]—[n]

=:Xnd

m

25Note that D must map F* 1 X, to F*"1X,, and hence the morphism is well-defined.
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i.e. that every element in X, is in the image of the non-degenerate elements of
X, for a unique degeneracy [m] « [n]. (This follows even more directly from

the weaker form [£.4] of Lemma [4.3])

The properties discussed here are shared by other diagrams than A°P as well.
These are condensed, for example, in the notions of elegant Reedy category
and Eilenberg-Zilber category [12, [13].

4.2 Some basic (co)operads

This section discusses the following zoo of very basic (co-exponential) operads
over O:

(FinSetg, I1)

(Aﬁvu) (sz*):uo (A%Pv*):ﬂo

forget

(34)

i (FinSet, [1) i

AW°P=forget

opP

(A1)

(A, %)

These operads (or their opposites) will occur in various related and unrelated
places, most notably:

1. The cooperad (A, *)°P describes the canonical simplicial enrichment on
simplicial objects in a category C in a different way, which is very conve-
nient to construct homotopies. See, in particular, Proposition [:25]

2. The cooperads (A, *)°P and (A, [1)°P give, via Day convolution, rise to the
two different tensor products ® (point-wise for simplicial objects) and &
(usual tensor product of complexes) on simplicial objects = non-negatively
graded complexes in Abelian categories (cf. . The forgetful map gives
rise to the Alexander-Whitney map. In fact, the diagram above extends
(cf. Theorem in the case of Ab-enriched operads so as to include a
model of the Eilenberg-Zilber map as well.

3. The morphism p°P can be described by generators and relations (cf. Lemmal4.13])
and plays an important role in the (co)bar construction (cf. Theorem ,
more precisely, it takes care of the augmentation.

4. The product in (A, *)°P; also denoted dec (decalage), connects (via pull-
back dec”) the classical cobar construction (Definition with the geo-
metric cobar construction (or Kan’s loop group), and Adams cobar con-
struction, respectively. Dually, its adjoint dec, (Artin-Mazur codiagonal,
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or total complex in the Abelian case) connects the classical bar construc-
tion with the classifying space, and Eilenberg-MacLane bar construction,
respectively.

4.6. In the diagram the i’s are oco-Cartesian (for the right hand side 4
this is Lemma for the others it is trivial), the ¢5’s are co-Cartesian, and the
tdec's are 1-coCartesian (for the upper trivial, it is even oco-coCartesian, while
for the lower, it boils down to the 1-finality of :°P, Lemma )

4.7. Consider the category FinSety of finite sets. It is monoidal w.r.t. to the
coproduct ][] giving rise to an operad

(FinSetg, [ ])-

Since [] : FinSetyh x FinSety — FinSety has the right adjoint § : FinSety —
FinSety x FinSety the morphism

(FinSetg, [ [) —» ©

is thus a fibration and cofibration of operads. On Ay (totally ordered finite sets)
there is the concatenation product * (obtained from ] by choosing one of the
two canonical total orderings) which is not symmetric anymore. Ag can also be
turned into an operad (Ag, 1) setting Hom(z,y; 2) = Hom(z, z) x Hom(y, 2).
This operad is not monoidal, of course, because Ay does not have a coproduct,

but
(A®7 L[) -0
is also a fibration of operads. There are two morphisms of operads:
(2 (A®7 H) - (Finset®7 I_[)

which is a morphism of fibrations (i.e. maps Cartesian (active) morphisms to
Cartesian morphisms) and

tdec : (Ag, *) - (FinSetgy, H)

which is a morphism of cofibrations (i.e. maps coCartesian (active) morphisms
to coCartesian morphisms).

The concatenation product * restricts from Ag to A, but the unit doesn’t.
However, (A, ) is still pro-monoidal (even in the co-categorical sense), or in
other words:

Lemma 4.8. The restriction
i: (A7 *) i (AZ7 >(')

is oo-Cartesian and thus (cf. Lemma (A, %) » O is an oc-exponential
fibration of operads. Furthermore, the morphism (A, *) - O is oco-Cartesian.
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Proof. Let a : [n] < [m] € AL, be an active morphism. For the pull-back

pro-functors a® in (A, ), and ag in (Ag, *), we have

a’ = tima('zin.
Since the latter is a cofibration, the ag; are of the form t3. They are, in partic-
ular, determined by (61)g =" decy and (so)% = '[@] where decg = * : Agx Ay —
Ag is the monoidal product and [@] : [@] = Ag is the embedding. decy restricts
to a morphism dec : Ax A — A. Thus (4;)* = *dec. Furthermore [@]: [&] = Ay

has the right adjoint 7y : Ay — - (because [@] is initial). Therefore ‘[@] = 7y.
This restricts to m: A - -, i.e. (s9)® = 7. @ being co-Cartesian boils down to

i'dece = 'dec i T Tyt

The second is trivial, while the first is shown (dually) in Lemma

The oo-Cartesianity of (A, *) - © is trivial over degeneracies (because lo-
cally Cartesian morphisms exist) while for =, it is the oo-finality (cf. (dually)
Lemma [A.3)). O

Dually, we obtain, that
(A, 0) 0

is an oo-exponential fibration of cooperads. Notice that (Ag, *)°P = (AZ, %)V is
again the cooperad associated with a monoidal category, namely AgP with the
dual structure. Restricting the operad (AZ, *) to A°P though gives an operad,
which is somewhat unnatural, and is never considered.

Lemma 4.9 (Duality between (finite) ordered sets and intervals). There is an
equivalence of operads (or, equivalently, monoidal categories):

(A% *") = (Ag, )
given b@
[n] = Homa,, ([n], [1]) = [n-1]
[m] = Homa, ([m], [1]) = [m +1]
This equivalence exchanges face and degeneracy maps.

Proof. A combinatorial exercise. O

4.10. Recall from Section the notions of (twisted) arrow operads "I and
W for an operad I. For I = © those are, being cofibered over I, in particular
monoidal categories, and we have isomorphisms

NO = (Aac‘m *,) = (A%p7 *) (35)

26The total ordering on Homag([n],[1]) is the natural one with minimal element the
constant morphism 0 and with maximal element the constant morphism 1. The one on
Homa,, ([n],[1]) is its restriction.
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and also

Ho= (A% ) 2 (Ag, %)
in such a way that (for the first isomorphism) a multi-morphism [ng], ..., [nk] =
[m] in (Aaet, #') corresponding to

[no] #" -+ [ni] > [m]
(using the arrow direction in A°P) is mapped to

[na]#" o +" [g] —— [m]

| |

(k] =<—[1]

with the obvious maps. In the other direction an active morphism in "o resp-
resented by a diagram

determines a decomposition of [z] into [x1] *’--- #' [z} ], and is mapped to the
corresponding multi-morphism [z1],...,[zx] = [m] in (A, *').

The category (of operators) (0).ct @ (MAu) = Ay is essentially the
category of necklaces, cf. [7, 20, 50]). It is itself monoidal, which can be
expressed easiest by saying that

o 5o

(or dually *M0) is cofibered, and hence the left hand side is monoidal and its
fiber over [1] is the category ("*0)act. The associated monoidal product is just
+" applied to source and destination of the morphism. All that was said can be
translated replacing (via Lemma [4.9) (A7Y, *") by the perhaps more tractable
(Ag, *) everywhere. For instance, the process of associating to

[z-1] < [k-1]

a decomposition [z1 — 1],...,[xg — 1] is then just collecting preimages of the
morphism in Ag.
The functor

E@ : Ag — Cat

[n] = ()"

classifying the operad (as covariant functor) but composing into Catt™, it
is rather associated with the cooperad functor:

(Ag,#)P = Mo o
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There is also the functor
2: Ay - Cat’F
[n] — (Aop)n+1

where the transitions are the dec and the ‘pr. It is associated with the cooperad
(A, %)°P.

Lemma 4.11. All functors in the image of E4 are cofibrations with discrete

fibers.
Proof. They are of the form
(Ag x/a, [P])P = (Ag x/a, [M])P
given by composition with [n] - [m]. O

4.12. Denote by (AL

act?

Hom([n]; [ko], .-, [kn]) = Hompor ([n], [Ko] "+ " [km]).

+")V the associated cooperad, i.e.

3

{po} with py corresponding to Ag = Ag. The transformation induces (by
composition) a functor of cooperads

The sets of 0-ary morphisms are Hom([n];) = @ for n > 0 and Hom([0];) =
(

pi(Ag,#)" = (AT, +)" = (A, ).

act?

Lemma 4.13. (A, *)°P is obtained from (A

oy *)Y by adjoining a 0-ary mor-
phism

p1 € Hom([1];)
subject to the relation that there be only one 0-ary morphism from any object:
Hom([n];) = {pn} (including n=0).

Notice that there are new l-ary morphisms introduced, for example the
unique morphism in Hom([1];[1],[1]) composed with p; at one of the slots.
Proof. In the category obtained from (AP, *")Y, as described in the Lemma,
we have p, = p1p, where p, : [n] < [1] is the morphism to the final object in
AR (also for n =0). The category thus has multi-morphisms

Hom([m]; [ko], ..., [kn]) = {[m] < [lo] "+ " [L]}

where the k; are an ordered subset of the I;, such that no two consecutive
elements are missing, and such that all missing /; are equal to 1. We can map
it to the unique morphism in Homa .yer ([m];[ko], ..., [kn]) corresponding to

[m] « [fo] =" [1a] « [ko] # - * [ku]

mapping the [k;] to the corresponding factor. If there is no k; then we map it
to the unique 0-ary morphism in Homa .jo» ([m];).
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On the other hand, consider an n-ary morphism in Homa «yor ([m]; [ko], ..., [kn])
given by
a:[m] < [ko] - [kn].

Now add factors [1] everywhere, where the condition that the extremal points
go to the same point, resp. to the inital and final points, is violated:

[m] < ([11) = [ko] * ([1]) % - = ([1]) * [kn] = ([1]).
This morphism factors
[m] < ([1]) #" [Ko] #" ([1]) #" - +" ([1]) " [rie] +" ([1])
< ([1]) = [ko] » ([1]) % -+ ([1]) * [kn] = ([1])

and thus corresponds to a multi-morphism in

Homaee oy ([m]; ([11), [ko], ([11), .- - ([1]), [kn], ([11))

Compose this with at the various [1] with the p; : [1] — @ adjoint, to yield a
morphism
[n] = [kol,-.-,[kn]

Finally, the unique 0-ary morphism in Hom([n];) in (A, *)°P is mapped to p,.
The two constructions obviously determine an isomorphism of cooperads. [

Corollary 4.14. For any monoidal co-category C in which the unit is a final
object, p* induces an isomorphism

(CV)ANT & (o)Al

Proof. That is an obvious consequence of Lemma in the 1-categorical case
but needs some careful argument for co-categories that is omitted for the mo-
ment. O

4.15. (FinSetg, [1) restricts to (FinSet, I1), not as cofibration over © (the unit
is lacking) but as fibration, in particular still co-exponential. Similarly (Ag, [1)
restricts to (A, []) as a fibration and (Ag, *) restricts to (A, *), which is neither
a cofibration nor a fibration, but co-exponential by Lemma Furthermore
there are obvious forgetful maps (Ag, *) - (Ag, [1) etc.

4.16.  Cf. also Example 2.38] Let C be a finitely complete category with
monoidal product ® commuting with finite limits. It defines a cooperad

(€, ®)".
We will be interested in the Day convolution cooperads

D((A,*)P,(C,®)") and D((A )P, (C,®)Y).
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By Proposition those are again cooperads on C A" associated with monoidal
products
- ®-:=dec, - - and -®— =" - ®-,

while in both cases the unit is given by 7*1, where 1 is the unit in C. Note that
finitely complete is sufficient for the monoidality, because dec, is effectively
computed by finite limits (see Proposition and also . The product
~-®~— is just the point-wise extension of ® on C2 . If (C,®) is an Abelian tensor
category, then — ® — translates via Dold-Kan into the usual tensor product of
complexes (and commutation with finite products is sufficient). This will be
discussed at length in Section

4.17. The cooperad (C2”",®) is always fibered over 0°P (i.e. comes from a
monoidal product), regardless of any properties of (C,®). In fact, this is the
situation of We can thus equally well describe the operad

(CAOP,®) = D((A0p7 H)7 (C7 ®))

as a Day convolution. Notice that ((A, [1)°P)Y = (A, 1]). The operad (C2”, &),
however, cannot be described as a Day convolutio

4.3 Canonical enrichments in pre-sheaves

Let I be a small category and let C a category. We have recalled in that
C’"" has a canonical enrichment in pre-sheaves Set’ ” (with particularly easy left
tensors — if C is cocomplete — namely just given by the point-wise tensoring
of C with Set). There is a second description of the same enrichment, which
will be very convenient in Section to construct homotopies, as, for example,
the homotopy between Ez Aw and id. In these applications, we will always have
I = A and the second description amounts to the fact that

Hom(X,Y)p,,) 2 Homgaeeyner (decy,, X, decy 1Y)

and thus (under suitable (co)completeness assumptions) A, ® X can also be
described as decy,1,1dec) ,; X with the functoriality in A,, (essentially) given by
certain adjunction units, and HOM(A,,, X) as decp+1,. dec,,,; X. This second
description is well-known (cf. [48]) but seems not to be widely used in the
literature.

Definition 4.18. Let I be a small category with final object i. Consider a
functor
F:I°? - Cat

and define

Homp: I’ x F(i)* x F(i) — Set
(J,X,Y) = Hompgg)(F(p;)X,F(p;)Y)

where p;j : j — 1 denotes the unique morphism to 1.

2"Notice that it involves morphisms departing from a right Kan extension.
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Proposition 4.19. The Homp of Definition [{.18, defines an enrichment on
F(i) in Set!” w.r.t. the point-wise product

Set”™ xSet’”" - Set!”" .

If the functors w.r.t. all p; for all objects in I have a left (resp. right adjoint),
and F (i) is cocomplete (resp. complete) then this is left, resp. right tensored.
More generally a functor

F: I —» Cat; or  F:I°® > (co)Op,;

gives rise to a Set’” enriched category or (co)operad F(i) — J. If the F(i) — J
are (co)fibrations, then this only yields again a (co)fibration of simplicially
enriched categories (i.e. induces a structure of simplicially enriched functor
on the pull-backs, resp. push-forwards) if F has values in (co)fibrations and
(co)Cartesian functors.

Proof. For fixed j the morphisms in Hom(-,-) can obviously be composed
and the composition is functorial in j. If all F'(p;) have left adjoints G(p;),
then we can define

Ix F(i) > F(i)
J, X = jw X = G(py)F(p;)X
This gives rise to a left tensoring defined by
Set!™ xF(i) - F(i)
C,X»—>f O @) x (ix X) 0
4.20. Ifthe F(p;) have left adjoints G(p;), then the isomorphisms F'(a) F(py) =

F(pj) for a: j — k yield morphisms jx X — kx X by means of applying Yoneda
to the commutative diagram

Hom(F(px) X, F(pi)Y") —+ Hom(F(a) F(p) X, F(a) F(pr)Y)
Hom(kx X, Y)— - - — — — — — > Hom(j x X,Y")

Note that the upper horizontal arrow is the functoriality of the construction in
the last Proposition. These morphisms can be described equivalently as follows:

1. G(pr)F(pr) 2 G(pr)F(a)F(p;) = G(p;)F(pj) where G(pr)F(a) =
G(p;) is the mate of F(a)F (pr) = F(p;)-

2. If the F(«) also have left adjoints then this may be described even more
easily as

G(pi)F(pr) = G(p;)G(a)F(a) F(p;) = G(p;) F(p;)
given by the counit G(a)F(a) — id.
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We leave the proof as exercise.

4.21. Let
F F':I°° » Cat

be functors and assume that the F'(p;) (resp. F'(p;)) have left adjoints G(p;)
(resp. G'(p;)). A natural transformation

p:F'=F
yields a natural transformation
kx pX = p(kx X)

defined as the composition

G(pr) F(p) (k) ——= G(pi)p(i) F' (pr) —— u(k)G' (i) " (pr)

where the right hand side morphism is the mate of the isomorphism featuring
in the natural transformation.

Lemma 4.22. The transformation kx(u-) = u(kx-) defined in is natural
in k, even if not all F(«) have left adjoints.

Proof. We have to show that the outer square in

G(pr)F(pr)p G(pr)uF' (pr,) — pG'(pr) F' (pr)

| | )

G(pp) F(a)F(pr)p —> G(pr) F(a)iF' (p1) —> G(pr)puF' () F' (p1) — pG' (pr) F' (o) F' (p1)

l l l

G(p)F(p)p —> G(p)pF' (m) G (o) F' (pr)

commutes. Here obviously everything commutes, except

G(pr) F(a)p — G(pe)pF’'(a) — pG'(pr) F' ()

l |

G(pi)p pG' (pr)-

This is an exercise with mates, that is left to the reader. O

Proposition 4.23. Let I be a small category with a final object i and let C be
a category. Consider the functor

f:1—-Cat
g (Ixrj)®
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classifying the fibration "' — I°P (or, equivalently, the cofibration ™I — I). It
yields via composition with L¢ (see a functor

F:=Lco fP:I°° - Cat.

Notice that C does not have to be cocomplete, because the composition consists
entirely of pull-backs. The enrichment in Set!™ obtained by this functor F
in Definition is naturally isomorphic to the canonical enrichment in pre-
sheaves (i.e. to the one right adjoint to the point-wise tensoring, if the
latter exists), given by

Iop

€yP x (") > Set
C,Dwjo /kHom(HomI(k,j),Homc(C(k),D(k)).

Proof. We have

H i D)z li H D(k'
om(CpD) =, | Tm  Home(C(K), D(K)

and there is a canonical isomorphism, functorial in j, F' and G:

. / ~ . . !
kl%k%%_g{l(lxuj)Homc(C’(k),D(k ) = krllzgeleom(HomI(k’j)’Homc(c(k)’D(k )

because ™ (I x;; j) - ™1 is a fibration with discrete fibers Hom;(k, j). O
4.24. Applying Proposition to the functor (cf. [4.10))
Eg : A@ - Cat

with Z4([0]) = AZP, classifying the monoidal cooperad (Ag, *)°P, we see that
the enrichment on C22" defined by

[n] ~ Hom(decg’ml X, dec;;,nu Y)

(i.e. obtained by letting F ::OPLC o Z¢f in Definition [4.18)) is the same as the
canonical enrichment in Set®2 .
Now assume that C is cocomplete. We have seen (cf. [4.10), that there is a

functor
2: Ay - Cat’F

with Z([0]) = AP, classifying the co-exponential cooperad (A, #)°P. We have a
transformation
4By ==
which is natural (and not only oplax) by Lemma By applying L¢ it gives a
functor
LeoZ%01i: A - Cat
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and a natural transformation
Lc(i):LcoEOpoichoE%poi
and the the enrichment on C2™ defined b
[n] = Hom(dec},, X,dec;,,Y)

(i.e. obtained by letting F := L¢ 0o Z°P o in Definition is again the same as
the canonical enrichment in Set®”

Proposition 4.25. The structure on C®" obtained by letting F = Le 0 Z° o
in Definition is again naturally isomorphic to the canonical enrichment
in pre-sheaves (i.e., here, simplicial sets).

Proof. Cf. [48] for a similar proof (for n =1). From Lemma applied to the
natural transformation L¢ (i) (4.24), we get a morphism functorial in n

[n]x(i1=) = decg ns1,1decg ,, 1 @ = decg ni1rirdecy, ,y 2 decy 1 decy, ;= ii([n]x-)

which is an isomorphism (because the mate is just the adjoint of the equality
decy,, i* =i*decg ,,,,). We have thus functorially in [n] e A°P:

112

Homeaor (X,Y )0 Hom ,aop (11X, Y ) ) Lemma [2.17] 2.
= Hom .o ([n] x (01X),4.Y) Proposition £.23]
= Hom ag (ir([n] x X),i.Y) as seen above

¥ Homgeaor ([n] x X, Y) i is fully-faithful. O

Remark 4.26. The enrichment of C2™ in Set®” gzven by pmcedure (z e.

applied to Le o Z°P instead of Le 0 E°P 014) is in fact an enrichment in Set? .
It follows from the definition, that we have

Hom(X,Y)[-1] = Home(m X, mY).
Corollary 4.27. If a left tensoring exists, the diagram of functors
id = pr; ; dec” Z decydec” ——id

18 canonically equivalent to the diagram

do
d2Ay® - ;A1®—i>AQ®—.
01

Furthermore, for a morphism f:dec* X - dec* Y, denote by f the correspond-
ing Ay ® X =Y. Then the following is commutative

fg

28Note that, although this seems similar to before, the face maps now act as partial colimits!
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Proof. The transition pro-functors for sg : [1] = [0] and dp,d7 : [0] = [1] in =
are given by dec : (A°P)2 — A°P and ‘pr; : AP - (A°P)?] respectively, which
are mapped by L¢ to dec”, and pr; ,, respectively. O

4.28. The isomorphism (cf. Corollary [4.27)
Hom(dec® X,dec”Y) 2 Hom(A; ® X,Y)
can be made very explicit: A morphism
F:dec* X »dec’Y
which is in components given by
Flay 1 * Xpare1 = Y0

also determines morphisms F[_1j,[;; and F[;}(-1] via the colimit.
In turn, an element
G: Al xX->Y

is given in degree n by
(Gny,i)i - Homaer ([1], [n]) x X[n) = Y

where i = -1,...,n index the elements of Homaor ([1],[n]). If F and G corre-
spond under the isomorphism above, we have explicitly:

\ Gnli = Fla),[n-i-1] \

This can be seen, for instance, from the formula

(dec K)py= [ Kpay
i4jmn-1
ij2—1
established in Proposition below.
There is a monoidal version of the above:

Proposition 4.29. Let (C,®) be a cocomplete monoidal category such that ®
commutes with colimits. The category of simplicial objects is equipped with the
point-wise monodial structure. The corresponding operad (C2 p, ®) can also be

seen as the Day convolution D((A°P,11),(C,®)), and the corresponding coop-
erad (C2”,®)Y as the Day convolution D((A,11)°?,(C,®)Y) (cf. The
simplicially enriched structure on ® given by

Ke(XeY)»(KeX)®(KeY) (36)

induced by the diagonal K — K x K (all ® are computed point-wise) can be
equally given (using the procedure in Deﬁnition above) by a functor:

e 1-oplax,1-i - PF
=, AQ - Hom oplax,l-inert pseudO(Oop’ (Cat , ><)V)
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with 2([0]) classifying (A°P, 1) = © (2 consists actually of natural transfor-
mation — not only oplaz) and applying Lc,g) (Proposition . Likewise, it
can be given by a functor

EV . Ag N Homl—oplax,lfinert—pseudO(O’ (CatPF7 X))

with ¥ ([0]) classifying (A, 11)°P - 0°P (2Y does not consist of natural trans-
formations) and applying Lc gy (Proposition .

Proof. We need to observe that the exponential operad (A°P,]]) extends to a
functor 2 : Ay — Hom ! oPlax1minert=pseudomop (CatPF »)V) or, in other words,
that there is a functoi®)]

Z: Ay x AP - Cat™

sending * to products in both variables, and roughly speaking, encoding the
operad Z[(A°P,]])] vertically and the cooperad Z[(A, *)°P] horizontally. For
this one one has to construct the following commutative diagram:

(A%P)? s (A%P)

512,34l lé

(A)! > (AP)?

deC13,24

which is obvious, and

(A°P) T (A°P) T

(N I

(A°P)? "

which is the cofinality of § (Lemma [A.4), and the cofinality of 7, i.e. the con-
tractibility of A°P, and a fourth type which is trivial. The fact that this yields
the structure defined by follows basically by unraveling the definition, and is
left to the reader. For this functor all diagrams commute (not only oplaxly), i.e.
it is morphism-wise Cartesian, reflecting the fact that this yields a simplicially
enriched structure on the push-forward ®. The functor

EV . AQ N I_Ion,ll—oplax,lfinert—pseudO(O7 (CatPF7 X))

is formed by applying ! in the d-direction and passing to mates. We get only
oplax commutativity. O

298hifting slightly the perspective and considering Ag instead of the usual A:Et via

Lemma @
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4.4 Naive homotopy

4.30. Recall the notions of simplicially enriched category, functor, and
natural transformation (see, for instance [37]). Let C, D be simplicially en-
riched categories, and p: A = B a natural transformation between simplicially
enriched functors. p is simplicially enriched, if

Hom(i, 7) Hom(A(7), A(4))

Bl Lu(j)o

Hom(B(7), B(4)) Hom(A(7), B(4))

op(i) -

commutes. The set of simplicially enriched natural transformations can be en-
hanced to a simplicial set turning the category Fun(C,D) into a simplicially
enriched category, as follows:

4.31. Given a simplicially enriched category C, for each simplicial set K,
we may define a simplicially enriched category Cx with the same objects and
morphisms

Hom(K,Hom(X,Y')) = Hom(K x X,Y)

with composition induced by the diagonal K — K x K. There is a simplicially
enriched inclusion functor

C'—>CK

given by composition with K — Aj and a simplicially enriched functor F': C - D
induces a functor

For a second such functor G there is a simplicial set Nat(F, G) characterized by
Hom(K,Nat(F,G)) = Hom(Fk,Gxk)
which can also be expressed using the enriched end:

Nat(F,G) = [C Hom(F(c), G(c)).

This can also be seen as the natural enriched Hom-object in the enriched functor
category of functors from C - D.

4.32. Let I be a small category or (co)operad and let C - I and D — I
be simplicially enriched cofibrations (of categories or (co)operads) classified by
functors Z¢,Zp : I - SCat (resp. I — (SCat, x)) where SCat denotes the 2-
category of simplicially enriched categories. We have

Hom;(C,D) = Hom'™ (Z¢,Zp).
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The compatibility with the simplicially enriched structure is as follows: Homy(C, D)
consists of simplicially enriched functors. For € Hom'™ (Z¢,Zp) the p(i) have
to be simplicially enriched and

- . @) - .
Ee (i) ——> Ep (i)

Ec(a)l —h(e) lED(a)

Zc(d) o Ep(J)

the natural transformations u(«a) have to be simplicially enriched, in the sense
of

Let I' the underlying set of objects (only those in If1) in the (co)operad case).
Denote ()" the composition with (or pull-back to) I’ = I. Fix an object X
Hom(C*,D") = Hom(lax)(Ebc,E%) that is simplicially enriched, i.e. a collection,
for all objects i € I, of a simplicially enriched functor X (i) : C; - D;.

Denote by Hom;(C,D) x Homlax(Ec7 Ep)x the set’’|of functors (resp. lax
natural transformations) that map to X.

Each simplicial set K define categories Hom;(C, D) = Hom™(Z¢, (Ep) k)
where (Ep)k is the functor that maps i to the simplicially enriched category
Di,K'

Definition 4.33. We define a simplicial set of naive deformations
Def x (Z¢,Ep)
such that
Hom(K, Def v (Z¢,Ep)) = Hom[(C, Dk ) x = Hom™ (Ze, (Ep) k) x.

The adjective “naive” is used to distinguished these deformations from the
coherent transformations discussed in Section [4.9] which are more sophisticated,
and encode higher coherence as well. Sometimes, however, this higher coherence
data can be built from a naive deformation, see Proposition

4.34. Let us unravel the definition: For a simplicial set K the following set of
data are the same

1. Hom(K, Def )
2. For each morphism f:z — y in C a morphism
pr Ko X(z) > X(y)

which if f lies over an identity of I is the constant morphism X (f) :
X(x) > X(y). If C is simplicially enriched, then we have a morphism

Hom(x,y) - Hom(K x X(z), X(y))-

30This is a set, because the functors between fibers are fixed, only the values on morphisms,
resp. the laxness constraint, are variable.
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mapping inert morphisms to inert morphisms, and compatible with com-
position.

3. For each morphism f:¢ — j in I a K-natural transformation:
pug - Hom(K, Nat(X () F(f), G(f)X(i)).
(invertible if f is inert) compatible with composition.

If the simplicially enriched structure on J = C is discrete — and we will be
mainly interested in this case — the deformations F': J — D over X : J* - D"
can also be described as follows:

4.35. Let D be a left tensored simplicially enriched category. Let (M e
End(D),m,u) be a simplicially enriched monad. Then for each simplicial set
K and object G € D, we may define a set of M x K-algebra structures on G by
morphisms pg : MG x K - G such that

(u,id)
GxK—MGxK

S

G

and

m,id
M(MG x K) x K <2— M2G x K™Y ma« K

(M/JK,id)l LH’K

MGx K G

123 :¢

commute, where in the arrow ¢ also the simplicially enriched structure of M is
involved. This is clearly functorial in K and thus, in particular, given G, we get
a simplicial set of M-algebra structures

Alg, (G)n) = {An x M-algebra structures on G}
which represents the previous functor on simplicial sets.

4.36. Let I be a small category or (co)operad and let D — I be a simplicially
enriched cofibration and p: J — I a usual (discrete) cofibration. Let I® be the
set of objects of I and v : I’ < I the canonical functor and J*, resp. D® the
pull-backs. We have a pull-back diagram

J Y s
p"l LP
J

We assume that v* : Dg - D;,’i = (Db)p{: has a left adjoint ul(p) (relative left
Kan extension, see Proposition for sufficient criteria for its existence). It is
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well-known that the adjunction is monadic and thus Dg can be reconstructed

as the algebras in (D" ;: w.r.t. the monad
M = V*u!(p).

In the special case that J is an operad and I = O, this is the interpretation of
algebras over the operad J as algebras for a monad.

The monad is simplicially enriched w.r.t. the simplicially enriched structure
on D —» I. We have then

Def (J,D) = Alg oy (X).

4.5 Acyclicity (Construction of homotopies)

4.37. A functor
Y : Ag(z A%) - Cat™".

act

defines a structure of simplicially enriched category (in fact enriched over SetA%p)
already on
HOmCatPF (YV[O], X)

for any category X as follows: Its objects are pro-functors o : Y[g) -~ X and we
define simplicial sets of morphisms by

Hom(a, B)[,] = Hom(aY (pn), BY (pn))-

If C is a (finitely) cocomplete category, then L¢ oY equips Le¢(Yfo]) = CYo
with the structure of simplicially enriched category by means of Proposition [4.19]
and we have a map of simplicial sets:

m(avﬁ) - @(LC(O‘)aLC(ﬁ))

turning L¢ into a simplicially enriched functor. Here the Hom on the RHS is
the simplicial enrichment of functor categories Hom(C*,CY1o1) , but with
the trivial (discrete) structure on CX!

The standard example is the functor Y = = obtained from the cooperad
(A, %)°P determined by Zpg) = A%, E(py) = dec and E(pgy) = ‘m. We have seen
in Proposition [£.25| that L¢ o= yields the canonical enrichment in simplicial sets
for simplicial objects in C.

For now it was not used that Y comes from a cooperad, i.e. that it is com-
patible with the product * on Agz and x on Cat™. This circumstance has
strong acyclicity implications for the simplicial sets considered above (and also
their cousins Def(--+) discussed in below) that are eventually the source
of all homotopies constructed in these lectures. This is in some sense paral-
lel to the theory of acyclic models [9], but has the advantage of being entirely
constructive, and not limited to Abelian situations.
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In particular, two homotopic transformations u,v : @ =  induce homotopic
transformations L¢(«) = Le(3). In particular, if Y = Z is the standard exam-
ple, and W is a class of weak equivalences in C2”" satisifying (W1) of then
for the induced

L(a), L(B) :€X —» c27 W]

we have L(u)' = L(v)'.
4.38. Assume that also X extends to a functor

X : Ag(z A%) - Cat™

and assume that X and Y have the following properties:

1. They are monoidal w.r.t. the concatenation product * on Ay and x on
Cat®F. (This is the case if and only if they correspond to exponential
fibrations of cooperads I - 0°P. )

2. The unit - ¢ Xz — Xy is given by ‘7. (By 1. this determines all values of
X under injective maps.)

Proposition 4.39. If a and 8 extend to an oplax transformation, and lax
transformation, respectively:

& € HomPPlaxpa-pseudox (- x) 7 € Hom!®xpo-pseudo.x (y. x
((op)laz, pseudo on pﬂ , and compatible with the product structure) then
Hom(a, 8)
is empty or contractible.

4.40. Before we give the somewhat technical proof, we discuss a functorial
version of Consider a category or (co)operad I and functors

C, De AQ N Homl—oplax,l—mert—pseudO(Iop, (CatPF, X))

which satisfy the properties of point-wise in 7, such that also the oplax-ness
constraints are compatible with the product structure. Let

F:D|Ib —>C|]b

be a natural transformation (i.e. a collection of pro-functors F'(3) : D(i) - C(i))
compatible with product. Then define

M(D, C)R[n] . Homoplax,inert— pseudO(D[n]’ C[O] )F[O]OD"(p,,L)

31Unraveling the definition, in view of assumption 2., this means that « and B must be

cofinal, i.e. satisfy a‘r = 'r and B'r = 'n.
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writing D := D|p. The functoriality for o : [n] — [m] is given by the pre-
composition maps

Homoplax,incrt —pseudo (D

[m]> C[O]) N Homoplax,incrt—pscudO(D[n] ’ C[O])
induced by D(«) € Hom"plax(D[n],D[m]). Note that this yields a set, because
the “values” of the natural transformations are fixed; the only variable is the
oplaxness constraint. Notice: For this definition, the structure extension of Cfy;

to Ay does not play a role, yet!

4.41. If C - I is a functor of categories or (co)operads with (finitely) cocom-
plete fibers, then D equips L¢(Drpoy) = D(Dfo},C) (the Day convolution) with
the structure of simplicially enriched category over I (cf. Proposition [4.19), and
we have a map of simplicial sets (cf. Definition for the RHS):

Def(D, C)r — Def(D(Cpo1,C), D(D101,C)) Le(F)

in which D(Cjo),C) is considered discrete and D(Dyg,C) receives its simplicial
structure from the functor Le o D. Warning: The Day convolution D(Drg,C) —
1 is only a simplicially enriched cofibration over I, if C — I is a cofibration and
D is actually a functor Ag — Hom(I°P, CatPF) i.e. maps morphisms to natural
transformations (as opposed to oplax ones).

Whether D(D[O],C) — [ is a simplicially enriched fibration, cannot be in
general detected with the calculus of pro-functors, because this concerns R and
the simplicial structure is encoded via L. If Dpy actually corresponds to a
fibration (i.e. has morphisms in im ), we may form Dy, and this can be done
in certain cases.

4.42.  For I =[1], as a special case, we obtain the situation in in case
@ and S are actually natural transformations (not only lax or oplax), with the

following data: C' and D then encode @ and f as cofibrations over I = [1] and
F' is the identity. Then we have

Hom (e, f) = Def(D, C')ia-

4.43. For I =[2]and « = asa; and 8 = By, encoded by C and D, Def (D, C)iq
consists of those simplices in

Hom(av, B1) x Hom(aw, B2) x Hom(a, )
such that the pasting
Hom (o, f1)xHom(ag, B2) — Hom(aay, apfy ) xHom(azf1, f2/51) — Hom(c, 5)

maps the elements (of the same degree) in the former pair of simplicial sets to
the one in the latter. For the map Hom(aw, 82) - Hom(as 81, B2/81) to exist,
it is essential, that By is “simplicially enriched” meaning that it extends to a
functor Ag x [1] - Cat"™.

93



4.44. There is a canonical element in Def(D,C)p 1] given by

lax
Hom®”™(Dg =+, Clo]) 5o j00* (pg)
=C(py)

given by C(pg). If that one consists of isomorphisms then it is the unique
element in there.

Proposition 4.45. In the situation of[[.40, the fiber of
M(D, C)F

over the canonical element C(pg) in Def(D,C)p-1] is empty or contractible.

Proof of Proposition[{.39 By Lemma [£.47] 2. below it suffices to construct a
section of the natural map

dec” Hom(a, ) - Hom(c, ) ® Hom(a, ).

Given p1 : aY (pn) = B8Y (pn) and ps : @Y (pm) = BY (pm) we have to define a
morphism
v: aY(pn+m+1) - By(pn+’rn+1)

which applied to Y (4;) and Y (d,) gives back p; and po. It is defined as the
pasting

Y (Pn+m+1 )~ ~ Y (pn+m+1)

= =
\L/

where the middle natural transformation is (p1, 12) exploiting the product struc-

ture on Q4m+1 and En+m+1. We have to show that be get back p; after pre-

composition with Y'(§;) (and similarly, us after pre-composition with Y'(4,)).
Claim: The pasting

(37)

an+rn+1
=

Brn+m+1
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is equal to the pasting:

An+m+1

~_ 7 (38)

ﬁn+m+1

Both diagrams are actually products, namely

Y (pn)a Y (pm)a
Y(dn) _—mm Y™
L
Y (pn)B Y (pm)B

and

Y (pgtt) I Y (pm)o

vad)\ U Y(p)s ~ Yp* I Y (pm)B

For the left parts the assertion is thus clear. For the right parts note that
by assumption X (pg) = Y (pg) = 'r and that @ and J are pseudo on py, thus
Y (pg)a and Y (pg) 3 are thus both isomorphic to ‘r which is a final object. This
proves the claim.

The conclusion is made by pre-composing with Y'(8;) and inserting
9. 0

Proof of Proposition[{.75 By Lemma [£.47, 2. below, it suffices to construct a
section of the natural map

dec” Dief(Dv C)F - M(D7 C)F M(Da C)F

Given u; € HomoPlax(Dn,Co)poon(pn) and pg € HomoPlaX(Dm,C'O)FOon(pm),
we have to produce v € Hom™*( Dy 41, Do) Fyo Db (pansn) CONMeCting the two.
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This is more or less the same construction as in the proof of Proposition
We have given for each a: i — j:

Fo(5)oD(pn,j) Fo(3)oD(pm,j)

— S —
D“(Q)L U“l LCD(Q) D?n(a)l UV«2 \LCO(OC)

Fo(1)oD(pn»i) Fo(i)oD(pm i)

or which is the same:

C(pn,j)oFn(j) C(pm,j)oFm(5)
Dn(a)l JHa LCO(Q) Dm(a)l #2 lCo(a)
- _
C(pn,i)oFy (i) C(pmyi)oFm (i)

and have to construct a 2-morphism in

D(pn+m+1,3) Fo(5)

Dn+m+1(a>l UV lco(a)

D(pr+m+1,%) Fo(4)
The square is isomorphic to the outer square in

C(Pn*pm,J) Fnim+1(3) C(p1,5)

Dn+m+1(a)l [ ron2) C'1$a) l lCO(a)

C(Ppn*Pm,i) Fnims1(i) C(p1,i)

and it is clear from the functorialities that the constructed element yields a valid
element of Def(D, C)p psm+1-

We have to see that we get back 1 and uo after applying d;,d,.. Investigate
the case of d;, the other is analog:

D(61,3) C(pn*Pm:J)Fnrm+1(3) C(p1.5)

Dn(a)l | Dn+ni+1(a@(”1’”2) Cll(/a) [ LCO(Q)

D(61,3)  C(pn#*Pm ;i) Frnam+1(3) C(p1,9)

The left squares are the product

C(pn,5)Fn(4) Dpg*'i)  C(pm.d)Fm(d)
= — >
Dn(a)L Dnl(a) [ lCo(a) X H Dml(a) yr2 lCo(a)
I v
C(pn»i)Fn(i) D(pEL+1,i) C(pmvi)FWL(i)
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in which the second factor is isomorphic to a diagram of the form
C(pg:i)
e

and we have by assumption that g and po map to the oplaxness-constraint
given by C(pg). (If that is an isomorphism, then both compositions are the
final object and thus there is only one 2-morphism anyway. ) We can thus write
the pasting as

C(pn:d)Fn(d)  C(p1*pz,j) C(p1,3)

| |
Dn(oz)l W Cole) b Ci(e) lCQ(Q)
v b

Cpn,))Fn(i)  C(p1%pg;i) C(p1,3)
which gives back . O

The following Lemma and its Corollary, which is well-known, can also be
obtained easily without calculation from the description of homotopies via dec
but is a bit different, and also more elementary than the Propositions discussed
before.

Lemma 4.46. The canonical map
P:dec, = [n]om: A% - AP
18 a homotopy equivalence in the sense of (for Y = Z the standard example).
Proof. (cf. also the proof of Lemma. Define
S:[n]om = dec,

by the degeneracy [n] « [z] * [n] which maps [z] to the minimal element in
[n]. Obviously, PS =id. We have to define a morphism

£ : dec,, dec - dec,, dec

such that the pre-composition with ‘pr, gives back the identity and the pre-
composition with ‘pr; gives back SP. We define the morphism

§:[a] = [b] * [n] > [a] x [b] = [n]

as the identity on [a] and [n] and mapping [b] to the minimal element of [n].
We may in fact extend £ to a morphism

&gy 1 decy , decy — decy , decy .
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That one has the obvious property that composition with py = ([@],id) : AZ} —
A x AZP gives back (the restriction of) SP and composition with p; gives back
the identity. Thus

ki decg,, decg pit — % decg, , decg pit

is SP, and id, respectively. But ‘idec([n],id)dec = dec(%,%)([n],id)dec =
dec([n],id)% dec = dec([n],id) dec(%, %) using Lemma[A.5|and finally (%, %)p;i =
m; using Lemma O

Corollary 4.47. 1. The canonical map
dec* :>pri :CAOP _)CAODXAOP

is, point-wise in the second variable, a homotopy equivalence, i.e. all the
canonical maps dec, X - X,, where X,, is considered constant, are homo-
topy equivalences.

2. If X is a simplicial set such that there is a section of the natural morphism

dec* X - X®mX

then X is either empty or contractible.

Proof. 1. is an obvious consequence of Lemma For 2. consider the mor-
phism
decy X - X x X,

which has a section by assumption. The fiber over any element of X of the left
hand side is contractible by 1. That is thus also the case for X. O

4.6 'Weak equivalences and geometric realization

The non-Abelian Eilenberg-Zilber theorem that will be investigated in the next
two sections is a statement “up to weak equivalence”. Indeed, even the Eilenberg-
Zilber morphism that will be constructed is only defined as a morphism in the
homotopy category (unless the situation is strongly symmetric, as in the Abelian
case). We do not want to restrict the situation unnecessarily, allowing for sim-
plicial objects C2™ in a general 1-category (being mainly interested in C = Set
and C Abelian in these lectures). The proper language for such a general situa-
tion would be, of course, that of model categories. However, as long as we are
in a situation (as in these main examples), where “potentially” every simplicial
object is cofibrant, much less is needed for our purposes:

4.48. Let C be a (finitely) complete and cocomplete category. We consider
the following axioms on a class of “weak equivalences” W in C2™.

(W1) A;® X - X (or equivalently X - HOM (A, X)) is a weak equivalence
for all

32where ® and HOM are the (co)tensoring of the canonical simplicial enrichment [2.15
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(W2) 6*: CA*A™  CA™ maps point-wise weak equivalences (in either direc-
tion) to weak equivalences.

Lemma 4.49. The two versions of (W1) are equivalent and also imply that
X > Hom(A,,X), and A, ® X - X are weak equivalences for all n.

Proof. Any of the two statements in (W1) implies that homotopy equivalences
are weak equivalences, and, since ® is associative, — ® X and Hom(-, X)) map
homotopy equivalences in Set®™ to homotopy equivalences in C2”", and s :
A, — Ay is a homotopy equivalence in Set®™. O

Lemma 4.50. The azioms of [{.48 hold true for C = Set, and for C Abelian,
and the class W of usual weak equivalences, and the class of quasi-isomorphisms,
respectively.

Proof. Case C = Set.

(W1) holds true because ® = x is a left Quillen bifunctor (cf. [29]), every
object is cofibrant, and dg, d; : Ay = Ay are trivial cofibrations, therefore id xdg :
X — X x Ay is a trivial cofibration, and therefore the first map of (W1) which
is a section of id xdy is a weak equivalence. (W2) is shown e.g. in [29, IV,
Proposition 1.7].

Case C Abelian.

(W1) If two morphisms f,g : X - Y are ®-homotopic, i.e. if there is a
morphism A; ® X - Y such that the restrictions give f and g, respectively, then
the composition A; ® X - A; ® X - Y with the Eilenberg-Zilber map yields a
homotopy in the usual sense (cf. also Lemma which implies that f and g
induce the same map on homology groups. Hence homotopy-equivalences w.r.t.
® are quasi-isomorphisms as well. Then argue as in the proof of Lemma

(W2) The proof of the Eilenberg-Zilber theorem does not need (W2) in the
strongly symmetric case (cf. Definition . Thus it suffices to show that
dec, 2 tot (cf. Proposition preserves quasi-isomorphisms in any direction.
This is true in any Abelian category for non-negatively graded complexes. [

Note that we have (for the examples C Abelian, and Set, and more generally
in case that (C® D,W) is part of a model category structure) an equivalence of

localizations: o op opo AoD
€A IWTIDAT 2 e AT W

at the vertical weak equivalences ([I8, Proposition 7.9.2.]). This is not at all
true for the 1-categorical localizations. The statement below makes sense for
them as well, if one takes C2"*2""[W;!] and the homotopy colimit, i.e. the
derived functor of the colimit.
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Proposition 4.51. If[/.Z8 hold then we have a commutative diagram of oo-
categories:

CA XA s cA”

| |

(o L e G

colimpop

in which the vertical functors are the canonical ones into the localizations which
we consider as oo-categorical localizations. In other words

8% = geometric realization. ‘

Proof. Let 6 : [n] » A, be the canonical cosimplicial simplicial object. We have
5 X = ann ® Xun.
This is left adjoint to the functor
(04X )en 2 HOM(A,, X).

By and Lemma both functors preserve weak equivalences and thus
descend to an adjunction between the localizations. However, by Lemma [4.49
the morphism prj — §, induced by A,, > Ag is a (point-wise) weak equivalence.
The statement follows thus from the uniqueness of adjoints. O

Remark 4.52. In a situation in which the Eilenberg-Zilber Theorem holds (e.g.
if CA™ s symmetric w.r.t. W), thus also dec. computes geomelric realization
in the localization.

In the Abelian case, the same proof gives also directly that dec, = geo-
metric realization: We have, denoting AJ = Z[A.] the cosimplicial object in
Chso(Ab)A:

dec*X;f A? @ Xop.

(because dec, = tot obuviously commutes with colimits) and this has the right

adjoint (cf. also Section|[C.5)
dec’: X ’H(’)Mé(AC’,X).

Again both functors preserve quasi-isomorphisms and the second functor is iso-
morphic to pry in the localization.

Remark 4.53. The statement in Proposition [{.51] is obviously also equivalent
(using that § is co-cofinal, see Lemma to the commutativity of the diagram

cA”

|

(i L e S G

colimpop
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where the vertical morphism is induced by the compositionC — C>"" — CA™ W]
In other words, every object in C* lD[V\/_l] is the “colimit of itself considered as
simplicial diagram”.

4.7 Symmetry

This section contains a discussion of the symmetries of simplicial objects that are
at the heart of the Eilenberg-Zilber theorems, Theorem [£.65|in the general case,
and Theorem [5.15] in the Abelian case. These symmetries are more tractable
and efficient in the Abelian case. Let ¢ : A°®? — FinSet®”, where FinSet is the
category of non-empty finite Setﬂ be the inclusion.

Definition 4.54. We say that C2” (with chosen class of weak equivalences W)
is (strongly) symmetric if there is a functor:

¢ CAOP N CF‘inSet“p
with a natural transformation
id—> /"¢
which is object-wise a weak equivalence (resp. an isomorphism).

4.55. Recall the axioms (W2) is only needed in the non-strongly sym-
metric case.

Lemma 4.56. If W is a class of weak equivalences such that hold then
there is a weak equivalence 0* dec” — id. In particular, 6* dec” preserves weak
equivalences.

Proof. Lemma shows that dec” — pr} is point-wise in the second variable
a homotopy equivalence. Thus by (W1) it is point-wise in the second variable
a weak equivalence. Thus by (W2)

5 dec® —» §* pry =id
is a weak equivalence. O

Lemma 4.57. Set®” is symmetric and C*" is strongly symmetric for any
Abelian category C.

Proof. The standard cosimplicial objects
AT = {(z0,...,xn) eRM | Y =1}

in TOP and

(A7)i = Z[Homa ([7], [n])]
in (Ab')2™ extend to functors A7>* and A®* from FinSet (the first by obvious
action of S,, on the coordinates and the second using the action of Lemma.

33for simplicity, the equivalent category with the same objects as A°P
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Defining ¢ := NAE,SRAZ, and € := Npo.sRao, respectively, we have *€ =
Nar Rar, and t*€ = Nao Rno , respectively, which come equipped with a natural
transformation (unit of the N, R adjunction) id — ¢*€. Tt is a weak equivalence
of simplicial sets, and an isomorphism in C2”", respectively. O

Lemma 4.58. Let C be Abelian. For the functor € of Lemma we have
€= Le(('0)°P) = Re(CP)
where C' and 'C are the Ab-enriched pro-functors C : FinSet — A (resp. 'C :
A - FinSet) with C left adjoint:
C:n,m +~ Hom(A;,A; )eHom(A? x FinSet, Ab)
‘Cin,m ~ Hom(AS,A?)eHom(FinSet® xA, Ab)
and there is an isomorphism of pro-functors C'v ~id (resp. 4'C =id).
In the definition of C' (resp. 'C') A° in the right slot (resp. left slot) is con-
sidered as functor on FinSet as defined by Lemma [5.6]

Proof. Recall that Nao commutes with colimits and ® (see proof of Theo-
rem [5.11)). Hence we have

¢(X), = Hom(A®, fmAfntanm) _ f Hom(AS, A Y@ X, = Le ((1C)°P)(X)

(which is isomorphic to X,, as object in C, of course, but now gives a FinSet°P-
valued functor).
We also have:

(X = [ HOM(Hom(A;,, A7), X,) = Re(C™)(X)

which is also isomorphic to X,,. Applying this to C = Ab, we see that Ly, (C°P)
is left adjoint to Lap,((*C)°P), thus C°P right adjoint to (*C)°P and thus C' left
adjoint to ‘C. O

This shows also that there is a similar operator:

en . CA°"><~-><A°I’ N CFinSetOp x--xFinSet°P

by applying the Ab-enriched pro-functor C x --- x C.
For general symmetric C2”, we have something weaker:

Lemma 4.59. Let C2” be symmetric. There is an opemto
Q:Z :CAOPXAOP N CFinSetOP x FinSet®P
with a natural transformation
id - (1,0)*¢?

which is a composition of natural transformations which are point-wise in one
or the other direction weak equivalences.

34and similar for higher powers, which will not be needed.
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Proof. For X € {A°" FinSet°’} denote by
(€7 ld) :CAOPXX N CFinSetOI’ xX

the point-wise application of ¢ and similarly for (id,@). We then set €2 =
(€,id)(id, €), noting that the factors do not commute in general. However,
(id,¢)* commutes with (€,id). And thus

(t,0)*€% = (1,id)*(€,id) (id, ¢)* (id, €)
and there is a morphism
id = (1,0)*¢?
defined as the compositon

id - (id, ) (id, €) - (1,id)*(€,id)(id, 1)* (id, €) = (¢, ¢)* €2

The two morphisms are point-wise in the first (resp. second variable a weak
equivalence). O

Proposition 4.60. For any cocomplete category C, the composition
* * e * ul” * *
Lt —— 1 ——= 1"

of functors CF™St™ A" s homotopic to the identity.

Proof. Recall diagram

(FinSet, [T)°P

/ \&

(A, 1P (A, )P

forget
All cooperads (being exponential) translate to functors

Ag(z AP - Cat"™

act

which are compatible with products, pg is mapped to !m, and the oplax transfor-
mations ts and tgee (also compatible with products) have lax mates (consisting
point-wise of %) denoted %5 and %gec. Since ¢5 is Cartesian , %5 is natural,
and since tqec is coCartesian (4.6)), tqec is natural. Therefore, the following are
lax and oplax extensions, respectively, of of ¢ % ¢:

t t
Ldec ldec ldec L§ L§ Ldec-

Thus Proposition m shows that Hom(¢%¢,¢%¢) is connected and thus any
two natural transformations ¢*¢;t* = +*11t* given by morphisms of pro-functors
are homotopic. Notice that the above being “pseudo on pg” translates to the

1-cofinality of ¢ (Lemma [A.6)). O
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Corollary 4.61. If W is a class of weak equivalences such that[[.48, 1. holds
then the unit id — (" is a weak equivalence on objects in the image of L.

Furthermore
id > (1,0)" (1,1

18 a composition of morphisms which are point-wise in one or the other direction
weak equivalences, on objects in the image of (¢,1)*.

Proof. The first statement follows directly from Proposition while the
second follows from a similar reasoning as in the proof of Lemma O

4.8 The non-Abelian Eilenberg-Zilber theorem
4.62. There is a diagram

AxA

dec
Ll l(L,L)
é

FinSet —— FinSet x FinSet
decg

in which the corresponding squares commute. The functors decs = [ and d;
are adjoint on FinSet (as the coproduct is always adjoint to the diagonal by
definition) with unit

u: id = 0, decg

([n], [m]) = ([n] = [m],[n] * [m])

given by the obvious face maps and counit
c:decg 0, = id

[n]* [n] = [n]

given by (the opposite of) the diagonal. Notice that the morphism u is point-
wise in A whereas c¢ is not, reflecting the fact that dec is not a coproduct in
A.

For FinSet“P-diagrams we get, in particular, an isomorphism ¢} = dec, . (or
equivalently d, 1 = dec; ). Assume CA™ is symmetric w.r.t. a class of weak equiva-
lences W satisfying [4.48] While ¢ is not a morphism in A we may may conjugate
the morphism ¢°P : id - 6* dec” to a morphism ‘c°® in Fun(C2",C2™)[W]
by means of the commutative diagram

id-— - - X~~~ —>¢"dec”
e}ﬁ7j Levv
V'€ "6 dec; € = " dec” 1€

e
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(using that §* dec” preserves weak equivalences by Lemma 4.560%). If cA™
is strongly symmetric, e.g. if C is Abelian, then ‘c°®’ is an honest morphism
(without need to invert weak equivalences).

Definition 4.63 (Alexander-Whitney and Eilenberg-Zilber morphism). 1. The
morphism
A : 6" — decs

s defined as the composition

decy u°P
6% —dec, dec” §* ————dec, .

2. Assume C°P is symmetric w.r.t. a class of weak equivalences W satisfying
[/48 The morphism

¢3:dec, - 6
in Fun(CAOpXADp,CAOp)[W_l] is defined as the composition (cf. :
“c°P’ decy

dec, 6% dec” dec, —= 8*.

If CA™ is strongly symmetric, e.g. if C is Abelian, then we understand
¢; € Fun(C2""*A™ 2™ as an honest natural transformation (no need to
invert anything).

If CA" is strongly symmetric then € is still not inverse to 2tw. If C is
Abeliarﬂ then 2to is the familiar Alexander-Whitney morphism, and &j is
the familiar Eilenberg-Zilber morphism usually defined in terms of shuffies, see

Proposition [5.42

4.64. In the strongly symmetric case, 2tv and €3 are in morphisms in “standard

form” 1 14]), image of the morphisms of correspondences
/ §*
= dec® uoP 5 5* =

‘COP’ —
= =
dec* / \ g

a fact that will be convenient to prove all kinds of compatibilities using compo-
sitions in the 2-categories Cor(—,—) (2.14).

350f course not needed in the strongly symmetric case

36By abuse of notation, here W denotes the class of morphisms that are object-wise weak
equivalences.

37and provided the symmetry operator € is the canonical one given by Lemma m
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The goal of this section is to prove

Theorem 4.65 (Eilenberg-Zilber, general version). Let CA™ be symmetric with
weak equivalences W satisfying for example C Abelian (with W the quasi-
isomorphisms), or C = Set (with W the usual weak equivalencesﬁ. Then 2Aro
and €3 are mutually inverse isomorphisms

~ *

dec, =
in Fun(CA™ A7 cA")[w1].

For C = Set there are several proofs in the literature, see [16, Theorem 1.1],
[52, Theorem 1.1], [54].

In the non-strongly symmetric case, it follows also that dec, preserves mor-
phisms which are weak equivalences point-wise in one direction, because §* does
so by assumption. For Abelian C we will make the Theorem more precise, and
coherent, with a simpler proof, in section [5.2

4.66. This theorem automatically implies a coherent version: The forgetful
morphism of cooperads

AW := forget : (A, *)°P = (A, [ ])*P

can be seen as an oplax transformation in Hom' P (A, Cat™™) and induces
as oplaxness constraint on p; a morphism Aw : dec = % such that R(Aw) is the
map 2Atw above (cf. also the proof of Theorem [5.15). If (C,®) is monoidal, on
Day convolutions “forget” induces

AW := R(forget) : D((A, [P, (C.®)") > D((A, %), (C,®)")
which is nothing but
AW (7, @)" ~ (€27, 8)

with ® = §*(-® —) the point-wise product and ® = dec,(- ® —) and the mor-
phism on monoidal products is induced by the map 2. If ® (with a constant
object) preserves weak equivalences, Theorem implies thus that these yield
monoidal cooperads

AWW: (CA7 W], 8)" - (€AW, &)Y

and the functor is an equivalence. If ® was the Cartesian product x, this is
actually trivial, cf. Theorem below.

The following theorem puts this into perspective, but does not imply Theo-
rem directly.

381F A" s strongly symmetric (W2) is not needed.
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Theorem 4.67. Let C2™ be symmetric with weak equivalences W satisfying
. Set W, = (1*)"'W. Then the functor induced on the oo-categorical local-
1zations . o

ot :CFlnSct [W;l] —>CA [W—l]
18 an equivalence of oo-categories.

Proof. We show that ¢* and € constitute inverse functors up to a chain of point-
wise weak equivalences. We have a weak equivalence

id= /"¢

by definition. This also shows that € preserves weak equivalences. Furthermore,
we have a chain of natural transformations

Cf =l e <=y =id

which are all point-wise in W, for apply ¢* and extend to a commutative dia-
gram

S ———— 1

@ |®

CC <—— 0 <—— ) ———

The natural transformations are (point-wise) weak equivalences by
Proposition and map @ is a weak equivalence by definition of “sym-

metric”. ]

Proposition 4.68. Assume C2” is symmetric w.r.t. a class of weak equiva-
lences W satisfying [448°} Then the compositiond™)

decy dec* <c°P’ dec, u°P dec*

dec, dec” dec, dec” §* dec” dec, dec”

and

5 o 5% dec* 5t —

6*
are the identity in Fun(C2™ ,CA™)[W™'], and in Fun(C2""*2" c2"") W],
respectively.

If CA™ s strongly symmetric, then

dec* <c°P’ u°P dec*
dec® ———= > dec” §* dec® ————>dec”

(which makes sense now, because ‘c°®’ is an honest morphism) is even the iden-
tity without inverting weak equivalences.

391f ¢A%P g strongly symmetric 2. is not needed.
40Note that decy dec* preserves weak equivalences, being isomorphic to HOM(A1,-) by

Proposition @
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Proof. We have the following commutative diagram

decy ¥ decy € =———— dec dec* "€ decy dec”

|
<OP <OP | «coP>
Y

decy ¢* dec} 83 decy € = dec, dec” 1*6} dec} € decy dec* 6* dec* 1*€ <—— dec, dec* §* dec*

L uC°P l u°P l u°P

decy 1* dec} € dec dec® 1*€ <—————— decy dec™

in which the left vertical composition is the identity and the upper horizontal
and lower horizontal compositions are equal. This treats the first composition.
In the strongly symmetric case, we can omit the dec, and get a similar diagram
with isomorphisms instead of weak equivalences.

We also have the following commutative diagram:

@

e T
) —~ )

COE (b)) =—————— 1* 10"

|
c°P lCOp jcop |
|

(8% dec; 0% (1,0)y =<——1*0% decy 16" —— 1*d7 dec) €6* ecop
|
|
Y

uCP 6*dec” 1* 116" ——= 6 dec” ¥ €6 <—— §* dec” §*

e —

® =

OE (b)) =———1*1d* 5*

@

in which the left vertical composition is the identity. By Lemma|4.59] and since
we assume that §* maps morphisms which are point-wise in either direction a
weak equivalence to weak equivalences, it suffices to see that

5* o g dec” 5t — s g

is the identity on objects in the image of (¢,1)*. Then by Proposition M@
and @ are weak equivalences on objects in the image in (¢,¢)*, noting that §*

of such is in the image of .. We are left to show that @ is a weak equivalence.
However the following is commutative:

0F ————————"ud”

®) [6

0* (L, ) (L, L) 1502 (1, 1)
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in which @ and @ are weak equivalences on objects in the image of (¢,¢)* by
Proposition [£.60} O

Lemma 4.69. The following diagram is commutative

&3 Ao
dec, o* dec,

) o

dec, dec” dec, —————— dec, dec” §* dec”* dec, ————— dec, dec” dec,
dec, dec™* ‘c®P’ dec, decy u°P dec* dec,

in which the indicated morphisms are point-wise weak equivalences and inverse
to each other, and the following diagram is commutative:

2Aro
0" ———dec,

§* dec” §* ——— §*
§* u°P
Proof. Follows from the commutativity of the following diagrams where the
unlabeled morphisms are the various units and counits:

¢;3
dec, o

l l 2Aro
dec, dec* €3 decy u?
dec, dec” dec, - dec, dec” §* - dec,

W T T

dec, dec” §* dec” dec, —————— dec, dec” dec,
decy u°P dec* decy

6*
/ W

dec, dec”* 6% 6% dec* §*
P’ decy dec® 6
dec, 6% dec” dec, dec* §*
‘P’ decy
\ dec* decy u®P \
§* dec” dec, 6% dec* §*

\ %
5%—
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Proof of Theorem[}.65 Lemma shows that Proposition implies The-
orem 4.65) O

Theorem 4.70 (Trivial Eilenberg-Zilber). If (C,x) is a Cartesian monodial
(00-)category then the functor

220 := R(forget) : (C27, %)Y - (¢27, %)Y
is an equivalence (i.e. no need to invert weak equivalences).

Proof. Consider the diagram

dec]]dec
AP x AP (AP x A°P) | A°P[[A°P
P
l pry I pr, l
d d
A°P x AP - AP

in which the square with the upper horizontal morphism commutes. We have
AxB=§"d.(pr; [ [ pry)* (A4, B) = d.(A, B)

and
dec, AR B = dec, d.(pry [ [ pry)* (4, B).

The morphism 220 is induced by the composition

d« - d.(dec ] [ dec).(dec] Jdec)* — dy(dec] [ dec).(pry [ [ prs)*.

This however induces the isomorphisms id = dec, prj /2 (Lemma .
Alternative proof using Proposition (C,x)Y — 0°P is a cofibration of
cooperads via the diagonal C - C x C. The Day convolution thus sees only the
projections of the pro-functors A° x A°? — A°P given by dec and ‘5. Those
projections are the identities in both cases by Lemma O

The second proof shows that the statement holds more generally, if C - ©
is a fibration of operads.

4.9 Coherent transformations

4.71. For F,G:C — D usual functors between 1-categories, we have:
Hom(F,G) = [Hom(F(c),G(c)) = lTilrélHom(F(c'),G(c)).

We start by extending this formula to a relative setting of (co)fibrations of
(co)operads and then to the enriched setting.
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Definition 4.72. Let p:C — I be a morphism of operads. The operad
(CP xC)yr1-
consists of objects (c',c,v) where v:p(c) > p(c') is an active morphism. Mor-

phisms (c’,c,v) — (e',e,u) are morphisms in ™I

p(c') ——=p(c)

70

m
p(e’) —p(e)
together with a lift tec - e (over ) and e’ — 1,¢’ (over o). (Notice that a

push-forward along inert morphisms exists by the definition of operad. )

One checks that (C°® x C);; = C is a cofibration and that (C°P x C)/; is an
operad. If [ is a category then more simply

(CP xC) 1 = (CP xC) x/omes 1.
In any case there is a functor
L:MC > (CP xC))r
which is a discrete cofibration of operads. It is classified by a functor of operads
Hom : (C° xC);1 — (Set, x) (40)

such that we have
Hom(X,Y,7)* =Hom,(X,Y)

where the RHS is the set of morphisms mapping to 7 in I and (-)* is the
obvious functor Set™ — Set where Set™ is the underlying category (of operators)
of (Set, x), i.e. with Set,,) = Set".

Definition 4.73. Let
F:(C®xC)—(D,x)

d,e,ve F,(cc)

be a functor of operads. Then the relative end of F is defined as

F :=lim(F o.)*.
e/ te

For I = 0 it is also called the operadic end. Recall that (=) : D* — D is the
functor on the category of operators given by x. In the limit expression “C is
just considered as category of operators.
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Remark 4.74. By Lemma there is a localization tw°? C — NC. Therefore
it is also the same as just the limit over the dual twisted arrow category of the
category of operators.

Lemma 4.75. We have
Jeyr F 2 lim(Tleeey,; Fla,, (¢ 0)

2 Mo cecyy, (e n(ey Hom (Hom, (¢/,¢), Fu (€', ¢)))

where v is an active morphism in I, where one of the arrows is induced by
H Fa,.,,(¢i,¢;) x Homy, (e, ) = Fa,, (c,¢)* x Hom, (¢, ")
i
- F,(c,c)

where the ¢; are the components of ¢ and the isomorphism

[1Fad,, (cisci) = B, (¢, 0)"
[

follows because F is a functor of operads.

Proposition 4.76. Let F.G : C — D be a functor between operads over an
operad I. Then

Hom,;(F,G) = [C |, Hom, (P (<), G(e)).

We also have a relative Yoneda:

Proposition 4.77. Given a functor of operads F,,(=,-) : (C°?xC); = (Set, x)
we have:

1. [, Homy(;y(Hom,(c,e),F.(c, f)) = Fr(e, f) in which the end is a limit

e p(e) ——p(f)
re! p(c') ——=p(e)

(covariantly in ¢’ and contravariantly in c)

2. [“Hom,(e,c) x F,(c, f) = Fy(e, f) in which the coend is a colimit over

'e p(e) ——p(f)

|

p(c") =5—np(e)

/
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(contavariantly in ¢’ and covariantly in ¢) and Hom, (e, c") x F,(c, f) is
shorthand for the collection of sets Hom,, (e;,c;)* x F,,(ci, fi), where the
fi are the components of f.

4.78. From the Proposition the following formula follows:
F,(c,c)= / Hom, (Hom,(c',d"), F,(c,d)). 41
JopBoleer= [ Home (Homy (¢, d), Fuled)). (41

4.79. Given simplicially enriched functors between simplicially enriched oper-
ads F,G :C — D, we first define the structure of simplicially enriched operad on
(C°P xC);; defining with the notation of

Hom((c',c,v),(e",e,p)):= ][] Hom,(tec,e) xHom,,(e',i,c").
Homy, ; (v,1)

It is immediate that the functor
Hom : (C°" xC)/; — (Set™™ | x)
¢,c',v~Hom, (cg,co),...,Hom, (c},,cn)

becomes simplicially enriched via composition in C. For a simplicially enriched
functor

F:(C %)y — (Set™” %) (42)

we define the relative enriched end as

fc/I F = lim(HceC[l] Fidp(c) (C, C)

 —— HceC,c’eC[l],V:p(c)—>p(c’) @(mu(ca C,)a Fl/(ca C,)))'

‘We also have for the enriched natural transformations

Hom, (F,G) = [C |, Hom, (F(e),G(e))

with the relative enriched end.

The set of coherent transformations (Cordier-Porter) Coh; (F, G) is a coher-
ent enhancement of this (cf. [I9] for the case of simplicially enriched categories).

Definition 4.80. We define a simplicially enriched functor of operads
Hom : (C°" xC)/; — (Set®™, x)
specified for d € Cpyy bﬂ:

¢, da v, [n] ind H (Hc>4mcact (C7 CO)['FL]XHOHlCact (60701)[71])('"><I—107rn(jact (cn?d)[n])l/

“IThe (...), means the fiber over v of the morphism

HOmCaCt (C, CO)[n] X I_IO4mCact (CO» Cl)[n] XX @cact (Cn7 d)[n] - HOm]aCt (p(C),p(d))

induced by p and composition.
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Definition 4.81. Let F be as in @ We define the relative coherent end

as
F::f Hom_(Hom ,(¢',d"), F, (¢, d
ggﬂ oy B (0L (¢ ). F (c.d))

where the RHS is the operadic enriched end.

Definition 4.82. Given simplicially enriched functors between simplicially en-
riched operads F,G : C — D over I, define the simplicial set of coherent trans-
formations over I as

Colyy(F,G) =, Hom, (F(¢),G(e))

using the relative coherent end.

4.83. We will be interested mainly in the case in which the structure on C is
discrete in which case

@U(C,’ C) = N(C, X/Cact CaCt X/Cact C)V

i.e. the fiber of the nerve of the over-/undercategory associated with ¢’ and ¢
in Caey over v, and the coherent end is defined in terms of the usual operadic
end (not enriched). In this case a coherent transformation F = G is given by
morphisms F'(c) - G(c¢) for all objects ¢ and for each (active) morphism ¢ — ¢’
1-simplices

F(c) —=F()

G(c) —=G(d)
connecting the two compositions and then for each composition ¢ - ¢’ — ¢’
a 2-simplex connecting appropriate compositions of the 0-simplices associated
with ¢, ¢ and ¢”, and 1-simplices associated with ¢ - ¢/, ¢/ - ¢’ and ¢ —» ¢, and
so forth. This is very similar to a lax natural transformation which is indeed the

special case in which the enrichment is in 1-categories (considered as simplicial
sets).

Lemma 4.84. There is an injection
Hom,(F,G) - Coh,;(F,G)

Proof. The morphism is induced by the obvious simplicially enriched natural
transformation
MV(_7 _) - my(_7 _)

given by composition and (41]). O

There is the following important relation between coherent transformations
and the naive deformations (Definition [4.33):

114



Proposition 4.85. Consider simplicially enriched operads C,D, I with discrete
enrichment on I. Let C — I and D — I be cofibrations of simplicially enriched
operads. Consider Y : C* — D" and two Yy,Y, : C — D over I that extend Y as

in[{-59

There is a natural morphism
exp : Hom(Ay, Defy (C,D))y,,v; = Coh;(Yp, Y1).
Proof. An element p € Ay, x Ay — Defy, (C, D) is given by morphisms
e+ Home (c,¢') — Homp(Ag x Ay x Y (€), Y (<)) (43)

compatible with their projections to Homy(p(c),p(c’)) and constant equal to
Y over identities, compatible with composition (via the diagonals A; x A, —
(A1 x A,)?), and specialising to Yy, resp. Y; when restricted to {0} and {1}
(constant in Ay).

It is mapped to the following element exp(u) € Coh;(Yp, Y1), of the (en-
riched) end: It maps the collection

Ay xc—co, Ay X o= Clyeen s Ay X C, = C (44)
of morphisms in C to the following morphism
A, x Ay xYo(e) =Y (c) = Yi(d) =Y ().
Inserting the morphisms into gives rise to a collection
A x Ay x Ay, x Y (¢;) = Y(ci1)

Composing gives a morphism

(AD)™2 x (A)™ 2 x (Ap)™ 2 x Y (¢) » Y ().
This yields a morphism

A, x Ay xY(c) > Y()

mapping A, to (A,)™*2 diagonally, A, to (A,,)™*? diagonally and to (A;)™*2
via the m+2 morphisms A,, — A in their natural order, the first being constant
0 and the last constant 1.

We have to show that this is compatible with face maps. We have a com-
mutative diagram for j =0,...,m (omitting for simplicity the A, -factor):

Apo1 X G(C) —_— Ajl x Aq x ATﬁj X G(C) s s
4; §

Ay xG(c) —— Ajl‘ X A% X A;n_j x G(c) —= - ——

A{ x A1 x G(Cm-j-1) A{ x G(em—js1) —> - —>= G(c)

] ® | |

A{ x A2 x G(cmojo1) —> A{ x A1 x G(em-j) —> A{ x G(em—js1) — - —> G(c)
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with the diagonal § : A — A%, setting c_1 = ¢ and ¢,;1 = ¢/, in which the square
@ is commutative by definition of Def, (cf. Definition . It is clear that
the maps fulfill the defining compatibilies of the enriched end. O

4.10 Composition of coherent transformations

4.86. First we discuss the composition of coherent transformation — for sim-
plicity — in the case in which the simplicial structure on the source is discrete.
In this case two coherent transformation f: X = Y and g : Y = Z are de-
termined by maps that associate to an n-simplex of the nerve of the following
form

M:i:i0—>~--—>in:i'

elements

f(M) € @(X(ZL Y(Z,))[n] g(ﬂ) € HOHl(Y(Z), Z(ZI))[TL]

and it is not immediately possible to compose them. This is different after
applying the AW components §; : [i] — [n] and 6, : [n—4] - [n] which yields
pairs:

= (i=ig > —>i; > 1) Oppr= (i =iy = - > iy =1')

s0, by the relations in the relative end, thus

fQu)i=fpi)o X (s —1")  g(p); =Y (i —1ii)og(py)

where p; =i =1y - - —>4; =4; and pj =14; > i; > - > i, =4'. Now f(p;) and
g(p;) are elements in Hom (X (i), Y (é;))[;], and Hom(Y (é;), Z(i"))[n—s], Tespec-
tively. In the Abelian case, we can compose with the Eilenberg-Zilber map and
then compose

Hom(X (i), Y (4:)): ® Hom(Y (i), Z(i"));
— Hom(X (7),Y (i;))n ® Hom(Y (4;), Z(")), > Hom(X (i), Y (i") )
(Note that in case of the enrichment FAWHOm?6A0p7®)V (X,Y) the composi-

tion morphism even factors over Hom (X (i), Y (4;)); x Hom(Y (4;), Z(4,));, cf.

Lemma [5.29)).

To discuss this a bit more conceptually, and without the assumption that
simplicial structure on the source is discrete, first a Proposition:

Proposition 4.87. The simplicial object Hom, (c,d) (cf. Definition has
the following property: There is a morphism

— d_____ —
p:dec” Hom_(c,e) — [ Hom, (¢,d") ® Hom,,(d, ¢)
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(where the coend is the enriched coend) which is an isomorphism, if the structure
is discrete. Here the RHS is an enriched colimit over:

TF p(d) —= p(e)
ta' p(d") <—— p(c)

Proof. The LHS at 4,7 is a union of

E L[ Hom (¢,c0)n x Hom_ (c1,c2)p % -
€0y-Ciyd0 .-y dy

xHom,_ (¢, do)n x Hom . (di,dg)n x -+ x Hom  (dy,e),

over all decompositions of 7, which is

d
= f [I  Hom, (c,co)nxHom, (ci,c2)nx

COseeesCiyd0yeeesdj

xHom,, (¢;,d),, x Hom,, (d,do), x Hom,, (di,ds), x -~ x Hom,, (dn,e€)n

by relative Yoneda, Proposition [£.77} 2. Applying the AW components d;,d,
(which is obviously an isomorphism in the discrete case) gives:

d
> [ 11 Hom,, (c,c0): x Hom,, (c1,c2); x -

Coy--+,Cq

xHom,, (¢;,d); x ] Hom, (d,do); x Hom, (di,ds); x - x Hom, (dn,e);
dA

do,..., i

Taking the union one arrives at
d____ A
/ Hom, (¢,d") ® Hom ,(d,e) O
4.88. Now we are in a position to formalize the composition discussed in .86}

Cob, (F,G) x Coh, (G, H) = [

c,d,e,

Hom, ) (Hom, (¢ '), Hom, (F(c). G(d)))»

Hom, .y (Hom,, (¢, f'), Hom, (G(e), H(f)))

where the end is a relative enriched end, an enriched limit over:

c d e f p(c) —— p(d) p(e) ——= p(f)
P T I
d d’ ¢ f p(c") ——p(d') p(e’) ——=p(f')
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This can be extended to an enriched limit over:

c d——>e f p(e) —% p(d) —"— p(e) —— p(f)
P T I
c' d——¢ f p(c) p(d") p(e’) p(f")

And the map to
p(c) —p(f)

L]

' p(c) —p(f")

<~
sy

is a fibration.
We arrive at an end over

- »/(;d—wz,f MW(T) (@V/(C,a d,) X @M,(e', f’)7

Hom, (F(c), G(d)) x Hom,, (G(e), H(f)))

where in the products x the factors are assembled using the new maps p and
p'. Using the composition in the enrichment of D this maps to:

dA —
= [ Hom, ([ Hom, (¢!, ') x Hom, (d. ). Hom,,(F(c), H(f)).

=y

Composing with 6* applied to the map
p:dec” Hom,,(c,d') - fd@l,,(c, d") E@#,(d, e)
of Proposition [£.87| we have a map to
= Hom, (8" dec* Hom, (€', /'), Hom, (F(e). H(/))).

Defining a cosimplicial simplicial set by

Xnm 1= fcf Homy () (Hom,, (¢/, /"), Hom(F (¢), H(f))m)

)

this can be writen as
f Hom(6* dec* A, Xy0)

:fXdCC(;n,m
in degree 0. )

Hence to define a composition one must specify a morphism

(This is also

[ Hom(§" dec” A, Xp.) > [ Hom(An, Xo..). (5)
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1. Case Hom = F'Aw Hom®;Aop 5 With C Abelian (i.e. the usual simplicial
enrichment of complexes):

Here X, o is of the form FX/ , where X, , is a cosimplicial object in

n,e n,e

complexes of Abelian groups, and
/ Hom(d" dec* A,, F X, ) = / Hom (6" dec” Z[A,], X, ,)

and we may just compose with the “EZ-counit” (cf. and Defini-
tion 4.63): ‘c°P’: 6% dec” Z[A,] - Z[A,].

This composition can be described differently. In this case, we arrive at
an end over

N [ Hom,,,,(Z[Hom,,(¢',d")] & Z[Hom,, (¢', /)],
c,d—e,f
Homy (F(c), G(d)) m Homp (G(e), H(f)))
and can apply dec, to arrive at
N /C,d_)&f Hom, ) (dec, Z[Hom,,(c’,d")]m Z[Hom ,(¢’, )],

Hom® (F(c),G(d)) ® Hom® (G(e), H(f)))

Now apply the composition in H0m®; aor g directly to arrive at

d . _
= [ Hom, ([ dec. Z[Hom, (¢"d)) m Z[Hom, (d'.¢))].
Hom? (F(c), H(e)))

Then, as dec, 2 tot clearly commutes with colimits in the category of
complexes of Abelian groups, using Proposition this maps to

- '/;e Hom,(,)(dec, dec” Z[Hom,, (¢, €")], Hom%(F(c)7 H(e)))
and after compositing with the unit at

~ [ Hom,,(Z[Hom, (¢ ¢")], Hom? (F(c), H(¢)))

s

It is an exercise to see that this yields the same composition, and also that
it is the abstract description of the construction in [4.86

. General case. In [I9, Theorem 4.4] you may find a construction of a
map , if X,, o is (point-wise in n) a weak Kan complex (i.e. a quasi-
category). Since the “EZ-counit” always exists (without passing to the
homotopy category) on symmetric objects, i.e. in objects in the image
of +*, one could try to proceed as follows: Resolve the canonical cosim-
plicial object A, = (t*A, s into something symmetric, e.g. A, = (*CA,
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(Lemma [4.57). If this can be done in such a way that there is a lift
(functorial in the cosimplicial direction)

d*dec” Ay, — X0
7

* * %
0" dec” L* Ay s

assuming, say, that X,, , is a (weak) Kan complex, then we can compose
the lifted morphism with the “EZ-counit” also here

P8

c

//\

Ap——= 1Ay s —= 1"} dec] Ay s — 6" dec” L Ay
to get the morphism
f Hom(d0" dec™ Ay, X,,0) > f Hom(A,,, X,.e).

I ignore whether this is possible. Notice that point-wise (fixing n) such
a lift exists, if we take A, 5 := €A, (Lemma and if X,, , is a Kan
complex, for the morphism §* dec* A,, - 6* dec” t*A,,  is clearly injective
and a weak equivalence because §* dec” preserves weak equivalences by
Lemma It is therefore a trivial cofibration.

4.11 Explicit formulae

The following gives explicit formulas for dec, and dec, in the general case. If C
is Abelian, they can be simplified, cf. Proposition [5.39

Proposition 4.89. Let C be a (oo-)category.

1. Assume that C is finite cocomplete. Then a left adjoint decy of dec” exists
and is given point-wise by:

(dec! X)n = L[ (iIX)i,j
[i]*[5]=[n]
[i],[ileAg?
where (11X ); j = X, ; for [i]# @ and [j]# @ and (11X ); g = colim X, _ and
the same switched.

2. Assume that C is finite complete. Then a right adjoint dec, of dec”, which
is often called the Artin-Mazur codiagonal or, when C = Set, the total
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simplicial set, exists, and is point-wise given by:

(dec* X)[n] =

X[n],[0] X[n-1],01] X[0],(n]
lim \ / \ /
X[n-1,[0]

where the maps are (id, do0) : X741, [n-i] = X[i],[n-i-1] and (8s41,1d) : Xpii17 [noiz1] =
X[ [n-i-1]-

Proof. 1. follows from decgy being a cofibration with discrete fibers (cf. Lemma
and the formula deci = ¢* decg.1 (¢, L) (Lemma. For 2. we have to establish
a final functor

Z - [n] x/p0p (A°P)?

where Z is the zig-zag shaped category depicted in the statement. This can be
done by mapping (7,7),7 +j = n to the obvious composition [n] 2 [i] +' [j] «
[i]*[4] and (4,5),%+j = n—1 to the isomorphism [n] 2 [¢] * [j]. Morphisms are
mapped to the obvious face maps. To see that it is final, factor

Z > ([n] %00 (A)?) = [n] x/a00 (AP)?

where ([n] x/a0r (A°)?)" is the full subcategory of those morphisms « : [n] «
[¢] *[7] such that the composition with the faces [i] *[j] < [¢] and [¢] *[j] < [J]
is a face. Notice that this is a poset. This inclusion has a right adjoint given
by factoring [n] < [i] * [j] into [n] < [i'] * [§'] « [¢] * [§], the epi-mono
factorization, and is thus co-final. The posets

X ([ a0 (Ao)2) £

are all isomorphic to connected subposets of Z which are obviously contractible.
O

5 Abelian foundations

5.1 Dold-Kan

Theorem 5.1 (Dold-Kan). For an Abelian category C, there is an equivalence
of categories

Chso(C) = CA™.
One elegant way of formulating this starts with the observation that functors
AP > C
are the same as additive functors

Z[A%] - C
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and, since in C all idempotents split, the same as additive functors
Z[Aop]Kar >C

where Z[A°P]¥ar is the Karoubi closure, in which splittings for all idempotents
are formally adjoined to Z[A°P]. Similarly, Cho(C) is the same as the category
of additive functors

CHZ() -C

where CHso is the additive category consisting of finite coproducts (in fact
biproducts) of objects D;, i > 0 with

Z itie{j,j+1}

46
0 else (46)

HOIH(DZ‘, D]) = {

One can therefore state the Dold-Kan theorem as

Theorem 5.2 (Dold-Kan (variant)). There is an equivalence of categories:
Z[A°PTE = CHsp.

Instead of trying to prove this directly, it is, however, easier to realize the
dual categories A and CHZf, inside ChzO(Abfg). This also gives explicit functors.

5.3. We first define o
[:C2" > Chso(C)

called functor of normalized chains, setting: I'(C),, := C2 and d := 7 (-1)%6;.
It is an easy verification that d® = 0 and that d descends to a map C?4 - C»d,.
The functoriality in C is clear.

This allows us to define the following cosimplicial object in ChzO(Abfg),
; — AhE.
applying I' w.r.t. C = Ab®:

Definition 5.4.
A° :=T(Z[AL]).

The following follows directly from the definition:

Lemma 5.5. We have explicitly
(A%)m = Z[Hom{' ([m], [n])]

whose basis can be identified with subsets S c {0,...,n} of Cardinality m + 1.
The differential is given on basis elements by

a:[8] > 1S~ o))

where S ={xg,...,Tm} With o <+ < Tyy.

This not only defines a cosimplicial object but even
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Lemma 5.6. The association , a priori a functor A — ChZO(Abfg), extends
to a functor .
A° : FinSet - Chso(Ab®).

Proof. An arbitrary map a:{0,...,n} - {0,...,n'} induces
(A%)m = (A )m
mapping (a basis element identified as in Lemma

[a(S)] if #a(S) =#S and the induced permutation is even,
[S]+={-[a(S)] if #a(S) =4S and the induced permutation is odd,

0 otherwise.

(The “induced permutation” is the permutation of «(S) bringing the elements
a(xg),...,a(z,) into the correct order). One has to check that this respects the
differential. This holds by construction if « is order preserving, i.e. a morphism
of A. Furthermore, for the neighboring transposition (i 4 + 1) the formula

(i 7+ 1) =-id +di8i + d“lsi (47)

holds true — which is easily checked on a basis — and morphisms in FinSet
are obviously generated by morphisms in A and neighboring transpositions.
Therefore this respects the differential in any case. O

5.7. Similarly, also CHZp can be realized inside Chso(Ab™®), defining

where the Z are in degree i and (for ¢ > 0) i — 1. The equality is obvious.
Note that
for all i >0 and C € Chyo(Ab).
To prove Dold-Kan using A°, the following is crucial:
Key Lemma 5.8. We havtfﬂ
Aem =D

Proof. Tt follows from formula that, on the non-codegenerate part A%"d,
i.e. the joint kernel of all the degeneracies, S,, acts by the sign character. (A?),
is one dimensional, generated by [{0,...,n}] which does transform according to
the sign character. (A2),_; is generated by [{0,...,%,...,n}],i=0,...,n. Ap-
plying the transposition (i j) we see that (for an element transforming according
to the sign character) the coefficient of [{0,...,7,...,n}] must be (=1)*7 times
the coefficient of [{0,...,7,...,n}]. Hence (A%"?), ; is one dimensional as
well, generated by d[{0,...,n}]. The basis element [S] for any S c {0,...,n}
with at least two elements 4, j missing is fixed by the transposition (¢ j). Hence
(Aend), =0 form<n-1. O

42A° is a cosimplicial object. The non-degenerate part, and also references to Lemma
are meant w.r.t. the simplicial object (A°)°P : A°P — Chsyo(Abf)oP,
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Corollary 5.9. The induced functor
Z[A®] : Z[A] - Chyo(Ab)
18 fully-faithful.
Proof. Fix n and consider the morphism of simplicial Abelian groups
Z[Homa([m], [n])] > Hom(A7,, A7).

By Lemma4.5]it suffices to show that it is an isomorphism for the non-degenerate
quotient, i.e. o
Z[Hom{D ([m], [n])] = Hom(A%™, A2).

Since A"~ D, by Lemma this follows directly from the Definition of A},

m

(cf. Lemma [5.5). O

Lemmatogether with Lemma (applied to the simplicial object (A°)°P :
AP - Chso(Ab™®)°P) gives an isomorphism

o ~
grAy 2 P D,
Ap—>Ay

and since the D,, are obviously projective by , we have non-canonically

A2 @ D (49)
A —>»>Ay,

This gives a proof of Dold-Kan in the first variant because this decomposition
exists thus in Z[A]¥a" by Corollary [5.9

5.10. As a complex C'= A} has also the canonical filtration:
FC = ( - C(’m+2 g C”m-%—l g d(Cm+l) -0 O)

Isomorphism shows a posteriori that on A7, the filtration by codegeneracy
degree and the canonical filtration agree.

We now proceed to give a second, more explicit, proof of Dold-Kan in the
following variant

Theorem 5.11 (Dold-Kan (2nd variant)). The functors
e B
C S Ch20 (C)
N

given by
N(C): A, »HOM,.(A;,C)
and n
R = [7 A7 @ Ay

constitute an adjoint equivalence of categories.
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5.12. Here the following is used. We have an obvious functor in two variables
HOM,; : C°P x Chy(C) - Chso(Ab)

(induced by the canonical enrichment C°P x C — Ab) which has a (partial) left
adjoint

® : Chso(Ab®) x C - Chso(C)
(induced by the tensoring C x Ab® — C) which has another right adjoint

HOM, : Chso(Ab®)°P x Chs(C) - C.
(if ¢ = Ab' | then this is just the usual group of morphisms of complexes).

Proof. The fact that R (realization) is left adjoint to N (nerve) holds in much
greater generality and nothing has to be assumed about the cosimplicial object
A° : A - Chyo(Ab). The equivalence needs more assumptions. In the more
general setting, usually A° is called dense, if N is fully-faithful.

Here the statement follows immediately from the following three facts:

(i) N is conservative.
(ii) HOM,.(A?,-) commutes with ®|§| and colimits.
(i) Z[A°]:Z[A] > Chso(Ab®) is fully-faithful.

Proof of the facts: (i) means that the functors HOM,.(A?, -) are jointly conser-
vative. This is certainly the case for the functors HOM,.(D,,,-). However, by
(49), there are split epimorphisms A? — D,,. (ii) follows also immediately from
(49) because obviously HOM,.(D,,,-) commutes with colimits and ®. (iii) is

Corollary
To prove the equivalence, it suffices to see that (ii) and (iii) imply that R is

fully-faithful: We have (functorially in n):
HOM, (A, fm A% ® Cpp)
= [ " HOM(AS, A%) ® Cry (by i)
= [" 2[Homa([n],[m])] ® Cir (by i)

~ [ Homa ([n], [m]) x Clm)
.0 (coend Yoneda) O

Remark 5.13. The functor R (realization) is nothing else then the functor T’
introduced earlier. In fact we have proven that

HOM(A:N R(C)) = C[n]

43in the sense that HOM, (A%, A® C) x HOM(AS, A) ® C via the canonical morphism,
for A € Chyo(AB) and C € Chyo(C)
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functorially in [n] and D, = ker(A; — A}) joint kernel of all degeneracies
A, > Ag. Therefore

R(C),, = Hom(D,,, R(C)) = CF

and the differential, which comes from the morphism D, — D,.1, is given by
the alternating sum of the §;.

5.2 The coherent Eilenberg-Zilber Theorem for Abelian
categories

We have seen in Lemma that the symmetry operator € (cf. Lemma [4.57))

can, in the Abelian case, be given by an Abelian pro-functor (in two ways).

Likewise, the natural transformations 2tv and &3 can be given by morphisms of

Abelian pro-functors where, by abuse of notation, dec denotes Z[dec] : Z[ A°P]®
Z[A°P] - Z[A°P] and § denotes Z[d] : Z[AP] —» Z[AP] @ Z[A°P]:

Aw: dec — dec tdec 1§ — 1§ (50)

Ez: ) t§tdec dec dec (51)

l~ L~

c°P
t5tdec % C°P dec = %%, 'decs C°P dec — % C°P dec

It is immediate that for an Abelian category C, R¢(Aw) is the map 2w, and
Rc(Ez) is the map €3, both defined in Definition We will prove later
(cf. Proposition that the latter are nothing but the classical Alexander-
Whitney and Eilenberg-Zilber maps.

We have Ez Aw = id already on the level of profunctors and:

Definition/Lemma 5.14. The following map Z; € Hom(4, 6)13

~ d ) id,t Aw Ez ~
6dec —— deC13’24 512’34 ects 2100 ( ) de(313724 (512’34 ——>ddec (52)

is called the Shih-operator and constitutes a homotopy between (Aw Ez) and
id.
The fact that this yields a homotopy as claimed follows from (the proof of)

Proposition It will be reproven in the following Theorem which yields a
coherent version. Later we will derive an explicit formula (Proposition [5.46|)

Theorem 5.15. The (appropriate part of the) diagram of operads extends
to a diagram of Ab-enriched operads and oplaz pro-functors (cf.

Z[(FinSet, 11)]

Z[(A,1D)] Z[(A, )]

forget
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with Cigec 2 id and setting
AW := forget®? EZ:= (Cu5)°®
we have:

1. Both morphisms are the identity on objects.

2. Over &, : [2] - [1], we reobtain the maps Aw (50) and Ez as the
oplaxness constraint.

3. We have EZ AW =1id and there is a homotopy (seefor the Definition
of Def on the level of pro-functors):

2 e Def(Z[(A™, [ D, Z[(A, I D Dia

connecting (EZAW)Y and id, which yields over 81 the Shih-operator de-
fined in Definition |5.14. There is also a homotopy

E¥ e Def(Z[(A, [ DL ZI(A, LD Dia,y

connecting EZAW and id. (In both cases the simplicial structure comes

from Proposition . )

Proof. All operads, being exponential, are given by functors
0= A% > (AbCat™™, x)

mapping d; to J, ‘dec and &, = *decs (on FinSet). The identification for the
pro-functors associated with d; in the bottom row are more precisely:

1(8) : [n], [m]; [k] = Hom(a 11 ([n], [m]; [K])
2 Hom([n], [k]) x Hom([m], [k]) = Hom(([n], [m]); 5([k]))
“W(dec) : [n], [m]; [k] = Homa «y ([n], [m]; [k]) = Hom( [n] + [m] ;[k])

—_——

=:dec([n],[m])

and the morphism “forget” is induced by the inclusions [n] = [n] * [m] and
[m] = [n] * [m] (morphisms in A). The morphism is the same map.

The existence of C' and the isomorphism C'tqec 2 id will be shown in Lemma/[5.17
below. In the following diagram the left hand side composition is the laxness
constraint from C'ts and the right hand side composition is the previous map
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(51):
)

5t Cop S tdec dec

@

5 tdec i C°P dec

@ 5t tdec, decy C°P — i tdecy C°P dec

Ls

%15, tdecy decy C°P — %5, tdecs C°P dec

% decy C°P ———— = 4, C°P dec

dec

Here diagram @ commutes because of relation C t4e. = id and diagram @ by
definition of the constraint in 5 (notice that ‘s = dec,). The assertion EZ AW =
id is clear because we have tsforget = tgec. The operator = is constructed
applying Proposition |4.45

First, we have seen in Proposition [£.29] that the “simplicially enriched struc-
ture” on A°P extends to the exponential operad (A°P 1T) by means of a functor

A@ N Homlfoplax,l—inert7pseud0(oop7 (CatPF, ><)V)

such that pgy is mapped to ‘r (point-wise) and all oplaxness constraints are
actually isomorphisms, to the extent that the condition that (EZ AW)Y (i.e. the
mate of EZ AW passing to the right adjoints in the é-direction) maps to the
canonical element is vacuous. By Proposition there exists therefore

= e Def(Z[(A, [ D1 Z[(A, [ DDia.)

connecting id and (EZAW)Y. By construction it yields the operator defined
in Definition as oplaxness-constraint for d; : [2] <« [1]. Similarly, the
“simplicially enriched structure” on A°P extends to the exponential cooperad
(A, 1)°P by means of a functor

Ag N Homlfoplax,l—incrt —pseudo (O, (CatPF, « ))

such that py is mapped to ' (point-wise) and the oplaxness constraints for py
are isomorphisms. There exists therefore

=Y e Def(Z[(A, [ DL ZI(A, LD Dia,ng
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connecting id and EZ AW. (Actually, this is just the mate of = passing to the
right adjoints in the § direction). O

Let (C,®) be a tensor Abelian category. Applying Day convolution (cf. also
4.16)) to the cooperad (C,®)Y, we get:

Corollary 5.16 (Coherent Eilenberg-Zilber for Abelian categories). The mor-
phisms of coopemdﬁ AW := R(c o)y (AW) = Lic ) ("AW) and €3 := R(c gy (EZ) =
Lce) ("EZ)

2920

op - op ~
(€27, ®)Y ()N
-

€3

are the identity on objects, and satisfy AW €3 =id and
Lic.oy (2Y) € Def((C2™,®)", (€2, ) )ian)
constitutes a homotopﬂ between E3A and id. Likewise
L(C,®)(E) € Dief((CAopa ®)a (CAopv ®))id,[1]

constitutes the same element by means of interpreting the deformations as de-
formations of ®.

In the proof of Theorem [5.15] the following was used:

Lemma 5.17. The point-wise application of C yields an oplax pro-functor (cf.
of Ab-enriched operads

C: Z[(FinSet, [ [)] = Z[(A, *)]
and the point-wise application of 'C a coCartesian lax pro-functor, satisfying:
Cllgec 2 id. (53)
Proof. Tt suffices to construct natural isomorphisms
dec C' = C dec,

(the constraint for C is then the mate C'‘dec, — ‘dec C', whose mate in turn is
the adjoint ‘dec, 'C' = 'C*dec) and natural isomorphisms

nC .

44Note that AW and EZ, being the identity on objects, have trivial lax mates AW and *EZ
(with the same constraints) and the equality of L and R has been discussed in (2.43]). It does
not involve forming *Aw for the transformation Aw : {§ = dec where the operation would not
make sense!

45The simplicially enriched structure to define Def is the discrete one on the source and
the point-wise tensoring on the target (cf. also Proposition . While this implies thus a
certain coherence, it does not say that 3220, let along Z, is a simplicially enriched natural
transformation w.r.t. the latter enrichment, which it is certainly not.
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Equivalently, we may construct:

Lan(("dec)) Lab(('C))
p:decs €

112

Lan((*C)°P)Lab((*dec)°?)
¢dec”

112

and where dec now denotes A°PxA°P — A°P and dec, denotes FinSet°? x FinSet? —
FinSet? (we omit the op).
Given a complex X, we get the object €X in A

(Q:X)[n] = I{OIH(AO X)

n’

bFinSet°p as

with the natural action of FinSet on A;. We have
(€dec” X)), = Hom(Af ® A, dec” X') = Hom(dec; A7 m AJ, X)

with the natural action of FinSet x FinSet on A7 ® A?. On the other hand, we
have
(dec; Q:X)[i]{j] = Hom(A

with the action of FinSet x FinSet on A7, ;,
isomorphism

X)

1 via decs. There is a canonical

o
i+j+10

deci A7 ® AT = A7

1+7+1
and the assertion boils down to its compatibility with the actions of FinSet x FinSet.
Furthermore, we have
memiCzanlC
This yields the morphism. It has a mate which can also be described as

reChr2Cr

It is also an isomorphism due to the finality of :°P. We leave to the reader to
check the compatibilities.

holds point-wise, and the compatibility of oplaxness constraints trans-
lates to the commutativity of

dec” —== *¢dec”

b

dec” 1*€ =—=1*dec €

which holds by construction. O

5.3 The higher Shih operators
Theorem [5.15] states that the value of
Lic,oyv(E¥) € Def((C2,©)", (€™, ) )ian)

at 47 : [2] = [1] is the Shih operator defined in Definition We will also
discuss briefly the “higher information” contained in Z¥. The most useful form
is to map the transformation of L gy (") as follows:
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5.18. Recall (Corollary [5.16) that the two morphisms of cooperads

(CAO" ®)v 1*d> (CAOP ®)v
’ & 3020 ’

are connected by a naive homotopy
Lic,e)v (") € Def((C2™,8)", (C*™,©)" )ia 1)

(w.r.t. the trivial enrichment on the left and FHom® on the right). This is
mapped via (4.85)) to a coherent transformation

H :=exp(Lc,)v(E")) € Coh(id, €3 o AW) (]

(with the same enrichments). To this coherent transformation we may apply
¢3" (Proposition m, 1.) to change the enrichment to FHom®® which is a
weak enrichment. The transport works because the trivial enrichment is chosen
on the source.

We ignore units, that is, consider the cooperads as cooperads over O
forgetting the structure involving the counit. The components of this coherent
tranformation are thus determined in dimension [k] by a map which sends an
element

°,0p

Gig+1 Oip_q+1

(] (1] == 1[1]

in N([k + 1] xjp200 AZZP xjp000 [1])[x) — which we identify with the vector

[k+1] —=[k+1]

i=(igy---,9k-1) — tO a map
(E3"H); s Ay ® XOF X
which corresponds (via to a degree k + 1-map between complexes:
(& H)} + (X®F) i > (X&),

5.19. (HIGHER SHIH OPERATORS) For a sequence by > by > ==+ > by_1 ¢ {0,...,n—
1}, and dg,...,ik-1, with 0 <4; <k—j -1, we would like to iterate the morphism
H&))(O) i= (idpp) €3 A0) sy. Deﬁnﬁ inductively:

Hy': (05 X)) tn-k] = (65 X)[n)

=( 1 (dpgy +€32m), 1 sy (=087 Hy (54)
10 times k—ip—1 times

where b’ = (by,...,br_1) and i := (iy,..., 05 1)

46we have the factorization A°P — (A°P)F~1 o (A°P)* where the second map doubles the
io-th entry. This gives a transport

(=06;)) : Hom(85_y,6;_1) — Hom(dg, 65).
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5.20. Each such sequence b = (by, ...,by_1) determines a shuffle oy, : [k] — [n],
7, ¢ [n— k] - [n] such that 7, = sp,5p,---5p,-1 is degenerate precisely at the
intervals b; +1 and oy, is degenerate precisely at the other intervals in {1,...,n}.

Proposition 5.21. We have

(€& H)} = ) sen(op) Hy;.
b

Proof. This follows from the construction of exp (cf. Proposition 4.85)) and from
the fact that &3 is the classical Eilenberg-Zilber map defined in terms of shuffles

(Proposition [5.42)). O

We will derive explicit formulas for the H, b in Proposition and relate
them to the classical Szczarba operators.

5.4 The different simplicial (weak) enrichments on com-
plexes
Let (M, ®) be a symmetric monoidal category. Recall the definition of operad

enriched in (M, ®). Each enriched operad C has an underlying usual operad
with Hom-sets being Hom(1, Hom(X,Y")) for Y € C;7 and it induces a functor

Hom : (C? xC),0 - (M, ®)

(for the definition of (C°P xC) 0, see Definition . An enriched operad such
that the underlying operad comes from a monoidal category is not necessarily
cofibered as enriched category over ©. This is the case if and only if it is classified
by a functor of operads

0 — (SCat, x)

in which case the monoidal product has the structure of simplicially enriched
functor.

Definition 5.22. We say that an operad C is weakly enriched over (M, ®),
if there is a functor of operads

Hom : (C" xC),0 = (M, ®)
such that the composition with Hom(1,-) gives back the usual operadic Hom
Equivalently, it may be seen as a collection of Hom(X,Y") for pairs of objects

with Y € C1}, but where composition is only defined partially with “constant
morphisms” for Z € Cpyy:

Hom(1,Hom(X4,Y7)) x -+ x Hom(1,Hom(X,,Y,)) x Hom(Y, Z) - Hom(X, Z)
(55)

Hom(X1,Y7) ® - @ Hom(X,,,Y,) x Hom(1,Hom(Y, 7)) -» Hom(X, Z)
(56)
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Notice that, for a weak enrichment on a category C, the monoidal struc-
ture on M is irrelevant (except for the unit). However, this is not true for
weak enrichments of operads, in ® is the tensor product w.r.t. which the
weak enrichment is defined. Similarly, there is the notion of weakly enriched
functor.

5.23.  For a morphism of operads G : (M, ®) - (M',®") (i.e. a lax monoidal
functor) and an operad C (weakly) (M, ®)-enriched there is a (weak) (M’ ®")-
enrichment given by

GHom(X,Y).

For a functor F : C - C’ of cooperads (weakly) enriched over (M, ®) there is an
induced functor GF of (M’, ®")-enriched (co)operads.

5.24. Everything has a dual counterpart for cooperads. For example a weak
enrichment on a cooperad C is a functor of operads:

Hom : (C xC?),0 - (M, ®).

Equivalently, it may be seen as a collection of Hom(X,Y") for pairs of objects
with X € Cp1j, but where composition is only defined partially with “constant
morphisms”:

Hom(X,Y) x Hom(1,Hom(Y7, Z1)) x --- x Hom(1, Hom(Y,,, Z,)) - Hom(X, Z)
Hom(1,Hom(X,Y)) x Hom(Y7,Z1) ® --- ® Hom(Y,,, Z,,) - Hom(X, Z)

5.25. Let (C,®) be an Abelian tensor category. Recall the Day convolutions

(CAOP7®)V :D((Avu)opv(cﬂ(g)v) (57)
(€*7,8)" = D((A, %), (C,®)") (58)

(i.e. ® := §* —®— is the point-wise product of simplicial objects, and ® := dec, —&
—, where dec, Z tot, is the usual tensor product of complexes). We will define
natural (weak) (AbAop,®)—enriChments, as well as (Ab®", ®)-enrichments on
these cooperads:

Definition 5.26. Let (C,®) be an Abelian tensor category.
For objects X € C[Alijp and Y € C[Anj]p we define the following objects in A2
whose n-simplices are given by

Homfcmp@)v(X,Y)[n] =Hom(A,® X,Y1®-®Y,) (59)
Hom,aor gy (X, Y)[n) = Hom(A, @ X, Y1 ® - ®Y,,) (60)
HomE@CAop’é)v(X,Y)[n] =Hom(A,® X, Y1®--®Y,,) (61)
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We define a composition (in (AbAop,®) ) giveforf € Hom (X;Y1,Y2) [
and g1 € Hom} (Y1; Z1) [ and go € Homj (Ya; Za) [, by

(91,92) 0 f 1 AR ®X > A ®A, A, 88X > A, @A, 8Y,0Y>

- ARY1I0A,QYs > 7187 (62)
(g1,92) 0 f 1 A ®@X > (A @A) A, X - (A, ®A,) & (Y1®Y5)

- (A, 8Y1)®(A,0Ys) > Z1® Zs (63)
(g1,92) o f A @ X > A @A, A, 08X > A, ®A,0Y18Y,

- A, RY1®A, Y2 > 710 Zs (64)

where in (@ the morphism

switch: (A, ®A,)®(Y10Ys) > (A,8Y7)®(A,®Y3)
is defined in Definition and the morphisms A, - A, ® A, (resp. A, —
A, ®A,,) are the diagonal (resp. AW-diagonal). The maps (64 are bilinear
mn f, g1, and g2, and thus extend to the tensor product.

There is an operad version of these enrichement as well, defined in the same
way. Notice that for n = 0 we get back the usual Abelian groups Hom in
(€A™, ®)" resp. (CA7,®)".

Lemma 5.27. The compositions (@ and are associative and define an
enrichment, denoted Homf’cmp@)v (X,Y), cm Hom?’cAop,é)v (X,Y), respec-
tively, of the cooperads (C2™",®)Y, and (CA™,®)Y, respectively, such that the
enrichments are again monoidal (i.e. turn the tensor-product into a simplicially
enriched functor). The composition in Hom?cAop Y (X,Y) @) s not associa-
tive, in general, but defines a weak enrichment.

Proof. Left to the reader. Note that the symmetry of (Chyo(Ab),®) and
(Chyo(Ab),®) is used to formulate associativity for n-ary compositions. In
the latter case, it is given explicitly by Lemma [C.2] O

Remark 5.28. In case of the enrichment Hom‘f’cAop &)V the Hom-objects iden-

tify via Dold-Kan with the usual Hom-complexes identifying an element f :
A, ®X - Y] ® Y, with its restriction

f:{0,... 018X >Y18-8Y;, (65)

which is a degree n morphism of complexes. We have (by definition) a commu-
tative diagram

- dF=3(-1)%(§,;®id)* ~
Hom(An, & X, V) — =D OB g (A, & X,Y)

l l

Hom®(X,Y), Hom®(X,Y),_1

47for simplicity, for 1-ary compositions on the left, the others are defined completely anal-
ogously
48The decoration ' will become apparent shortly.
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where O s the differential in the Hom-complex, and also

Of =do f—(-1)"Fod. (66)

which follows from the fact that (@/ is a morphism of complezes itself, i.e.
fdi+(-1)"fd, =d f which translates into @

Lemma 5.29 (Yoneda product). The composition defined for Hoimf’cmp &)
(resp. Hom?cAop é)) factors through Aw in the sense that

Hom®

Hom®(B,C) ® Hom®(A, B) ——— > Hom® (4, C)

o] L

. . ® .
Hom®(B,C) ® Hom®(A, B) ————— Hom®(4,C)

is commutative, where
1. for cooperads:
Hom® : Hom® (Y1, Z1)&---®@Hom® (Y;n, Zmm )®Hom® (X, Y) - Hom® (X, 2)

is a morphism of complezxes defined as follows (for m =2 for simplicity).
A pure tensor in complex degree n on the left can be given asi+j+k=n
and Y1 > Z2 of degree i, g : Yo - Z$ of degree j, h: X - Y1 ®Ys of
degree k. Then the composition in Hom®(X, Z),, is given by

(f®g)oh
2. for operads:
Hom® : Hom®(Y; Z)&Hom® (X1, Y1)&+®Hom® (X, V) - Hom® (X, 2)
is a morphism of complezes defined as follows (for m =2 for simplicity).
A pure tensor in complex degree n on the left can be given asi+j+k=n

and h:Y1 ® Yo — Z of degree i, f: XP - Y1 of degree j, g: X§ - Ya of
degree k. Then the composition in Hom® (X, Z),, is given by

ho(f®g)
where in both cases (f®g) is defined by (Koszul convention, cf. also below):

(f®9)(z&y):= (-1)1D D f(2) @ g(y).

Proof. The reason is that we defined the composition using the Alexander-
Whitney diagonal. Details are left to the reader. O
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From the Lemma follows that also

Hom® (B,C) ®Hom®(A B) Hom® (A,C)
! [
& & (Homé)'
Hom®(B,C) ® Hom® (A, B) Hom® (A,0)

is commutative or, in other words, Hom® = Ez*(Homé)’.
5.30. By transport via F, Aw, Ez we thus get thus six enrichments

enriched in op op o
cooperad (SetA ;%) (AbA ,®) (AbA ,®)

(CAOP,®)v FHom® i Hom® _ Ez* Hom®
(CAOP,@J)V FAw Hom® Aw*Hom® Hom®

and three weak enrichments

weakly enriched in A°P AoP AP~
cooperad (Set™ ,x) (Ab™ ,®) (Ab™ ,®)

(CA7 @)Y | FHom®  Hom® Ez* Hom®
where F': (AbAop, ®) - (Set®”, x) is the forgetful functor, which is lax monoidal:
F(A)x F(B) > F(A® B).

Proposition 5.31. 1. There is a functor of weakly (AbAop,®)-enm’ched co-
operads, which is the identity on objects and underlying morphism-sets:

" Hom(cAop ®)V(X Y)- Hom(cAolD &) (X,Y). (67)

2. There is a functor of weakly (AbAop, ®)-enriched cooperads, which is the
identity on objects and induces the Aro-morphism on underlying morphism-
sets.

At : HomE@CAop@)V(X, Y)—> Aw” Hom?cAop@)v (X,Y) (68)

3. Ez” applied to the composition is a functor of (AbAop,é)—enm'ched coop-
erads

Ez"* (2w) : Ez* Hom(cAop ®)V(X,Y) AHom?cAop’é)v(X,Y)

(but the composition HOm?cAop7®)v(X,Y) - Aw” Hom?CAop’é)v(X,Y) is
only a weakly (Ab™" | ®)-enriched functor)
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Proof. 1. Morphism is given by mapping A, ® X - Y1 ® ---® Y, to the
pre-composition
AOX >N, X ->Y100Y,

with the Eilenberg-Zilber morphism. The only non-trivial case to see that this
a morphism of weak enrichments is the composition on the left with a 2-ary
morphism in Hom(X;Y, Z), i.e. to show that the following diagram

[SF]

XA, XA,
YeoZ)e (A,®A,) & YRZ®A, @A,
switch o
(YoA,)®(Z0A,) G0¢s YA, ®Z®A,
Y'®Z' Y'®Z'

is commutative. The commutativity of the middle square is Lemma [5.34] below.
2. Morphism is given by mapping A, ® X - Y] ® --®Y,, to the compo-
sition
ARX->Y1®0Y,-Y,®-0Y,
with the Alexander-Whitney morphism. The only non-trivial case to see that
this a morphism of weak enrichments is to show that the following diagram

X®A, X®A,

(YO2)& (A, 8A,) —8 v e 76A,&A,
switch T

(YOA)®(Z&A,) —= YoM, ®Z®A,
Y'®Z' Aw Y'® 2

is commutative. The commutativity of the middle square is Lemma below.
3. is left to the reader. O
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Lemma 5.32 ([23] Proposition 2.2.1]). The following is commutative:
5*5&,34 — 5*5f3,24

dec 073 34 dec. 01354  (69)

dec, deci2, 34,4 — dec. deci3 24,
and hence for objects A, B,C, D with an isomorphism
ARBRCRD=(23)"ARCrRBRD
the diagram
A®B®Ce®D—">A®C®B®D

(A®B)® (C® D) (A®C)® (B® D)

w\ €;0¢;

A®B®C®DT>A®D®B®C

18 commutative.

Proof. is in standard form (cf.[2.14)), hence it suffices to see that

* oo * * * * * Ok O * * *
dec” 0% dec 013,24 decyy 34 dec dec” 6767 34 013,24 decyp 34 012 34
[dec* coP? T?f' and o 15;3,24“(1”2),34
* * * * * * * *
—_—
dec o a 513)24 decm24 dec dec™ § (513’24 s 613’24
C13,24 decC U""013 29

commute. This translates into the following commutative diagrams of functors
FinSet? — FinSet and A? - A*, respectively, noticing that dec* commutes with

C (Lemma [5.17)):

decs §; decs === decsdecs 12,34 05,13,24 012,346 dec =——=

LcdecS l'&

decy, <———— dec, deCs,13,24 53,13,24 513,245 dec <——— 513,24
decs c13,24 013,24U

512,34 d€C12,34 513,24

o TU12,34513,24

whose commutativity is checked straightforwardly. O
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Definition 5.33. We define the switch map as the following composite

Ez675 54 8" Aw13,24
. . * ) * Ok a * Ok ’ *
switch : dec, 512734 —> 12,34 =—— 1) 1304 ———— 0% deci3,24 4

and hence for an appropriately symmetric collection of objects:

~ €5 o Ao @A o B -
(AB)®(C®D) — > A®BQ®C®D — > A®C®B®D — > (A®C)®(B®D)

Lemma 5.34. The following is commutative:

switch
dec, 075 34 — 0" decys 54

EZ612,34L lé* Ez13 24

5*51*2,34 B — 5*51*3,24
and hence for an appropriately symmetric object

(A®@B)®(C® D)L (46 (C)e (B&D)

l@z l@g@@g

A®B®C®D—2—>A9C®B®D
is commutative.

Proof. Tt suffices to show the equality after precomposition with Aw, i.e. that

*
EzAwdyy 34 - 5% Awi3 24
* ok —_— * —_—
67679, 34 s 512,34 s 513,24 s decyg oy
*
EzAwélZMl Ls* Ez13,24
* ok * ok
5*6%y a4 = 67873 24

is commutative. Using Lemma this amount to the commutativity of the
outer diagram in

«cop> u°P
* Ok * * * % * * — * Ok
6 512,34 > 6" dec” § 512,34 >4 512,34 3 513,24
(oP> @ e ‘P13 94
U13,24
* * * % * Sk * * * Ok * *
0% dec™ 67675 54 6% 013 04 deCT3 24 615 24 0% 613 04 deCT3 24 675 04

op
luon Luls,u

* Ok * Ok
6615 34 6613 04

Here all maps denoted by = are the canonical identifications. It suffices to see
that A and B are commutative. Actually these are the same diagram. We have
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to see that
012,340 dec 6 <—— 013,24 decy3 24 613,240

512,34U5] Tu13,24513,245

012,340

013,240

commutes as diagram of functors A - A* (no FinSet symmetry is involved
here). This is checked straightforwardly. O

Lemma 5.35. The following is commutative:

switch

* * *
dec, 075 34 0% decy 94

decy AW13'24\L LAwdcc’{&24
dec* deC12,34,* —_— dec* deCl37247*
G

and hence for an appropriately symmetric object

(A®B)®(C®D) ™ML (46 () e (B&D)

leémml l%lm

is commutative.

Proof. Follows from the following commutative diagram in which the hexagon
is in Lemma [5.32)

* *
S decig oy

*
5% Awig 94 Awdecyz oy
o
— s %%

* ok
67612 34 13,24 : decy decyg 04 «

decx Awig o
* *
Ezd75 34 AW 813 94

- *
decy 012134 decy 51324

decy Aw1g 3] /{%3,24
4

decy decyg 34 % > decy dec13,24 %

O

Definition 5.36. For later applications we will need truncated versions of the
(weak) simplicial enrichments discussed so far: We define truncated (weak)
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(AbAop,®)—enrichments for the cooperads (in which the counits have been dis-
carded):
(€27, ®)>" and (C*, &)

setting:

(Hom((g)CAop7®)o,v)k-(X;Y1, LY k<n

Hom®" ., o JE(XG Y1, Y ) =
(7(CA ,®)° )k( 1 ) {0 otherwise

- Hom® non 1o )i(X;Y1,...,Y,) k<n
Hom®",. X:1,....Y,) = ( (€27.@)Y hen
(7(CA p’®)°’V)k( ! ) {0 otherwise

with composition defined as for the untruncated case and a truncated (AbAop, ®)-
enrichment for the cooperad (CA™ &)V (in which the counits have been dis-
carded):

(Hom®,ao0 ge )i (X3 Vi,...,Ys) k<n

0 otherwise

(Hom?éiop’é)o‘v)k(X;Yh oY) = {

with composition defined as for the untruncated case. Note that this works only
because we have discarded the counits (no map in A*°P decreases the arity).

Lemma 5.37. 1. Hom% defines a (Ab>", ®)-enrichment;

(CAOP ®)o Y

2. Hom®; defines a weak (Ab®", ®)-enrichment;

(CAOP ®)o Y
3. Homféiop@)oyv defines a (Ab™" | &)-enrichment.

Proof. This follows from the fact (cf. Proposition|5.39)) that if X and Y are such
that Y; =0 for i >n and ¥; =0 for i >m then (X ®Y); =0 and (X®Y); =0 for
i>n+m. O

5.5 Explicit formulae

Let C be an Abelian category. We identify C2™ with Ch(C)so via the adjoint
equivalences N and R =T (Dold-Kan Theorem [5.11)) and consider the functors
§*, dec”, dec, and dec; as functors between complexes and double complexes.

5.38. Recall the skeletal filtration (4.2]) with

F*X)m = Y o(Xa)
o:[d]«[n]

where the sum is over the degeneracies with k > d. It follows from the dual
assertion that, considering X as a complex, this coincides with the trun-
cation:

FFX ={50->Xp > X1 > = X}
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Proposition 5.39. 1. (dec, X), 2 tot(X), = @;sj=n Xi; with the differen-
tial given by: 4
d=d; +(-1)"d,. (70)

2. (dec”™ A);j 2 Aivji1 @ Aiyj forming the double complex:

J Jj-1
0 1
dr:(o 0)
i Airjr1 ® Ay ——— A4 ® Airj
(d(-1) (4 (-1)
d"(o d ) d"(o d
i-1 Aiyj ® Ajyjo1 — > Ajyj-1 © Ajyj2

0 1
d":(o 0)

8. Let X be a double complex and denote by X the complex extended to -1, Ny
and No, -1 by taking the cokernel of the last differential. Then

dec;X = ‘E&(X)n = @ X’L,]

i,j>-1

4. For the natural two-dimensional filtration F*§*X = §*F“ X (cf.
we have

(gI‘Z’] 6*X)n = @ Xi,j

where o : [n] > [i],7: [n] > [j] runs through the jointly injective pairs of
surjections. In particular: (F"76*X), = (6*X), fori2n and j > n and
(F*76*X ), =0 fori+j<n and

(F0 X)n 2@ Xin-i (& 8" X)n 2 X

In this case (i +j = n) the jointly injective pairs of surjections o : [n] -
[¢],7:[n] = [4] are called i, j-shuflles. The isomorphisms are determined
by requiring that

o, T

(6" X)n) = X[n) [n] < X[,

| |

(0*X)py =—X;
commutes modulo FH371(6*X),, + F©4(6*X),, (which is zero if i +j =

n), where the vertical morphisms are the projections onto non-degenerate
elements.
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We start by discussing the translation of the functors
dec* : CA" - ¢ATXA™
6* :CAODXAOD - CAOp
via Dold-Kan. We have

(dec” C)pn = Hom(Dyy 1, dec” C) = Hom(dec) Dy, 1, C)
(6*C)y, = Hom(D,,,6*C) = Hom(6 D,,, C)

Furthermore, by Yoneda and the commuation of Z[-] with colimits:

OAY, =A%
deC! Afn,n = A:nJrn+1
such that
51Dy = ker(AS, > A% )
dec; Dip,n = ker(Ag i1 = A7)

where the kernel is joint over all degeneracies [n] - [n'], resp. [m] - [m/].
The filtrations on Ap, |, and A7, ., are respected by these morphisms in such
a way to induce filtrations:

FM 6Dy = ker(FMIAS, L — FMIAS )

F¥dec) Dy = ker(FFAS 0 — FFAS 1)
We get
gr& Dy, = ) Dy,

{[m]—>[k],[m]>[]}

that do not factor over im(d5*)

grdec) Dy, ,, = é Dy,
{[m+n+1|>[k]}
that do not factor over im(dec™)

In the first case the sum goes over pairs [m] - [k] and [m] - [{] that are jointly
injective and in the second case the sum has only two summands corresponding
toid: [m+n+1] > [m+n+1] and the canonical degeneracy scan : [m+n+1] >
[m + n] identifying the maximum of [m] with the minimum of [n].

Proof of Proposition[5.39 2. We get an exact sequence
0— Dn+m+1 g dec! Dm,n - Dn+m -0

and it is convenient to choose the following explicit splittings [, r of the surjective
map induced by

(-1)"dec*(d;),dec*(d,) : A® . - A

o
m+n m+n+1
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Notice that (=1)*dec*(d;)s =id and dec*(d,)s = id modulo degeneracies.
Dually for a complex A, we get a diagram:

(1) dec* dy,dec* d,.
—

Scan

Alivj] Alivj)
i b i \
S, *
0 Ai+j (dec A)i,j — Ai+j+1 —0

The splitting r induces isomorphisms: (dec® A); j = Ay ® A;1j1 with dif-
ferentials identified with
0 1
(o o)

Aipjr1 ® Ay — A4 © Ay

o ) o )

Airj ® Ajyj-1 T Airj-1 ® Ajyj-2
dr:(o 0)
The splitting ! induces isomorphisms: (dec* A);; 2 A;y; ® Ajyjur with dif-
ferentials identified with
((-DPa -1

Aipjr1 ® Ay — > A4 © Airj

o ) o )

Aigj @ Ajyjo1 — > A1 © Ajyj2

dr:((ilo)i d 7dl)

In these notes, when interested in explicit formulas, we usually work with the
splitting r because it induces the more common convention on the differential
on the total complex.

1. Assertion 2. shows that a morphism

Hom(dec* X,Y")
is given by morphisms

(drai je1,i,5)

Xivjr1 ® Xy Y;
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satisfying
i1 jd = djoy j + (1) drayog g

which is the same as a morphism of complexes

X > totY.

where tot X is equipped with the differential .

3. is shown the same way as 1.

4. has been discussed above. Note that, for §*, the lowest filtration steps are
given by those pairs o : [m] — [i] and 7 : [m] - [j] that are jointly injective and
such that i+j = n (if i+ < n, obviously joint injectivity cannot be achieved). O

5.40. For surjections o : [n] - [i] and 7 : [n] - [j] that are jointly injective,
and such that 7 + j = n, i.e. in the case of i, j-shuffles, ¢ and 7 determine each
other, because we can index degeneracies by non-empty subsets I, J c {1,...,n}
(the intervals contracted by 7, and o, respectively) and under the two conditions,
o and 7 must correspond to complementary sets. In other words

O—:So_j...so_l T:STi'“STl

for J={o1+1,...,05+1},and I = {7y +1,...,7; + 1}, respectively.
In particular, we get for ¢, j with i + j = n surjections

Pij: (5an - D; Dj

induced by s': [m] = [i],s" : [m] - [j] the extremal degeneracies correspond-
ing to the subsets {i +1,...,n} and {1,...,4}, respectively.

Lemma 5.41. There are splittings
Sigt D;x Dj - oD,

(of the maps p; ;) induced by §;; x 6, : [i] x [j] = [n] x [n], the extremal faces.
FEvery other map
(SIDn = Dy Djl

given by pairs o : [m] - [i'] and 7 : [m] > [j'] that are jointly injective and
such that I + k =m, composes to zero with s; ;.

Proof. 0;; x 0, ; composed with a diagonal degeneracy factors through a degen-
eracy of either [¢] or [j], hence there is an induced map as indicated. The
composition with any pair of surjective maps [n] x [n] — [k] x [{], jointly in-
jective, corresponding to subsets S and T, is a degeneracy unless S ¢ {1,...,i}
and Tc{i+1,...,n}. If #5 + #T = n we must have equality. O

Proposition 5.42 (Alexander-Whitney and Eilenberg-Zilber explicit). For a
double complex X, we have commutative diagrams (where 2w and €3 were de-

fined in Definition |{.64")):

49And the operator C used to define €3 is understood to be the canonical one given by
Lemma for Abelian categories.
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. Zitj=n(8i,1,05,r)
(6" X)n) = X[n)[n] Disjon X[i1,15]

L l

(5*X)n (dec* X)n = EBHj:n Xi,j

On the smallest filtration step and on the factor X; ; corresponding to a
shuffle o, the map Aw is zero unless o = s' and 7= s".

S, sen(en) (@)
Disjmn X[i],[5] (6" X)) = X[n)[n)

| .

(decy X)pn = @jrjen Xij (6" X)n

where the sum runs over all shuffles o : [n] - [i], T : [n] - [J] (i-e.
jointly injective with i+j = n). The morphism €3 has image in the smallest

filtration step and on the factor X, ; corresponding to the shuffle o, T, the
map is thus given by sgn(o, 7).

Proof. 1. Tt suffices to see that the following commutes™’}

(81.5.60
0 (Dn) Zloadns) Divjn Di R D;

dec”(D,,)

First, observe that the morphisms d;; and d,; really induce a morphism
Dl' X Dj - 5|(Dn)

because for every diagonal degeneracy [n] x [n] - [n'] x [n'] there are degen-
eracies [i] - [i'] and [j] = [j’] such that we have a factorization

[i] % [j] — 27 (] x [n]

[i'] % [j'] ————=[n] x[n]

50where Scan is on each summand the adjoint of the restriction of the homonymous map

H . O o _ o o
(canonical degeneracy) scan : dec; AS Aj = Ai+j+1 - AY.
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We are left to show that for all ¢ the outer shape commutes in the diagram

(01,4,07,5)

BAS < § deci (AT B A%) <——— AT A

> Scan Scan
counit

drdecydec”(A},) <—— dec™ (A7)

commutes, where the map « is d; of the canonical degeneracy, seen as a morphism

dect A7 ®AS = A7, ;,; ~ A),. Here every other shape clearly commutes. For the

upper triangle notice that this is the image under Z[-] of the following diagram
of bisimplicial set maps

6l,i61‘,j

/\

ApRA, <—————Aj i1 BAG 541

Scan®Scan

qu:(Sl’iIZ(Sr’j

2. It suffices to see that the following commutes:

>, rsgn(o,7)-(o,7)
5(Dy) —° ®irjon DiE D,
\ lecan
€
dec*(D,,)

First, observe that the morphism o,7: A} ® A} > A?®A? (i +j =n) really
induces a map

because for every degeneracy [i] x [j] = [¢'] x [4'] (for i + j = n, and where
either ¢’ < 4 or j' < j) there is a degeneracy [n] - [n’] such that we have a
factorization

First observe that
(D) c F"‘lAfl AY

because every pair of degeneracies [n] - [i] and [n] - [j] with i +j <n -1
must factor through a diagonal degeneracy.
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Since the filtration by codegeneracy is the same as the canonical complex
filtration (cf. , it suffices to show therefore that

o, sgn(o,7)(o,7)
;g_) ®i+j=n A;) A;

Scan
€3

dec* (AY)

A ®A

n

commutes in double complex degree > Tﬂ. Since (A;})i+j+1 =0 for i +j =n we
actually have

(dec™ AD)ij = (A7)isj (71)
for i + j =n and 0 for i + j > n, and thus we are left to show commutativity in
complex degree 7, j with i +j = n.

The map may be described as cod, (see the proof of Proposition
2.) where ¢ is the morphism fitting into

(dec* A%)[i],[jfl] — > (dec* A%)i,j—l

lc

(A i) —> (A%)is;

Thus we have to see that the composition
coEZod,: (01A7)i; > (01A7)i -1 > (dec” A7) j1 > (A7)ir- (72)
is equal to the composition
€O Scan © dy O(Z sgn(o,7) - (0,7)): (73)
(61A7)ij = (A7) x (A7) = (A7) x (AF)j-1 = (dec” A7)i -1 = (A7)isj-

The composition of the last two morphisms in is by definition (cf.
Lemma [5.6)):

subsets of {0,...,n} 4 subsets of {0,...,n}
of cardinality i+ 1 and j of cardinality i+ j + 1

[S]e[T]

£[SuT] it SnT =9
0 otherwise

where the sign is determined by the parity of the permutation bringing S * T

into the order of SuUT. Given subsets I, J c {0,...,n} of cardinality 7 + 1 and

j+1 with InJ = {z}, coEZod, maps [I] ® [J] thus to [{0,...,n}] with

sign (=1)*sgn(x), where & is the permutation that brings I 11(J \ {x}) into

5lContrary to the situation with the Alexander-Whitney map it is not commutative in
general!
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the correct order, and x is the k-th element of J. It maps subsets with larger
intersection to zero.

The composition of the last three morphisms in maps the generator
[{0,...,i}]®[{0,...,7}] to the generator [{0,...,n}]. By Lemma below,
the first morphism maps a pair I, J either to zero, or, if I nJ = {z} , there is
exactly one shuffle that maps it to [{0,...,i}]® [{0,...,j}] with the same sign
(-1)*sgn(x) and all others map it to zero. O

Lemma 5.43. Let I,J c {0,...,n} be two subsets of Cardinality i+1 and j+1
with i +j = n.

1. If InJ = {x} there is exactly one i,j-shuffle o,7 such that o([I]) =
[{0,...,i}] and T([J]) = [{0,...,5}]. (All other shuffles satisfy either
a([I])=0 or 7([J]) =0.) Then

)k—l

sgn(o,7) = (-1 segn(k),

where k is the permutation that brings I [1(J~{x}) into the correct order,
and x is the k-th element of J.

2. If {z,y} cInJ then

> sgn(o, ) = 0.

Proof. (i) In this case, the subsets are covering. If x # 0, we have z — 1 € I and
x—1¢ J or vice versa. Thus o must not contract = — 1 < z and hence T must do
so (or vice versa). By induction to the left, o and 7 are determined for ¢ < x. If
x#mn, wehave x+1€l and x +1 ¢ J or vice versa. Thus o must not contract
x <z +1 and hence 7 must do so (or vice versa). By induction to the right,
o and 7 are determined for ¢ > z. The equality of the sign expressions follows
from the definition of the sign of a shufﬂ@

(ii) In this case, there is an element z € {0,...,n} ~ (I uJ). The shuffles
correspond to complementary subsets I',J" c {1,...,n} of cardinality ¢ and j
(the contracting intervals of 7 and o respectively). The shuffles satisfying the
property from the sum induce jointly injective surjections o’ = 0§, : [n — 1] - [i]
and 7/ = 76, : [n—1] - [j]. As such they correspond to subsets I, J" c
{1,...,n =1} of cardinality ¢ — 1 and j - 1 with I" nJ" = @.

The interval ¢ of A,,_; which is neither in I nor J” thus must correspond
to a new interval that is not mapped to an interval by §, (in particular, z # 0

52The shuffle corresponds to complementary subsets I’ (contracting intervals for 7) and J’
(contracting intervals for o) of {1,...,n} and the sign is determined by the permutation x’
that brings I’ u J’ into the correct order. The procedure just described determines order-
preserving isomorphisms I’ = I\~ {z} and J' = J\ {z} in such a way that the transposed
permutation brings I \ {z} U J \ {z} into the correct order. If z was the I-th element of I

and k-th element of J, it has to move from position ! to I + k — 1, hence an additional sign of
(_1)k—y
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and z # n) because all others are contracted by one of the compositions. To
each of these pairs I”, J” thus correspond precisely two pairs I’ and J’ where
the two intervals that §,(q) is composed of, are distributed evenly into I' and
J’. The corresponding shuffles have opposite sign. O

5.44. Recall the Shih-operator =1 from (cf. also Corollary[5.16)). Applying
L, it induces

(id, €3 Aw)

Le(Z) : dec™ 6" == (6,0)* deciy o4 (0,0)* decys oy == dec” §*

Its adjoint L(Z1)" : Ay ® 6* = decydec” §* = §* (cf. Corollary [4.27) yields via
composition with €3: A; ® 6* - A; ® §* a morphism
€5 L(Z1) : Ay & 6% = 0

which gives a homotopy in the usual sense between €32 and id. (Notice the
two very different instances of €3 here!)

5.45. Define Q™ € Z[Hom([n],[n])] ® Z[Hom([n],[n])] by the formula

ptg=n

o, T

Q":= ) sgu(o,7)(0dg, ®76;.,)

where o, 7 run through the p, ¢g-shuffles. By the formula in Proposition [5.42| we
have that (€32), = Q" modulo degeneracies, i.e. for X e CA™*A™

* Qn *
(6" X)n) = Xn) (0] — (0" X)(n) = X[n,(n]

i i

(5" X)n €a 2 (5*X)n

commutes. Define H;' := (idpy) *€32A0)scan. We have
Hy's; = sngl:ll,l Z <0
57;+1Hgl i2b

hence H;' maps degenerate elements to degenerate elements.
Defining H} € Z[Hom([n], [n - 1])] ® Z[Hom([n],[n —1])] by the formula

Hy = (idpy Q"0 g0 = > (idpy * Uégjgb_l)scan ® (idp) * 7'5,7;;;]__1)1—1)&%

p+g=n—-b-1
o,T

. . op op
we have the commutative diagram for X e C2" *A™:

* H;L *
(0" X) =11 = X[n-1],[n-1] — (" X)[n] = Xn1,[n]

L.

(6" X )n-1 (6" X)n
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Note, however, that the lower map does not constitute a morphism of complexes!

Proposition 5.46 (Shih’s formula). The following commutes for X € CAT A

N (1) HY .
(0" X)n-1] = X[n-1],[n-1] — > (" X)[n] = X[n,[n]

: i

(0,1} ® (6" X)nor aTbe(®) (6" X))

5.47. Before discussing the proof, recall the explicit description of homotopies
obtained via dec* from A homotopy in the classical sense is extracted by
the element

{0,1}@ X > Al X > Al X

where the second morphism is the EZ morphism. In degree n the corresponding
map {0,1} ® X - Y is given, with the notation of [4.28] by (sum over (1,n-1)-
shuffles)

n—1

n-1 ) )
{0, 1} ® Tp-1 = a(Ty_1) = Z (_1)ZG[n]7i(si$nfl) = Z (_1)1F[i]7[n—i—l](Sixn—l)
i=0 i=0

where x,,-1 € X|,,_1] denotes a representing element.

Proof of Proposition|5.46l By Proposition and the Definition [5.14] we have
forr+s+1=n

Le(Z)pry o1+ (dec™ 0" X)) 6] = Xl [riels) > Xrels) (r1ls) = (dec” 57X)
T, Z sgn(o, 7)(ody, 7d, )y

ptg=s
o,T

where o, 7,d;,d, are intended w.r.t. the [s]-variable and the o, 7 run through all
p, g-shuffies.
In view of the discussion in [5.47 this translates td>

n—-1
{0,1} @21~ Y. (-1)"Le(E1) (b, fn-b-1] (56Tn-1)
b=0

n—1
=2 (1" ¥ sen(o,m)((idpy * 06g, ) se, (idpp) * 70,501 )86 ) -1
b=0

p+g=n-b-1
o,T

O

5.48. The formula for Q™ can be given in a different form: The summands
of Q™ run over p, g-shuffles with p + ¢ = n. Those are determined by subsets

53The formula for L¢(Z1) is modulo degenerate elements. However, sp = scan translates
simplicial degeneracies into degeneracies as element (in degree (b,n—b-1)) in the bisimplicial
g g g
object dec* X.
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Z c {1,...,n} giving the intervals where o is degenerate and thus 7 is not.
Equivalently, they are given by sequences y = (205--+,2n-1) € {0,1}" and we

have

— R0 I An-l
O’—SO * *50

where s{ =id[;) and s§ : [1] - [0] is the usual degeneracy. From this we get
sgn(r) = (-1)%s0 D
which may be derived from the formula

sgn (oo k! gpg) = HSgH(Ui) H(_l)lo—jl-\rfﬁl (74)

i<j

where o; : [n;] = [|oi|] are degeneracies and & is the complementary shuffle.
We also have for b = (bg,...,bk-1) € {0,...,n -1}, with bg > by > -+ > by_1 the
formula

sgn(oy) = (_1)2?;01 bi—(k—1-3) sgn(y) = (_1)222} n—k—i-b; (75)
where oy, 7, is the associated shuffle ((5.20)).

Lemma 5.49. Let n be a positive integer. Consider the set of y = (yo,---,Yn-1)
with y; € {0,1}. We have

QYL — Z(_l)zkj yj(y'i"'l)(B;@ B;) (76)
Y

with B;: [n+1] = [m] for some m, and Bé: [n+1] = [n+1] recursively defined
by: B?) = B(l) =idpg) and

Sn—lB;I J<%Yo
Bé = B;/ * id[g] J=% (77)
Sn—lB;r(SO J > Yo

Each summand is degenerate on the left at i, if y; = 0 and degenerate on the
right at i, if y; = 1. Implicitly in the formula the BS are composed with the

inclusion [m] = [n+1].
Proof. An instructive exercise. O

5.50. We would like an explicit formula also for the higher Shih operators[5.19)
however, defining Hy'; in the same way as in would not be correct because
the equality of H;' with H; holds only up to degenerate elements. However we
can define (for any m):

Hy : Z[Hom([n-1], [m])]@Z[Hom([n - 1], [m])] ~ Z[Hom([n], [m])]@Z[Hom([n], [m])]
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by writing generators as 7 ® k = s;,---8;,, - (7' ® k) with (7' ® k") non-degenerate
and setting:
Hy (T ® K) = 847541 HE (7 @ k)
where the ¢ and b have been transformed by the rule:
s, m {s{H{f‘f_l i<b
SiviHy i2>b.

Defining then H;; by the same recursive formula as

Hy i (05 X)) [n=k] = (05 X)[n]

. n * n-1
:=(Sbgs -+ + 5 Sbo s Hipyr Sbos - - - » St ) (= © 07 )Hb’,z’"
i0 times k—ip—1 times
with &' = (b1,...,bg_1) and i’ = (iy,...,ir_1), We arrive at:

Proposition 5.51. The following diagram is commutative

n

* Hk’i *
(05 X) =] = Xn-kl.fn-k] — (05 X)[n] = Xnl.[n]

L e

i

(5;X)n—k — (5I:X)n

Notice that, again, the lower map is not a morphism of complexes!

5.52. There is a relation between the higher Shih operators Hy';, and the
Szczarba operators defined in [53] (cf. also [33]) as we will now explain. The
conceptual relation will be clarified by the discussion in Section Ct. also
[24] for a different discussion of this relation.

5.53.  We say that an element in Hom([n], [m])**!, considered as generating
summand of Z[Hom([n],[m])]®*+V is i-degenerate at j, if it is of the form

(T(),...,SiTj,...,Tk).
Define an idempotent
Pi : Z[Hom([n], [m])] - Z[Hom([n], [m])]
defined on a basis by

0 if 7 is i-degenerate,
N
7 otherwise.

Define also

P Z[Hom([n]’ [m])]®(k+1) N Z[Hom([n], [m])]®(k+1)
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by

k
P = H 1% Q@ Py_po14s ® 18k-i
i=0
i.e. it throws away all summands that are n — k — 1 + ¢ degenerate at ¢ for
i1=0,...,k.

Definition 5.54. Define an active morphism Szi (k] = [J] (ie. Szi(O) =0
and Szg(k) =j) by Sz(()) i=idpgy, and the recursion
(Sz), *id[o))s; j<ig+1
Szl =1 (Sz, ! *idpg)) j=ig+1 (78)
(Sz)7" *idjo))sj-10i01 J >0 + 1
in which i’ = (i1,...,ix-1).
One can also write the recursion in a slightly different, equivalent form:
Sk_1 Szg, j<ig+1
Sz =182 widpy  j=io+1 (79)
Sk-157) Gige1 § >0+ 1
Remark 5.55. This definition is similar to the one giwen by Szczarba in [53]
used by Hess and Tonks in [33, Definition 5]. In fact
Szz(x) = tD’,:fleé

where 'z for a map x : [k] — [j] is the conjugation with the reversal of simplices
and D is the operator defined in [loc. cit.].

5.56. A sequence

6%—1*1 6i0+1

[1]==1[1] (%]

of active faces, or written as vector i = (ig,...,ix-1) can be interpreted as a
connected leveled binary tree with k vertices of degree 3: For example

[k+1]=—=[k+1]
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corresponds to the vector (2,0,0). For a vector b= (bo,...,bs_1) with & > by >
by > - > by_y > 0, we say that i = (ig,...,i,-1) is a b-reduction of 7 if for
i ¢ {by,...,bp—1} the vertex in row ¢ has no left children and deleting those
vertices (with their corresponding left leaf and their row), we obtain the tree
associated with i. The remaining leaves form a subsequence ¢y < ¢y < --- < ¢
of {0,...,k}. For example the displayed tree has the (2)-reduction (0), (1,2)-
reduction (0,0), (0,2)-reduction (1,0), and (0, 1,2)-reduction (2,0,0), but does
not have a (0, 1)-reduction.

The 7 such that i = (i, .. .,%,_1) is a b-reduction are in bijection with vectors
(Yo, Yj_pq) With 0 <yo, ... Yoy Sk 0S Uy o Y1 SO
Example:
k-1]0<yo<k
75—2 0<y <k
k-3 1 b 0<ig<k-1
k-4]0<y<k-1
k-5|b 0<ip<k-2
k-6|0<y;<k-2
E-T]0<ys<k-2
k-8 | by
1| br_1 0<7.1<0
0/0<y;r ;,1<0

The i; and y; together determine 7. In each row the y; determines the position
where a node (with no left children) is added (starting from ¢ = 0). With a

leveled tree given by i = (ig,...,ik-1) we associate the sign
sgn(i) = (-1)%5% (80)
and we define i¥ = (k—1-149,k -2 —141,...,05-1).

Proposition 5.57. We have for arbitrary n, setting ki=n-k-1:

Y Fouchthat (5% #'q0) @@ (S22 #qr) by <k
,PHg,g = i is a b-reduction of © = 7
: otherwise

modulo degenerates, where q; = Sf;}rl
k>k (i.e.n>2k+1). _ _
Here the i are vectors of length k and cy < --- < ¢x are determined by i as in

9.90, and

In particular the expession is zero unless

€= (—1)@*1)’C sgn(i”) sgn(zv) sgn(op).

The SZ% +'q; have values in [c;]+'[1] = [¢; +1] and are considered as [n—k]-
valued via the inclusion [c; + 1] c [n—k].
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The proof is a bit involved and has been shifted to appendix [Bl Unless the
reader is interested in the combinatorics of the formula, it is not very enlight-
ening.

For the special case n = 2k + 1 (least non-zero case) we get a simpler form:

Corollary 5.58. We have for n =2k +1:

(SZE *qo) ® - ® (Sz;C q) b=(k-1,k-2,...,0)
0 otherwise

PHy,; = {

modulo degenerates, where q; = sfﬁl with the same conventions as in Proposi-
tion [5.57
Notice that in that case k =k, i =4, and € = sgn(op) = 1.

5.59. The formula in Proposition has the following important property.
Defining

Ky, = (—1)@*1)’“ sgn(z") sgn(op) > sgn(?/)(SZZfo ® ® Sz2*)

i is a b-reduction of 7
(with the same inclusion [¢;] € [k], such that this is in Z[Hom([%], [k])**']),
Le. the essential part of PHy, and define
i = sgn(i”) sgn(op) Ky ;

i,b

where the sum is over all (correct) vectors of length n— k-1 and k, respectively.
We can then write

Ki= Y sgn(i ) (S22 @ ®Sz) (81)
where the sum runs over all 7 of length n—k-1 and {co, ..., cx} c {0,...,n-k-1}

over subsets of indices of leaves running first through nodes at their left child.
Notice that these determine uniquely a b consisting of the corresponding row
indices and a reduction 1.

Proposition 5.60. For each integer k >0 the following holds true{5_1|
(1 + €)®(k+1)lcik+1 = Z,Czﬂﬁl

modulo degenerates and constants or equivalently

Z(l _8)®(n+1)K:LL+k'+1 = Kﬁkﬂ

n

modulo degenerates and constants. Here € : Z[Hom([k],[k])] = Z is the aug-
mentation and the calculation takes place in @i Z[Hom([k],[k])]®".

54notice that the summands are zero for n > k, and that Zisgn(g') is 1 for k<1 and 0
otherwise. However, constants are degenerate for k > 1 anyway.
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Proof. Follows from and the following Lemma m O

Lemma 5.61. Let i = (ig,...,ix-1) be a vector which we see as a leveled tree
as in .
1. Szg is non-degenerate at e if and only if the path from the j-th leaf towards
the root passes through a right child at e.
2. The expression
Sz;° @ ® Sz,

for {co,...,em} © {0,...,k} is non-degenerate if and only if there is a
b= (bo,...,bg—m-1) such that i has a b-reduction with associated {c;},
or in other words, if for each j ¢ {co,...,cm} the path from the j-node
towards the root passes first through a left child (b consists then of the
corresponding row indices).

Proof. 1. follows immediately from the recursive formula and 2. follows from
1. O

6 Basic examples of classical bar and cobar

6.1 Classical (co)bar for Set
6.1. Consider (Set, x), the category of sets equipped with the product. We will

investigate the (very simple) classical bar construction bar(ge «)-o and cobar
construction cobar ge; ) (Definition|3.5). This also determines — in principle
— the bar and cobar constructions barg.acr 0o and cobargeacr oy, 0 of
simplicial sets because the product, and thus the bar and cobar functors, are
computed point-wise. Since the point (unit of x) is final, by Corollary p*
is an equivalence:

P ((Set, )Y A7 = ((Set, ) ©.
Furthermore, we have

((Set, x)")A*)™ = Coalg(Set®””, )
by the trivial Eilenberg-Zilber Theorem and finally

Coalg(Set®™, x) = Set™”

because x is the product.

Lemma 6.2. We have an isomorphism (making the identifications in

‘N = (p)t Obar‘

of functors
op
Mon — Set®

where N is the nerve.
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Proof. Clear from the definitions. O

Lemma 6.3. For A ¢ Set®” a simplicial set, the monoid cobar p* A (making
the identifications z'n is generated by A1) modulo the relations

ap=1 forage A
(51(@2) = (52(&2) . (50(0,2) f07’ as € A[Q]

In particular, if A is path-connected, then this is the fundamental monoid of the
simplicial set.

Proof. Recall the discussion The coequalizer with its induced algebra
structure is obviously the monoid described in the statement. Notice that the

“comultiplication”
Apzy = Ay x Apy

is given by (d2,00) in this case (trivial Eilenberg-Zilber Theorem [4.70)). O

Let G : Mon — Grp the functor “group completion” and F' : Set - Grp the
free group functor.

Lemma 6.4. For a simplicial set A such that the map A — A[_1y is simply
connected (where Ar_1; = colim A) and choosing a splitting Ar_1] — Afe], we
have an isomorphis@:

G cobar p* A = F(Ap1)/F(A[-17)
induced by

¢ Apy = F(Ap))/F(A-1)
x> (doz) - (612) 7 .

Proof. Both sides commute with coproducts and thus it suffices to see the
simply-connected case. By Lemma the group G cobar p* A is generated by
Ar1] modulo the relations

apg = 1 for ap € A[O]
(51(&2) = 50(@2) -(52(@2) for ag € A[Q]

The morphism ¢ obviously respects these relations. We have to see that it is
bijective.

If ¢(x) = 1 then x is a product of products ! ... x*! with the property that
§1(xth) = 6o(2=!) and 6o (2%!) = 61 (2%} ) where we understood 6; (™) = d1_;(x).
The xtt,..., x%! thus constitute closed paths which means that x!..2tl =
modulo the relations by assumption (simple connectivity).

For x € X|) there is a path ¥l 2%l from an element in the image of X[-1

to z. It follows then that z*!...2%! is mapped to x under the map &. O

55where the quotient has to be interpreted in the only possible way as the quotient modulo
the smallest normal subgroup containing F(A[_l]) or, what is the same here, imposing the
relations [z] ~ 1 for all z € A[_1j or, in other words, taking F'(A[o] N A[-1])-
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6.5. By Lemma for A = dec™(X)(x),e, We have Ap_y] = X[, and the
map A — A[_yj is simply connected. However, in this case, there are extra
degeneracies: Scan = g + A[-1] = Ao} (which we take as splitting), sy : Aro] =
Apy, sk + App — Apzp, and we can make this thus more explicit: Since for
S A[l],

5k+3 (Scanx) = scan( 5k+2 x)a 5k+2 (Scanx) = Scan( 5k+1 IE), and 5k+1 (scanl') =x,
—— —— —— —— ——

33! o7t o7t 55t 35!
we have the relations
X = Scan(60x)scan(5lx)71 SU71 = Scan((som)scan((slx)71

in G cobar p*A. Hence we see directly that z3'...2%! = 1 in G cobarp*A (for
T1,...,2, as in the proof). Hence ¢ is injective. Furthermore, for x € Afg, we
have ¢(Scan®) = 2 - (Scan(60z)) ™" where the second factor is in F(A[_1]). Hence
¢ is surjective. Furthermore

F(Ap)/F (A1) = G(LT Afy /)
[2] = Scan®

is an inverse of ¢.

6.2 Classical (co)bar for Set™”

6.6. We get an adjunction

AP cobar op*odec* AP
Set Mon
decy o(p*) tobar

where now cobar = cobargeaor .y, and bar = barggacr ), are computed
point-wise because x has this property. We will investigate this adjunction
explicitly in this section.

Definition 6.7. The functor
M¥a .= cobarop* o dec* : Set®” - Mon®""
1s called the geometric cobar construction.

The functor is closely related to Kan’s loop group functor hence the notation.
Let F': Set — Grp the free group functor which we denote by the same letter on
diagrams.

Definition 6.8. 1. Let X € Set®” be simplicial set. Define a simplicial
group called Kan’s loop group by

GKan(X)[k] = F(X[kJrl])/F(X[k])
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with the simplicial structure given by

§i(x) = {(5kx)(5k+1$)1 i =k

(SiZE i< k.
2. Let X € Mon®" be simplicial monoid. Define a simplicial set called the
classifying space by
(WX)n] = Xpno1] X Xppg] X - x X[o]

where the simiplicial structure is given by

(;( ) (I‘n_27-..,$0) 1=0,
i(Tn1,.. :
' 0 0i(Tn-1)s- 01 (Tn-i=1), Tn-i-1 - 00(Tn-i), Tn—i-2,...,T0) 1<i<n,

$i(Tp-1,---

Jjo) _ (law’nﬁlw"axo) 7;:07
’ (sic1(wn-1),...,50(Tni), L, Tpio1,...,20) 1<i<n.

Let G : Mon — Grp be the point-wise group completion functor which we
denote by the same letter on diagrams.

Proposition 6.9. We have for cobar = cobar g acr o an isomorphism

‘ GX*" = G o cobar op™ o dec*

of functors

A°P A°P

Set - Grp
See also [52], Proposition 5.3].

Proof. This follows from Lemma (cf. also . The simplicial structure can
be (for i =0,...,k) read off from:

Sk

G]_[(dec* X)Fk]ﬁ] F(X[k+1])/F(X[k])
|
léi |
Y
G L (dec” X 1)y — 5 FX)/F(Xe-) O
Ok+1
Proposition 6.10 (Duskin [2I]). We have for bar = barg,acr 0 an iso-
morphism
W = dec, o(p*) ™! o bar
of functors

op op
Mon®" = Set®™ .
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Proof. Let X be a simplicial monoid. We have by Lemma [6.2] applied point-
wise that ¥ = (p*) ™" o bar(X) is the bisimplicial set Y[, (] = N (X[n])[m]- By
Proposition [£.89]

Y1n),[0] Yin-1],01 Yio1,[n]
(decs Y)[p) 2 lim \ / \ /
Yin-1],[0]

and there are maps
ai: (WX = Yinoi)
(gnfla oo 790) = (6(1)—1(9”71)766—2(9”72)7 e 750(gn—i+1)7gnfi)

which yield bijections (WX)(,] 2 (dec,Y)[,,) compatible with the simplicial
structure. O

Corollary 6.11. There is are adjunctions

O O W O
Grp? ’ - Mon®"" - Set™™

w

GKan

with W right adjoint.

Proof. The right hand side is the adjunction[6.6]and the left hand side the group
completion adjunction. O

Remark 6.12. From the non-Abelian Eilenberg-Zilber Theorem follows
that for a simplicial monoid X there is a weak equivalence

WX ~§*NX.

6.3 A.-algebras and coalgebras

Let (C,®) be an Abelian tensor category. The classical bar and cobar con-
structions for (C,®) are intimately related to the notions of Ae-algebra and
-coalgebra. Hence we will pause the discussion of (co)bar to briefly discuss the
latter. For an extensive introduction we refer to [36].

Embed C2™ as Ch(C)so (via Dold-Kan) into Ch(C), the category of un-
bounded complexes which we see here as Z-graded objects X in C with a differ-

ential, i.e. a morphism
d: X > X

of degree -1 that satisfies d? = 0. We define, in the usual way, shift operators

5,51 : Ch(C) - Ch(C)
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with (sX); := X;_1. Furthermore there are the adjunctions

Chzo(€) <= COh(C)

with 7¢¢ (truncation) right adjoint and

Chso(C) =—= Ch(C)

with 750 (truncation) left adjoint. The inclusions also have the other adjoints
which will not be used in the sequel.

We let ® be the tensor product tot— & — on Ch(C), i.e. the usual tensor
product of complexes. Motivated by Proposition explicitly normalize A® B
as the following complex

@ A;® B]‘
i+j=n
with differential
d=d; +(-1)"d,. (82)

This will hardly ever be an infinite sum in our applications. Other-wise one
should of course be more careful about whether to choose the product or co-
product (or a mixture) and assume that C has those.

6.13. We will always use the Koszul sign rule (cf. also the Yoneda product
Lemma and how this is related to the realization of complexes as objects
in CFinSet™) " For homogenous morphisms f: A - C, g: B - D we let f®
g: A® B - C ® D be the morphism, defined on graded pieces as =z ® y —
(~1)dee(@)dee(9) £ (1) @ g(y) and similarly for higher tensors. For example the
differential on A® B is expessed as 1 ® d+d ®1.

6.14. An algebra object in Ch(C), i.e. an object in (Ch(C),®)® can be seen
as an algebra object in graded objects such that

A A"+ A

d®1+1®dl l/d

A®A—> A

commutes (with Koszul sign rule). Similarly for coalgebra objects. Expressed
with elements this reads:

d(a-b) = (da)-b+ (-1)%e%. (db).
6.15. For X a graded object, we let
T(x) TH(X)

be the tensor (co)algebras. To avoid any problems during the abstract discussion
for now with infinite direct sums or products, in particular, with their existence
and commutation with ®, we consider ‘T'U’(X) € Ind -C and ‘TT’(X) € Pro-C.

162



“‘TT'(X) is considered as algebra with
(21® Q1) R (Ti41® - ®Ty) > T ® Ty
‘T’ (X) is considered as coalgebra with the “deconcatenation” coproduct.
n
1 Q- QT, Z(.’L‘l ®-Q .ﬁl) X (.’L‘i+1 ®--Q .’L‘n)
i=0

Actually, these constructions are precisely dual to each other.
Denote by “T'Tl*’(X) the positive part (i.e. without the unit object 1).

Lemma 6.16. 1. Any homomorphism di : X — ‘T'(X) of degree -1 can
be extended uniquely to a morphism d : ‘T (X) — ‘TTU(X) of degree -1
satisfying the graded Leibniz rule (called a derivation).

2. Anyaq: X - ‘TTHY(X) of degree 0 can be extended uniquely to an algebra
homomorphism
a: T(X) > T (X).

Proof. 1. The components
d, L xen cTHa(X)
of the extension are given by
n
T1® @z, >y (1% edel® ) (118 0,)
i=1

with the Koszul sign convention . To see that this is well-defined, observe
that the components X®" — X®™ are zero for n > m.
2. The components
o s X T (X)

of the extension are given by
Q@ Qxy > ary) @ Q@ alxy,).

To see that this is well-defined, observe that the components X®" — X®™ are
zero for n.>m. O

There is a corresponding dual version for the coalgebra ‘TI’(X).
If C is completﬂ we have a lax monoidal functor

lim: Pro-C - C

and thus ‘TTI’(X) gives rise to an algebra T := (lim ‘TT")(X). Similarly, if C
is cocomplete, we have an oplax monoidal functor

colim: Ind-C - C
and thus ‘T’ (X) gives rise to a coalgebra T := (colim ‘TH")(X).

56That C has countable products is enough (and sometimes even no restriction because we
work with graded objects) for what we are doing. We leave it to the reader to make the
necessary precisions.
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Definition 6.17. Let (C,®) be an Abelian tensor category.

1. A graded object X in C together with a differential d on the graded coalgebra
‘T (sX) is called an A..-algebra.

2. Let X)Y be Ax-algebras. A morphism of A.-algebras X - Y is a
morphism of (non-counital) dg-coalgebras T+’ (sX) — ‘TH*'(sY).

8. A graded object X in C together with a diﬁerentiamd on the graded algebra
‘T (571 X) is called an A.-coalgebra.

4. Let X)Y be Ae-coalgebras. A morphism of A,-coalgebras X —Y is
a morphism of dg-algebras TV (s71X) — ‘TI+(s71Y).

There are notions of (co)units for As-(co)algebras which will not be consid-
ered here.

6.18. Translating via Lemma 1., an A.-algebra is thus determined by a
collection d; : sX®" — sX of degree -1 satisfying

Y dr (1% ©d, ®1%Y) = 0.

n=r+s+t

It is convenient to define maps m; : X® — X of degree i — 2 by means of the
commutative diagram (with Koszul sign rule [6.13)

(sX)® b sx

X® s X

where s is the canonical map of degree ]@ Equivalently, an A -algebra is thus
given by a family m,, satisfying the Stasheff identities:

> (1) M (1% @ ms ©1%7) =0

n=r+s+t

and components a; : X® - X give a morphism of A.-algebras, if and only if

> D) (1% ems @ 1%) = Y (1) my (e, ® - ® ;)

n=r+s+t 1<r<n
n=iy+-+ip

with s = 7, (r—7)(i; - 1).
Lemma 6.19. There are functors
Ao : Alg°(Ch(A), ®) - Alg”?=(Ch(A),®)
A : Coalg®(Ch(A),®) - Coalg™= (Ch(A), ®)

57i.e. a derivation, satisfying d? = 0

58 Explicitly m;(z1,...,2n) = (~1)ZM-Ddeg(@i) s=1 4, (s, ..., sz5)
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giving as the identity on the underlying graded object and setting for a (co)algebra
(X,m)
myi=—-d my i=m m; =0 (j>2)

They are faithful, the image on morphisms are precisely those morphisms « :
sX — TU(sY) (resp. a : TH(s71X) — s71Y) that factor through sX — sY
(resp. 71X - s7YY ). Fizing a graded object X, the image is given precisely by
those structures on X that satisfy m; =0 for j > 2.

Proof. The (co)associativity of m is equivalent to the equation (d2)? = 0 and
the equation dids = —dsd; is equivalent to the compatibility of m with the
differential. O

6.4 The Eilenberg-MacLane bar and Adams cobar con-
struction

6.20. This section discusses the classical Adams cobar [3] and Eilenberg-
MacLane bar constructions [22]. These are not anymore dual to each other, i.e.
the Eilenberg-MacLane bar construction applied to C°P does not give the Adams
cobar construction! We assume that ® commutes with (countable) coproducts.
Let X be a dg-coalgebra (not necessarily with counit). Then there is a sub-dg-
algebra T®(s71X) c TH (571 X) whose underlying graded is the free algebra on
571X and the differential is the restriction, giving a functor

T®(s7'-) : Coalg®(Ch(A),®) - Alg(Ch(A),®).

Note that one can get back T1(s71X) as a completion of T®(s71X).

However, observe that the functor does not extend to A -coalgebras and
their morphisms — their data, in contrast to the ones coming from usual dg-
coalgebras, do not restrict to 7T®(s™1 X)!

Let X € Chyo(C) with @ : X - 1 be an augmented dg-algebra. Denote
X = ker(a) and let Y € Chyo(C) with 3 : 1 - Y be an coaugmented dg-
coalgebra. Denote Y = coker(3). X and Y are again dg-(co)algebras (without
(co)unit).

Definition 6.21. Assume that (countable) coproducts exist in C.
1. The coaugmented dg-coalgebrﬂ
bar™ := TH(sX)

with the differential from Lemma[6.19 is called the Eilenberg-MacLane
bar construction of the augmented algebra X. It comes equipped with a
natural coaugmentation given by 1 — TH(s71X).

597 = colim ‘T always exists as graded object because it involves only finite coproducts
in each degree.
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2. Asumme that ® commutes with countable coproducts. The augmented dg-
algebra -
cobard4ms .- 79 (471Y)

with the restriction of the differential from Lemma (cf. 1s called
the Adams cobar construction of the coaugmented coalgebra Y. It
comes equipped with a natural augmentation given by the projection T®(s71Y) —
1. If Y is connected, then it is again an object in Chso(C).

For coalgebras, we have the functor “connected cover”:
P: Coalg(Ch(C), é)) g Coalgconn(Ch(C)Z()a é)

which is left adjoint to the inclusion, where connected means X; 2 0 for i < 0,
and that the counit induces an isomorphism Xy — 1. It is defined by

X@ >0
P(X);={1 =0
0 1¢<0

with obvious comultiplication, counit, and differential.

Note that connected coalgebras are canonically coaugmented. We will only
consider the Adams cobar construction on such connected objects where s™1X
is just 70(s71X).

6.5 Classical (co)bar for Abelian categories

Let (C,®) be an Abelian tensor category. We will investigate the classical bar
construction bar¢ g)_,0 and cobar construction cobar¢ g)-.o (cf.[3.5)).

Lemma 6.22. Let (C,®) be an Abelian tensor category and A € C an algebra
with augmentation o: A - 1. Denote A = kera. Then we have an isomorphism
of dg-coalgebras

TU(sA) = (p*) " bar(A)

a—a(a)-1

where bar = bar(cﬂ@b@ is the classical bar construction (Deﬁnition in the
category of augmented objects in C and where TU(sA) (with A considered as a

complex concentrated in degree 0) is equipped with the differential m : Z®2 - A
extended to TU(sA) by means of (the dual of) Lemma|6.16,

Proof. The composition

o
bar=m]

(€1,8)° —————= ((C11,®)")"'O <Z— ((Cj1,®)") A" = Coalg(CH™, &)

can be described as follows. The functor bar maps A to object B with

Byip = A*
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op

with A®? = 1 understood, with transition morphisms in AP,

responding algebra structure maps, with comultiplication

given by the cor-

Brijers1 = Bl © By

being the obvious isomorphism, and with the counit being the isomorphism
Bpoy — 1. If 1 is final, as it is in the category of augmented objects, then by
Corollary [£.14] this extends to an object

(P") ' Be((C,®)") A
i.e. to a dg-coalgebra. Inert morphisms go to the corresponding

A®i N A®j

= Coalg(C2™, ®),

)P

given by applying the augmentation to the appropriate slots and the comultipli-
cation factors through the canonical degeneracy (this follows from Lemmal4.13)):
Blijw(51 = Brag«11 > By ® By

yielding the structure of dg-coalgebra on p*B. Let A be the kernel of the
augmentation (considered as graded object in degree 0). Then we have an
isomorphisms of dg-coalgebras

TU(sA) == (p*) " bar(4)

a—a(a)-l

for one composition is clearly the identity, whereas all tensors of the form a; ®
- ® (afa;) 1) ® - ® a, are degenerate. The identification of the differential is
left to the reader. O

Lemma 6.23. Let (C,®) be an Abelian tensor category with countable colimits
such that ® commutes with them. Let A € Coalg(Chso(C),®) be a dg-coalgebra.
Then for the classical cobar construction (Deﬁnition cobar = cobar ¢ gy

cobarp* A= T®(Ay)/I

where I is the ideal generated by Ay under my 1 +d, where my1: Ay - A1 ®A; is
the 1,1-component of the comultiplication. The induced algebra structure is given
by (the quotient of) the product structure in T®(Ay). If A€ ((C/17<8>)V)(A’*)Op
18 an augmented coalgebra then the same formula is true and the augmentation
of the result coincides with the projection T®(A1)/I — 1.

Note that the indices refer to the indices under Dold-Kan, i.e. Ay = Ap11/A[o]

d
and AQ = A[Q]/A[Sf
Proof. By we have

cobarp*A =
COker(@A[l] ® - ®A[2] ®:Q® A[l] @@A[l] ® - ®A[0] ® - ®A[1] —>

E_BO Af=T%(An)
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with the morphism
id-¢e: @A[l] ®:® A[o] ®:® A[l] - T@(A[l])

with Apg; ¢ Apyy via the (only) degeneracy understood and € : Ay — 1 is the
counit. We have an exact sequence (using that ® commutes with quotients)

QAL ® @A ®® A —— T®(A[1]) ——T(A;) ——0.
We have the automorphism
Q:T®(Apy) > T%(Ap)
given on Ay by ama- ¢(a). This yields an exact sequence

GBA[I] ®® A[o] ® - ®A[1] E>T(A[1]) L>TG§(Al) —0

and the ideal 2(J) coincides with the image of X. The morphism
@A[l] ®:® A[Q] Q- ® A[l] - TEB(AU])

is induced by the map Afg) = T®(A[y)) given by pj ; — 01, where i ; is the
composition Apy] - Apz) = Ap ® Ay (composition of canonical degeneracy
and structure map of the coalgebra, cf. the discussion in [3.18)).

We claim that the following is commutative

Hy1=01
Apy —— T(Ap))

in
m171+d

Ay ———T (A1)

The upper composition is given by, writing u(a) = ¥ a; ® b; where a € Ay,
and a;, bi € A[l]:

a p(a) + Y e(a)b; + Y e(bi)a; + Y. e(a;)e(b;) - 1(a) —e(61(a)).

We have Y e(a;)b; = do(a) and Y a;e(b;) = d2(a) and ¥ e(a;)e(b;) = e(a) because
of the coalgebra structure. Obviously €(d1(a)) = €(a). Hence we are left with

ar p(a)+d(a)

where d is the alternating face map. In T'(A;) indeed degenerate elements are
mapped to 0 and, because of the commutative diagram

i,
Ap) —> Ay ® Apy

b

AQWA:[ ®A1

where m; 1 in the bottom line is the 1,1-component of the multiplication in A
considered as coalgebra w.r.t. ®, the induced map on A, is given by my 1 +d. 0O
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Theorem 6.24. Let (C,®) be an Abelian tensor category with countable colimits
such that ® commutes with them.
There is an isomorphism

cobarop* = Hy o cobar3™ o P

of functorﬂ )
Coalg(Chso (C). &) ~ Alg(C1. @)

where cobar = cobar ¢ gy i the classical cobar construction (Definition ,
and where P is the functor “connected cover” with its canonical coaugmentation.
Proof. For A € Coalg(Chy,®) a dg-coalgebra, we have

(Hy o cobar®™ o P)(A) = T®(A,)/I,

where I is the ideal generated by im(d+mq,). Therefore this follows from
Lemma [6.23] O

By definition, cobar®®™$(PA) = T®(s'PA), and s '(PA) is the same
as the truncation 75¢(s™tA4) = s71(751A4). Furthermore 7»; is oplax monoidal,
neglecting the unit, i.e. a functor of cooperads

7211 ((Ch(C),®)"") ~ ((Chx1(C),®)*Y)
hence induces a functor
71 : Coalg® (Ch(C),®) — Coalg’(Ch(C), ®).
For a morphism A - B of dg-coalgebras, we obtain a commutative diagram of

dg-algebras
T (571 A) ——— T (571 B)

l l

T (51 PA) — > T (5" PE)

More generally, any morphism of dg-algebras ‘TTI'(s71A) — ‘TTI'(s71B),
i.e. in particular an A-morphism of (A-)coalgebras A — B, induces a unique
morphism ‘TTU(s71PA) —» ‘TT’(s71 PA), such that the analogous diagram com-
mutes, but does not necessarily induce a morphism 7®(s™*PA) - T®(s"1PA).

We define thus

Definition 6.25. Assume that countable products exist in C. Let A be a dg-
coalgebra with coaugmention 1 — A.

cobarAdams(A) = TH(sA)

60the RHS is the category of augmented algebras in (Chso(C),®) which is the same as
algebra objects in augmented objects.
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equipped with its natural algebra structure and with the differential from Lemmal[6.19,

cobar(A) := coker (HA[1]®.”®A[2]®W®A[1] i ﬁ A‘[gﬁ)
MAL®-®A[® @A) 5
We have then still
Proposition 6.26.
——— Adams

cobarp* A = TH(A,)/T = Hy o cobar oP

where T is the closure of the ideal I of Lemma and this is functorial in
morphisms of Ae-coalgebras.

6.6 Classical (co)bar for complexes in Abelian categories

6.27. Let (C,®) be an Abelian tensor category. Apply the last section to
(Chyp(C),®). Composing with the adjunction we get an adjunction

cobarop® odec%

Alg(Chso(C)1,®) Coalg(Chs(C), ®)

decg , o(p*) tobar

where bar and cobar are understood w.r.t. the cofibration (Chyo(C),®) — O.
Here decy is the decalage dec” turned into a lax monoidal functor (=functor of
cooperads) as described in Section

The adjoint functors will be identified in this section in terms of the Eilenberg-
MacLane bar and Adams cobar construction.

Theorem 6.28. There is an isomorphism

barfM =~ decg . o(p*)~ obar

of functor@
Alg(ChZO(C)/la ®) - Coalgconn(ChZO (0)7 é)

where bar = bar(ChZO(C)/l,@,)_,@ is the classical bar construction (Definition W
and where dec, = tot is the total complex functor considered as a momnoida
functor as in[CJ Both sides are connected and hence canonically coaugmented
coalgebras.

6lthe LHS is the category of augmented algebras in (Chyo(C),®) which is the same as
algebra objects in augmented objects.

62«har” commutes with the forgetful functor forgetting the augmentation (in the obvious
sense), hence we didn’t mention the augmentation in the index of “bar”, but it is important
to keep the augmentation along to be a able to interpret the result via (p*)~! as a double
complex. (Without the augmentation it is only a diagram of shape A°P x Agst).
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Proof. Let A€ C?" be an algebra w.r.t. ®, i.e. a dg-algebra, with augmentation
A - 1. By Lemma applied to (C*”,®) there is an isomorphism

(") bar(4) = TH,., (5, 7)
of double complexes (with rows A®---® A), where s, is the shift w.r.t. the second
(column) index. We have to see that there is an isomorphism of dg-algebras:

dec, T(%M PRCYIE T o) (s4)

where TH

(.0) considers sA as a graded object and is equipped with the differential

dl +d2

from Lemma [6.19]and where dec, is considered a monoidal functor as described
in Both sides are in a natural way direct sums of 4;, ® ---® A;  in degree
n =m+ Y, ix. However, because of the sign in the coalgebra structure on the
left hand side (cf. , the identity would not be compatible with the coalgebra
structures, but we have an epimorphism of graded objects

p:dec, T(LCIAopyé)(le) - sA

by the obvious projection. Like in (the dual of) Lemma it extends to an
isomorphism - -
p': decy T(%Aop’é)(slA) - TH(sA4)

of graded coalgebras, introducing the sign (—1)Zk(m_’“)deg im-% on the summand
A, ® - ® A;, . Finally observe that, for A,, in complex bidegree (n,1) resp. in
degree n + 1, the following commutes:

Ap =———==4,

(—1)nm7‘,l,q‘,2t ld2,i1-1,12—1

Ai1 ® Ai2 ?)7; Ai1 ® Ai2

where the (=1)"my, 4, is the second summand of the differential on the total
complex. O

6.29. Let B € Coalg(Chy(C),®). Apply Lemma to the double complex
A= dec* B considered as object in Coalg(D2”,®) with D = Chy(C). We have
by Proposition 2.:

A =s?Bes'B Ay=s>Bes’B
(not a direct sum as complexes!), where s™! is considered as endomorphism of
Chyo(C) (i.e. really 505~ ') and the differential (between the columns) is

o 9

sPBes?B———" >s?Beos'B
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and the 1,1-component of the comultiplication is
s5?B®s?B—————> (s?B®s'B)®(s?B®s'B)
whose components are by Lemma 3. given by:

m1,1 ¢ Bivjsz ® Biji2 = (Bis2 ® Bji2) ® (Bir2 ® Bji1) © (Bis1 ® Bjy2) ® (Biy1 ® Bjy1)
(bns3,bns2) = (0, Bisa o1 (bnsa), (1) Bivt jro(bnsz), (1) Bist je1 (bnsa))-

Theorem 6.30. Let (C,®) be an Abelian tensor category with countable colimits
such that ® commutes with them. There is an isomorphism

cobar®d2Ms o P = cobar op* o decg

of functor@
Coalg(Chyo(C),®) — Alg(Chxo(C)/1, ®)

where cobar = cobar cacr &) s the classical cobar construction (Deﬁm’tion,
and where dec is dec” considered as a lax monoidal functor (= functor of co-

operads) as in Section .
Proof. This follows from Proposition [6.31] below. O

Proposition 6.31. Let C be an Abelian tensor category with _countable colimits
such that ® commutes with them. In the situation of Lemmafor CA™ with
tensor product ® = dec, —® — (i.e. under Dold-Kan the usual tensor product on
complezxes) there is an isomorphism of dg-algebras

¢:T®((dec* B))/I - T®(s'B)
busasbnsr = (=1)"8 7 (bpa1) +da s (bns2)

where I is the ideal from Lemma and where T®(s™'B) is equipped with the
restriction of the differential d = dy +ds induced by the coalgebra structure on
B as described in Lemma and where s™* is the endomorphism of Ch(Cso)
(i.e. really T59s71).

Proof. Recall that d; =—d and dy : s 'B - s"!B® s™' B is the comultiplication
twisted with sign: do 141 = (—1)iﬁi,j (both extended to T'(s!B) using the
graded Leibniz rule). We first check that ¢ is compatible with the differential
and maps I to zero. We omit the s=* for better readability.

I is generated by elements of the form

(bns2,0) + Y. (0, Bis2,j+1(ns3), (=1)7 " Bivt jra(Bnss), (1) Bist j1 (bns2))

i+j=n

63the RHS is the category of augmented algebras in (Chyo(C),®) which is the same as
algebra objects in augmented objects.
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which are mapped by ¢ to

> (D) Birje1(bnsz) + (1) Bis1 ji1 (bpa2))

+j=n

+ Z (_l)m (((_1)k+16k+1,l+1 ® 1)6k+l+2,m+1(bn+3)

k+l+m+2=n

+ (“DF((-1)""1® Bir1,ma1) (1) Brs pemea (bnas) ) = 0.

We have to check the commutativity of

Bria ® Bpat —e>T®(57 B)nsa

L

Bps1 ® By — 2= T®(s7'B) s
The upper composition maps a pair (bn+2,bni1) to
—d(=1)"bps1 —dda bpaz + da(=1)"bpe1 + (da)*biyo.

The lower composition maps it to

(—=1)"" by + da(dbpsa + (=1)"bpsr).
This is the same using (d2)? =0 and ddy = —dy d. Defining

Y:T®(s*B) - T%((dec* B)1)/I
b = (0,(=1)"bns1)

we have ¢ = id and

(Wb - id)(bn+2a bn+1) = (_bn+2a O) + d) d2 bn+2
= (_bn+2>0) + (_1)n Z (07030, (_1)i+1ﬂi+1,j+l(bn+2))

i+j=n

with the same decomposition in tensor-degree two as above. This is obviously
in 1. O

Corollary 6.32. Let (C,®) be an Abelian tensor category with countable col-
1mits such that ® commutes with them. Then there is an adjunction

barfM
Alg(ChzO (c)/la é)) - Coalgconn(ChZO(C)v é)

CObaI‘Adams

Proof. This is the adjunction [6.2 O
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6.7 Comparison of classical and derived (co)bar

As we have seen, the bar constructions W and bar®™ are given by our abstract
“classical bar construction” for I =S = 0 followed by the (totalization) functor
dec,. By deﬁnitior@ the derived bar construction is given by this “classical
bar construction” followed by a relative left Kan extension which (in the aug-
mented case) can be computed as colimit over A°P. Thus, simply put, W and
barf give Lurie’s bar construction because dec, computes the (derived) col-
imit over A°P (this is true essentially because of the Eilenberg-Zilber theorem,
cf. Section . This section is devoted to an elaboration of this explanation.
Denote S = Set®” [W™] = Gpd,, (localizations always as co-categories).

Proposition 6.33. We have a commutative diagram

Mon®"" — = Alg(S, x)

-1 -1
(o) Obar<SEtAop,x>ﬂOl l(p*) Obar(s,x)~0

SetAOPXAOP - SAOP

dec*l Lcolionp

Set?r” ——— =8

Proof. The commutation of the upper diagram is clear, and the lower follows
from the isomorphism dec, 2 6* up to coherent weak equivalences (non-Abelian
Eilenberg-Zilber Theorem and the fact that §* computes the colimit in
the localization (i.e. the homotopy colimit) by Proposition m O

Corollary 6.34. We have

Bar = dec, o(p*) "t obar = W

as functors
A°P
Mon= — S

where Bar = Bar(g ). is Lurie’s Bar construction (Definition .
Proof. We have seen in that
Bar = cglimO(p’*)_1 o bar
(both bar constructions w.r.t. the cofibration (S, x) - ©). Therefore this follows
from Proposition [6.33 O

6.35. Let (C,®) be an Abelian tensor category. Denote by W the quasi-
isomorphisms in Ch,(C) (bounded below complexes). Assume that ® has a left

derived functor & which is again associative. Denote D, (C) := Chy(C)[W™]

64Lurie defines them differently, but we have seen in Corollarythat the definitions agree
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the localization as oo-category. We assume the very mild conditions of [I8]
7.9.1] ensuring that localization and taking functor categories commute (i.e.
homotopy colimits become oco-categorical colimits). Those conditions are for
example satisfied, if (Ch,(C), W) enhances to a model category structure. This
is true under very mild assumptions on C.

Assume that there is a full subcategory Ch, (C)*""'* ¢ Ch,(C) (closed under
biproducts, ®, and containing 1) such that the restriction of the inclusion gives
rise to a monoidal functor

(Ch.(C)™!,8) > (D4(C), &"). (83)
It thus induces a functor of cooperads
(Chy(C)P™, 8) = (D4 (C). ")
and finally a functor
Coalg(Ch, (C)*™, &) - Coalg(D, (C),&").

Proposition 6.36. We have a commutative diagram
it ~ ~L
Alg(Ch, (C)}",®) ——————— Alg(D.(C)1,®")

*y=1 1 *V=10h.
G °b“(0h+w),®>—»(’)l L(p) obar , (c),al)-0O

Coalg((Ch. (C)37™)A™, &) — Coalg(D. ()R, dec. - g -)

dec@,*l lcolimAup

Coalg(Ch. (C)7", &) ——————— Coalg(D.(C);1,8")

Recall from the proof of Theorem that the functor denoted colimaop
is in fact a relative left Kan extension along the functor (A, *)°P — O°P of
cooperads, which exists, and is computed fiber-wise (i.e. here commutes with
forgetting the coalgebra structure) because this is an exponential fibration of
cooperads that is co-coCartesian.

Proof. The upper diagram commutes because the restriction of the localization
is monoidal by assumption.
Consider the diagram

Coalg(Ch. ()}, ®) ———— Coalg(Chxo(C)[W1],8")

decéllﬂ* ot

Coalg((Ch, (C)72)A", &) —— Coalg(D.,(C)A™, dec, - g -)
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in which the square involving the 7* is clearly commutative. Furthermore, also
dec% is a functor of cooperads (Lemma and there is a natural transfor-
mation

= dec%

which is point-wise a quasi-isomorphism (Lemma [C.9). Therefore there is also
a commutative square involving decé. Now consider the mate (passing to the
left adjoints vertically):

Coalg((Ch, (C);ﬁ’lit)mp7 &) — Coalg(D, (C)2”"  dec, - &" -)

decg . l 7 colimaop

Coalg(Ch, (C)j‘l)ht7 ®) Coalg(D, (C),&")

We have to show that the natural transformation is an isomorphism. However,
this can be shown forgetting the coalgebra structure, i.e. we have to show that

(Ch+(c)j;1)1it)A0p . D+(C)Aop

dec*l 17 Lcolionp

Ch. (€)™ D,(C)

commutes. However this is the restriction of

(Chi(C)1)™" ——= D (C)*”

dec*l 174 jcolionp

Ch,(C);; —— D,(C)

where the RHS is a localization of the LHS (the first line at the object-wise quasi-
isomorphisms, see [I8, Proposition 7.9.1]) and in the adjunction dec,, dec’ both
functors preserve (object-wise) quasi-isomorphisms. Therefore it descends to an
adjunction between the localizations and (the descended) dec’ is isomorphic to
7* — thus also the descended dec, is isomorphic to colimaop. O

Corollary 6.37. We have

Bar = dec, o(p*) ! o bar = bar®”M

as functors
Alg(Ch. (€)1, &) — Coalg(D.(C), ®")

where Bar = Bar(&(c)/l,é")ao is Lurie’s Bar construction (Definition .
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Proof. We have seen in that

Bar = Cglimo(p*)’1 o bar

(both bar constructions w.r.t. the cofibration (D+(C/1,®L) — 0). Therefore
this follows from Proposition m The isomorphism with bar® is a slight

generalization of Theorem [6.28] to bounded below complexes. O

6.8 An intermediate cobar construction

Let (C,®) be an Abelian tensor category with countable colimits such that ®
commutes with them. We may also compute the classical cobar construction
w.r.t. the cofibration of operads (C2”,®) - © (not ® !). (C2™,®) is again an
Abelian tensor category and thus Lemma applies giving

cobarop® o decgy A = T(%Aop@)((dec* A/,

where decg = 2205 dec” is the lax monoidal extension of dec”
(€27, @)~ (A A7 &)Y

discussed in where ® := dec, ~®—, and ® is ® applied point-wise in the first
variable. We will not calculate this further in any explicit manner, because ®
is complicated in terms of complexes. It will turn up as an intermediate step
in comparing the Adams cobar construction and the geometric cobar construc-
tion in section Actually, it compares very easily to the geometric cobar
construction:

Lemma 6.38. The following commutes

Set®” ——> Coalg(Ab*", ®)
cobar op*odcc*l lcobarég op*odecg

1\/[011Aop W Alg(Ab/AZ0p7 ®)

where on the left the cobar construction w.r.t. (SetAop, x) — O and on the right

the cobar construction w.r.t. (Ab/A‘Zop7 ®) = O is used.
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Proof. The diagram in question is the outer rectangle in:

Set™A™ o Coalg(AbAop ,®)

* *

dec dec

Coalg(SetAop x A°P ’ ><) ﬂ Coalg(AbAop x A°P 7 ®)
Q(QUQ ~ Qlw2
Coalg(SetADpXAop , %) L Coalg(AbAopXAoP ,®)

cobar op® cobarg op™

op A°P
Mon TAlg(Ab/Z 7®)

The left morphism 220, is an isomorphism because of the trivial Eilenberg-
Zilber Theorem In the third horizontal morphism a coalgebra with struc-
ture map dec” X - X®X is mapped to dec” Z[ X | with structure map dec” Z[ X ] =
Zldec* X] - Z[X ® X] = Z[X]| = Z[X]. The commutativity of the two up-
per squares is clear and the commutativity of the lower square stems from the

commutativity of Z[-] with colimits (being a left adjoint) and its monoidality
(Set®™, x) > (Ab2™, ®). O

Remark 6.39. The Lemma may be expressed by saying that there is an iso-
morphism.:

Z[-] o M®™ = (cobarg op* o dec,) o Z[~]

i.e. the complex of normalized singular chains of the geometric cobar construc-
tion of X is the algebraic cobar construction of the compler of normalized sin-
gular chains of X. With the caveat that this is the algebraic cobar construction
w.r.t. ® and not w.r.t. ® (which would be the Adams cobar construction). Nev-
ertheless, the latter two can be compared, which is — perhaps surprisingly —
fairly intricate. We will do this in section[6.10,

6.9 Coherent vs. A, -transformations

Proposition 6.40. Consider the coopem (CA™ @)Y with its simplicial en-
richment F Aw* Hom® (cf. Lemma . Then for any pair of (non-counital)
dg-coalgebras X,Y we have a natural morphism

Coh(X,Y) » Hom”> (X,Y)

which restricted to Hom(X,Y') is the usual embedding of coalgebra morphisms
into As-coalgebra morphisms (Lemma . The functor is compatible with

65Recall that (—)° means that we neglect the counits.
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the composition defined in Section on the left hand side and composition
of morphisms of A -coalgebras on the right.

Remark 6.41. There is an algebra-version of the above as well, which will not
be needed. We leave the details to the reader. In fact, the whole construction
works for unbounded complexes and so the other argument is dual.

Proof. Let p € Coh(F,G)y be a coherent transformation. We have to define
morphisms i
an s 'F - (G nx1

of degree 0 satisfying d o = ad (for the extension of o := ‘ [] ', to ‘T (571 X) —
‘T’ (s71Y")), or more elementarily:

Z (ai®aj)d2 +ope1dy =do g + dy gyt (84)
i+j=k

Consider the set of factorizations of pgyq : [1] = [k + 1] in A, = 03P of the
form

6%—1*1 5i0+1

(1] =—=1[1] (] [k +1]==[k+1]

in AP, ie. a sequence of injections with endpoints fixed, where all injections

are non-identities, and thus necessarily of the form ;. We have 0 < i, < k—n.
As in we see them either as sequences i = (ip,...,ix_1) or as a leveled
tree. In total, there are k! such factorizations which constitute non-degenerate
k-simplices of Ny, ., ([1] x/ae Ay xjae [k +1]).

Each (i) defines an element in Hom® (F, G¥**!) which we consider as a
degree k morphism F - G®**1)  We can thus define a degree 0 morphism:

Qo1 - s (S—lG)®k+1

ste e ()P Y sen(i) (i) ()

where is sum is over all i = (g, ...,%k-1) with 0 <i; < k —j and where we used
the Koszul sign convention (6.13) and where

sgn(i) = (~1)5 1.
oy is just the degree 0 map F' — G evaluation at [1] — [1] - [1].

N
We a left to show . Define for each m =1,...,k -1 an involution o,, on
these factorizations given by

(0j-1,0;) i<j

5i75' = . .
(0::0)) {(5j76i+1) 12

at positions m,m + 1. Each involution o, changes the sign:

sgn(om(2)) = —sgn(L)- (85)
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Since the maps . : Np,,, ([1]%/ac_ Ageyxjae [E+1])k > Hom%(ﬂ GEU+))
are simplicial, we hav

k ~ .
(-1)*(d agsr = g1 d) = 2(8_1)@1“1) > (-1) sgn(i)p(9;i)s

= ()P Y sgn(@)p(doi)s + 3o (s7) P (1) sgn()u(6ri)s

because p(dmi) = (0momi) for m=1,..., k-1 and the sign property .
dot is equal to

Sig+1

[k+1] —=[k+1].

(2] (<]

Write this as doi = (4;,15) © 61 where i; and i, are compositions of J;’s and
id’s. We have that i; = o(i}) and i, = 7(i,) for uniquely determined shuffle
o:[k-1] » [a],7 : [k=1] - [b] for a+b = k — 1 and where i} and i, are
of the form previously considered, i.e. non-degenerate with extremal identities.
Because of the relations in the coherent end, we have that

p(iy) ® p(iy) € Hom® (F, G®** 1),y ® Hom® (F, G®**1)

map to 1(2) under the composition
Homy, (F, G®*1) @ Hom(F, G¥**1) = (Hom(F, G®**1) & Hom(F, G®*1)) g
o Hom[k] (F, G®k+1)
where the last map is the composition with the comultiplication F — F 82, By
Lemma thus to the morphism
- G®k+1

of degree k, given by
(n(i1) ® p(iy)) F(m)

with Koszul sign convention, if o = s; and 7 = s, and other-wise to something
degenerate. For these we have sgn(i})sgn(i}) = (~=1)(**D?sgn(i) in such a way

66using d(s—1)®k+1 — (71)k(s—1)®k+1 d.
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that
(5P sgn (i) 00)

= 3 HEEED (i) sen(ia) (n(i5) © (i) F(m)

== > (-DDPsgn(i,) sgn(iy)-
a+b=k-1

((s7H)2@ D @ (2D (i) & p(ih)) (s @ 5) (57 & 571 ) F ()

== > (D) D (1) (aq ® ap) F(m)
a+b=k-1

= 2 (-D"aa®@a)F(m)

a+b=k-1

Ox1 is equal to

Oif_q+1 dig+1

[1]=—=1[1] 2] (K]

Thus 6xi = 6;,+1 o ¢ and therefore

[k+1].

(1% & G(m) & 1%F707" ) u(i") = ju(6oi)
where i’ = (i1,...,45_1). and therefore

P (1) sgn(i)(s7) PV p(8) = 3 (s7)PHD (<1 sgn(i) (190 @G (m) 81%5 0 (')

z

= (D) sgn(@)(-1)° (10 & (s @ 571 )G(m)s & 194701 (57 (i)
= 2 (1) sen(@)Gm) (™) u(l')

- (-D)*G(m)a

where G(m) now has been extended — as derivation — to s™'G.
Putting everything together, we arrive at

(-D*(de arn — arar dp) = (-1)*G(m)ay, - (-1)* Y. (s ® a;)F(m)
i+j=k
ie.
Z (a; ® aj)F(m) — a1 dp = G(m)ay, — dg o
i+j=k

so indeed (cy) is a morphism of As-coalgebras, observing that (on F' say)
d; =-d and dy = F(m).

The proof that this association is compatible with composition is omitted
for the moment. U
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6.10 Functoriality (Szczarba and Hess-Tonks morphisms)

6.42. I(% this section, we relate the following two objects for a simplicial set
X e Set®

E3Y o Z[ MK (X)] 2 €3" o Z[cobar op™ o dec* X1,
cobar®™ 6 P o A 0 Z[ X ] 2 cobarg op” o decy oA o Z[ X ].

which, in more traditional language, would be called CM¥(X) and QC(X)
— the translation of the (co)algebra structures via AW and EZ understood.

6.43. Recall from the Abelian Eilenberg-Zilber Theorem that we have
functors (with mate) of (co)operads:

A20: (AL2”, @)Y > (ALY, 8)Y AW : (AL, &) > (AbA”,®)
and
€3: (AbA”,8)Y > (A2, ®)Y  €3":(AbY”,®) > (ADAT, )

6.44.  We have seen in Lemma that (quite obviously because Z[-] is
cocontinuous and monoidal):

cobarg op* o decg oZ[ X | = Z[cobarop® o dec” X .
Thus, it remains to compare the following two dg-algebras

€3" o cobarg op* o decy oZ[ X1,
cobarg op” o decg oA o Z[ X ].

Definition 6.45. 1. The following composition of morphisms of dg-algebras
1s called the Szczarba morphism ¢:

cobarg op* o deck oA o Z[ X ]
L €3—functoriality (Proposition
¢3Y o cobarg op* o €3 o dec% AW o Z[ X ]
~lLemm et
@3" o cobarg op* o decg 0€30AWo Z[ X |
Sh(Z[X]) : The Shih-operator in disguise, see[6.47]
A

€3" o cobarg op* o decg oZ[ X ]

where we wrote decy := AWs o dec”.
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2. The following composition of morphisms of dg-algebras is called the Hess-
Tonks morphism :

€3" o cobarg op* o decy oZ[ X ]
lmﬂﬂfunctoriality (Proposition
cobarg op* o AW, o decy oZ[ X ]
Sh(Z[X])l\:VThe Shih-operator in disguise, see[6.47]
cobarg o p* o AW, o decy, 0€3 0 AW o Z[ X |
qr—_
cobarg o p* o dec oA o Z[ X ]

Here cobarg is a natural completion of cobar defined in Definition .

We will see later in Corollary that, the first morphism is the same as
the one given by Szczarba in [53] (up to different indexing convention, see [5.55)).
That there is a relation between the Shih and Szczarba constructions has been
observed before, cf. [24]. It is not completely clear (to me), however, how the
construction of the deformation in [24] relates to the construction in below.

It seems likely that the second morphism, optimistically called Hess-Tonks
morphism, gives the morphism defined in [33 2.1] (at least up to the same
reindexing) but this remains to be checked in detail.

Remark 6.46. Notice that, in 2., there is no direct map of the form

cobarg op™ o AW o decy oZ[ X ]
|
(¥4
A\

cobarg op* o deck oA o Z[ X ]

because the analogous diagram to the one in Lemma with the Alexander-
Whitney morphisms does not commute!

6.47. The transport of the Shih operator:

It remains to see how the deformation =¥ (cf. Theorem 3.) gives rise
to the dashed morphisms in Definition |[6.45

Recall from the construction of the higher Shih operators which con-
stitute a coherent transformation €;"H = €3" exp(L(c,g)v(EY)) € Coh,(id, €3 o
A20) where on the source the discrete enrichment and on the destination the
weak enrichment FHoirnE@AbAop’ &) 1) is chosen.

For a dg-coalgebra C' € Coalg(AbA ,®), it yields a coherent transformation
€;"H(C) € Cohy(C,€30AW o C) for the discrete enrichment on 0°P and for

the weak enrichment F'Hom

7?AbAUD @) O the target.
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Forgetting the counit, we get a coherent transformation

¢3*H(C) € Coh,(C, €30 AW o C)

for the truncated weak enrichment F’ Homi’:b %% gyow (cf. Definition|5.36|) on the

target. Reason: We have obviously Z[N([1] x/as_ Ajee x/ac_ [k +1])]n =0 for
n > k because every element of degree > k in this nerve must be degenerate.
Proposition states that 7decg is a weakly enriched functor

(CAOP’®)O,V = (CAOPXAOP’Q)O,V
for the weak (Ab>" | ®)-enrichment Hom?:b 2% gyov O1) the left and the (Ab2” | ®)-

enrichment Aw* Hom®;* (second variable) on the right.

(AbAOp x AOP 7@)0,\/
The coherent transformation €3* H(C') yields thus a coherent transformation

Tdecg €3 H(C') € Coh,(7decgy C, 7 decg €30 AW o C).

Applying Proposition [6.40] produces a morphism of A-coalgebras, by defi-
nition a morphism of dg-algebras:

Sh(C) : ‘T (s7deck C) — ‘Tl (s7dech €3 0 AW o C).
Note that because the first component Sh(C'); is the identity, this morphism of
Aoo-coalgebras is invertible.
Theorem 6.48. The morphism Sh(C) constructed above is bounded (that is, it

maps cobar to cobar (without completion)) and we have a commutative diagram:

HO(T® (57 deck 0€3 0 AW 0 Z[X]) —> @3 (751 dec*z[x])?’“/ﬂ — sT31Z[X]

LSh(Z[X]) jSZ(Z[X])

HO(T® (57 deck oZ[X])) — > @72 (71 dec* Z[XNPF/1 <o ®Rlo(a1dec” Z[X])ﬁ’ﬁ/f

where the map Sz on the right has components

Sz, : Xy ~ @ (721 dec” Z[X )]
k=0

given by

-l1+xz k=1
Zisgn(jv)scan(Szg +ida, ) (s7tr) ®@ - ® (Szg +ida, ) (s7tr) k>1

Szi(s'x) = {

for the Szczarba-operators Szz defined in Definition m

Corollary 6.49. The Szczarba morphism in Definition is up a different
indexing (cf. the morphism given by Szczarba in [53], see also [33, Theo-
rem 7].
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Proof of Theorem|[6.48 The components
(€5° H), € Hom, (Z[X], Z[xX**'])
of 3" H, i.e. the higher Shih operators, are by Proposition given by

(€ H); = > sgn(op) Hy;.
b

and by Proposition and Proposition we have that (the projection of)
sgn(op) Hy',; is given by

> 7 such that E(SZ;*O +q0) ® - ® (SZ? +qr) by <k

Sgn(O’g),PH?,Z = i is a b-reduction of 7
0 otherwise
_ Jk+1
modulo degenerates, where ¢; = 577}, and

€= (—1)(E+1)k sgn(i") sgn(gv).
Thus pu(z) is represented by maps

Z[X]n-r ~ (Z[X] ),

YD Y CZ PUDE S ICL RS
b 7 such that - -
i is a b-reduction of 7

modulo degenerates and the kernel of P, where the b run over sequences (bo, - . ., bx)
with & > by > -+ > by, > 0 only.

Under the functor 7decg of weakly enriched operads of Proposition this
is mapped to a morphism:

Hom, (7<1 dec” Z[ X ], (7<1 dec” Z[X])& ).
Contemplating the construction in we can first map it to
Hom, (7<; dec* Z[ X, (<1 dec* Z[ X ])®**) (86)

by the morphism in Proposition [C.5] and then apply the 220, morphism. The
image in is thus represented by morphisms (we will only need the case in
which the first component is zero)

Z[X)ivjer ® Z[X Jivj = (Z[X]1® ) ijuner @ (Z[X]®* ) isjun
(0,2) ~ (0,(-1)"* Zb: > e(Sz2° +'q0) @ -+ ® (S22 *'q1.))

7 such that
i is a b-reduction of 7

185



where now % = 1+ j —1. We compose this with the bottom line map in the
commutative diagram (cf. Proposition [5.42)):

50 s(F)

|” I I

(Z[XJ®’“+1)“J-+,€C—> (dec* Z[X]®FHDY; o~ @ oty =ik (dec* Z[XD)g jo 8 ® (dec* Z[XD)g j, )i

with
(e) _ J+k
o ld 62f<e]f’zf<c]f
where, however, only summands with jo,...,jx > 1 occur because of the trun-

cation. Now set j =1 (hence i = 75) because this is the column appearing in the
cobar construction. In this case, there is only one summand and we have

5©s - (idz >(-5§+11)sCan e=0,
oo 1d[k] + Rt e>1.

ele

This shows that elements in the kernel of P are mapped to degenerate (in the
second index of dec”) elements. Furthermore

(idgey *65711) © Sean © (S2° *'a,)
= (id *5ke+1) ° (S 7~ *Sleﬁel+1) © Scan
= (S 2 %1d[1]) © Scan = Scan © (S <0 «"id[q7).
The composition is equal to
Z[X ] = L[ X ][0y © - @ Z[ X ] 719
x> (~1)FF % > Escan (S +"id11) © -+ @ (S25* +'id 1))

7 such that
i is a b-reduction of 7

modulo degenerates.
Under the morphism in Proposition | this yields a morphism of Ac-
coalgebras with components (in degree 1 and k)

ap = (sTH (DR Y >
@b 7 such that
i is a b-reduction of 7

55 sgn(@)scan (S£2° +' 1dp1) @ (878 #'idp1y))

(k= l)k

(Notice that sgn(i¥) = (-1)

Ic(k+1)

sgn(g’)). The (s7!)**! contributes (Koszul

convention) a sign of (-1) "z ~

=Y ¥ sgn@“ Jsean((S220 #' 1)) (57 @) @-0(S22" ' id ) (s7'2)).
i,b 7 such that B
i is a b-reduction of 7
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If we take x € X7, |, we have:

-1+x k=1

(1-¢) 7;0&"”(%) B {Zisgn(iv)(Sz?(s_lx) ®® Szf(s_lx)) E>1

by Proposition [5.60} The -1 is the constant term for k=1. For higher k the
constant term is degenerate and thus can be omitted. O
Proposition 6.50. We have ¥¢ =id and there is a chain homotopy Y¢ = id.

Proof. Omitted for the moment. O

A Exactness of some diagrams

Lemma A.1. The following natural morphism is an isomorphism of 1-profunctors
(and also oo-profunctors):

T
Proof. The diagram
A°P A°P
1
- A
is co-exact, because @ is final in AZP. O

Lemma A.2. The following natural morphism is an isomorphism of 1-profunctors
(and also oo-profunctors):

‘pry 2 Y(i,i) pr.

Proof. We have to see that the diagram

A©P x AOP %A%p < -
7 p1=(id, @)

A°P x A°P g— A x AY

is oo-exact, which is the product of the one of Lemma [A-T] with a trivially exact
one. O

Lemma A.3. The following natural morphism is an isomorphism of 1-profunctors
(and also oo-profunctors):
dec "pr; 2id.

In particular, we also have dec 'maopxpor & Taop, in other words, dec is co-
cofinal.
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Proof. We have to show that the diagram

AP x Aop _dec Aop

1

AP ——— AP

is co-exact. Since pr; is a cofibration, it suffices to see that

dec,,
e

A°P A°P

lﬂ' U ‘
[n]
—_—

AP

is exact (where dec,, := ([n],id) o dec) for all n. Using criterion (Lemma 4.)
it boils down to show that the following category is contractible: Its objects are

morphisms
[a] < [b] * [n]

such that the composition [a] « [n] is fixed, and morphisms are the morphisms
[b] « [b'] making
[a] <——[b] * [n]

N

(0] + [n]

commute. Now write [a] = [a'] #' [a”] (where * identifies the endpoints) such
that @’ is minimal with a factorization of the given morphism:

[a] = [a]+" [a"] « [a"] < [n].

A morphism [a] < [b] * [n] is then completely determined by a morphism
[a’] < [b] to the extent that the category in question is isomorphic to

[a'] X/ Aop AP
which is contractible, having an initial object. O
Lemma A.4. § is co-cofinal, i.e. we have that the natural morphism
St 2 'n.
s an isomorphism of co-profunctors.

Proof. We have to show that the diagram

A°P u

|

ACP x AP T
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is oco-exact.
Using criterion (Lemma 4.) it boils down to show that the following
category is contractible:

[n], [m] xjacpxpoe 6 AP

This category is cofibered over A°P with fibers being the set Homa (-, [n]x[m]).
But the latter simplicial set is the nerve of the category [n] x [m] which is obvi-
ously contractible, having an initial object (or here equivalently a final object).
Moreover, for any category there is a natural transformation |, Ao N(I) = 1
which is a weak equivalence (i.e. the nerve applied to it is a weak equiva-
lence). O

Lemma A.5. The following natural morphism is an isomorphism of 1-profunctors
(and also oo-profunctors):

dec “(i,4) = % decy .

Proof. Look at the compositions:

AP x AP —— AOP 5 AP _9C_ Aop
(m)L - lz
T <07 0
and
A©P x AOP AP x Aop _dec Aop

Lipri (i,i)t = lz

op op op op
A7 — A x AY 4>de0g Ay

We have to show that the common right square is co-exact. Since (4,7)*, p7, and
p35, are jointly conservative, it suffices to see that the left and composite squares
are oo-exact in both cases. This is either because i and (4,7) are fully-faithful,
or a consequence of Lemmas [A-2HAT3] O

Lemma A.6. ¢: A°® - FinSet®? is 1-cofinal, i.e.

AP — > FinSet°?

1s 1-exact.
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Proof. To show that the categories

A X/ FinSet [TL]

are connected. Let [m] — [n] and [k] — [n] be morphisms in FinSet. They
give rise to a morphism
[m] * [k] = [n]

in FinSet (* is the coproduct in FinSet). We get a commutative diagram

where the inclusions are morphisms in A. The category, being non-empty, is
thus connected. O

B Leveled trees, Shih, and Szczarba

This section is devoted to the proof of Proposition Actually a slight
generalization, Proposition will be stated and proven, in which the e and o
are needed to make the induction work.

B.1. We need the following generalization of (5.53|). Let &, e, m be non-negative
integers. For o : [k + €] - [k], we define the operator

P, : Z[Hom([n],[m])]®**D - Z[Hom([n], [m])]e*+)
by

k+e
7)0 = H 1®U(’L) ® Pn—k—e—1+i ® 1®k_0(2)
i=0
i.e. it throws away all summands that are n—k —e— 1+ degenerate at o(7) for
1=0,....k+e.
We also let ¢ := Hom(o,[1]) : [k + 1] = [k + e + 1] the dual active face map,
here with

8(j+1) = 8(j) + #0 (4
For o =id, e = 0 we also write P := P,. We denote the jumps
a;=06(j+1) = 6(j) = #o' (j)-
We have

o= 5% %/ idpq; * g % *'id[l] #

where «; is the number of preimages, denoting s : [a; — 1] - [0].
By formula for the signum, we have thus

sgn(o) = H(—l)(k’i)(o‘i’l).
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B.2. In asituation as inm given a vector b = (by, ..., by_1) with & > by > --- >
bi-1 > 0 — which is also seen as a shuffle oy, : [n] - [k], 7 : [n] = [n— k] (notice
the n instead of E) where 73, is degenerate precisely at the intervals b; +1 — and
7 of length % > k, such that i is a b-reduction of 7, then given o : [k +e] - [k],
we get a unique extension 7 : [k + e] — [k] satisfying

2E) () = {#a‘l(j) i = c; for some j

1 otherwise
Denoting

Bj = Cj - Cj—l - 1
(setting ¢ = -1), we have

oy ag

o= id[ﬁo] #1540 3/ id[ﬁlJrl] +'s et id[ﬁkJrl] *'s

and get by formula for the signum

sgn(5) = H(_l)(ﬁﬁl)(m—l)

1<J

which specializes to the formula before, if all 3; = 0. In particular,

sgn(o) sgn () = H(—l)ﬁf(o”_l). (87)

i<j

Definition B.3. For a vector (i.e. leveled tree) i = (ig,...,i;) and face 0 :
[k+1] = [m] (arbitrary m >k +1) define

SZié = SZZ 5|[]]
Directly from follows:
Lemma B.4.

SZi,é =

; Sz, o0t =g+ 1
J _{ Q.6 0 J 0 (88)

Sig SZZ,, 5 otherwise
with 0" = 0;,410 and j' = s;,(j) and o, = 0(ig +1) = d(ig).
The following gives Proposition [5.57]in the special case e =0 and o = id.

Proposition B.5. With the notation from[B.1}, we have for arbitrary n, setting
k=n-k-1-e:

~ co  / [ 7.
n z 1 such that E(SZ“Z-',S'* qU’O) ® ® (SZ’;’X* qU,k) QO <k
,PO',Hb’Z' = i is a b-reduction of T B -
0 otherwise
modulo degenerates, where qq ; = s’gzrjl)fg(jﬁ). In particular the expession is zero

unless k> k (i.e. n>2k+e+1).
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Here the i are vectors of length % and co,...,CL are determined byz as in
(558 and N ™
e=(-1)*™D*sgn(i¥) sgn(i’ ) sgn(o) sgu(@) sgn(oy)
The Szg’(S *'qy; have values in [5(c;)] +' [#071(5)] = [0(¢cj + 1)] and are
considered as [n — k]-valued via the inclusion [6(c; +1)] c [n-k]. 0 is the

(active) morphism [k +1] = [k +e+ 1] dual to & .

Before giving the proof, we need a couple of Lemmas:

Lemma B.6. Let 7 € Hom([n—1],[m]). Then H}(T) is a sum of terms of the
form 7' @ T that are

e for i <b, i-degenerate at the left and right if T is degenerate at i and not
i-degenerate neither on the left nor right, otherwise.

e fori="0, i-degenerate at the left (at least)

e for i > b either i-degenerate at the right or at the left (not both) if T is
not-i — 1-degenerate and fully i-degenerate, if T is i — 1-degenerate.

Furthermore, for i > b each term is at least i-degenerate at the right for i =10 or
such that T is not i — 1-degenerate.

The proof is left to the reader. We can also say that ;' (7) is a sum of terms
of the form s,7’' ® s;7" for ¢ > b and such that either 7 = b (thus fully degenerate)
or T is not 7 — 1-degenerate.

Lemma B.7. Let 79 ® -+ ® 7 be a summand of Hy,. Then for i > by at most
one T; is not i-degenerate. o

Proof. Induction over Lemma (because of @ > by > -+ > by_1, in each step,
the third case is relevant). O

Lemma B.8. If P, Hy, # 0 modulo degenerates then bg <n—-k—-e- 1.

Proof. We have
My (7) = (sple @ Hy @ sP 1701y
Let 70 ® - ® 7,_1 be a term of 7—[2,’11, The operator Hj, (7i,) is (modulo degen-
erates) a sum over terms of the form s,,7' ® ;7" for i > by such that 7, is not
i—1-degenerate (Lemma and the comment after) and thus Hy (1) is a sum
over terms of the form
T:=8p,To®  ® (8p, 7' ® ;7" ) @+ ® Spy Th-1
—_— =
at io at 19+1
However, since i—1 > by, 70®-+-®7y_1 is (either degenerate or) i—1-degenerate

at all except one slot (Lemma B.7). Thus all 7; for j # ig are i — 1-degenerate
and thus z is i-degenerate except at ip and ig + 1. If we assume P,z # 0, we
must have o (i) =14 or o(i) =ip+1, and also a(bg) = ig+1 because x is obviously
bo-degenerate at all other slots. Hence o (i) =49 + 1 (because ¢ > bg) and hence
P,x =0 anyway. O

192



Recall from Lemma the definition of the operators Bg .

Lemma B.9.

Let n, ag, a1 be positive integers.

Pao,alHn = Z(_1)2i<j Zj(zi+1)+06022i(Bg o gotar o B;(SS‘O o gora
z

Qp,xptan 0,0

in which z = (20, - - -, Zn—ag-ai-1) TUNS over all vectors with z; € {0,1}. Implicitly,
in the formula the BY ' sq0*l | is composed with the inclusion [m +oq] -
[n+1]. B

Proof. Follows from Lemma [5.49] identifying the z-summand above with the

(0,...,0,1,...,1,20,. .., Zn-ap-a,-1) — summand. O
ap times «j times

Lemma B.10. Given i = (ig,...,ik-1), k>k, and b= (bo, ... ,bx-1) with k>
bg > -+ > bp_1 >0, and denoting i’ = (iy,...,ip_1) and b' = (by,...,bx_1), we
have a bijection

i ~
= ~ [
o - . |~ : _
{1 i @ Y-redustion of } = {4 i reduction of )

where 7 has length k (resp. Z has length k- 1), and x is the cardinality of
{jos- - fo1} ={0<j <k -by—1 s.t. y =i} (89)

(cf. for the definition of the y;). Then we have

’
C

8255, = 5% Ippo) *' 5 (90)

/.6’

where Sz;f%, lay, : [bo] = [}, — 2] for a degeneracy s : [k -bo—1] - [x].

Given o andg’ = 08, as in with dual faces § and 0" = 6;,.10. Recall
their extensions § : [k+1] - [n+ 1] and ' : [k] = [n] defined in . Then we
have:

U
¢
io ’ 0 .
Sbg Szfﬁ’:;'/ |[bu] * (SBg) J =to,
, v

ci c; 1 ¢Qig—1 .
Sz = Sz?‘%, [bo] * (8B;00° ) Jj=io+1, (91)
) C'siom .
Sbo 57 5, otheruwise.

Furthermore, we have

) sgn(g'v)sgn@'v)sgn(a) sgn(7)
= (~1)boRrleRig % (5D R iz son (i) ¥) sgn( (7)) sgn(o”) sgn(@’).  (92)
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Proof. The bijection is given, identifying the extensions g'N', and 7, respectively,

with collections (y{),...,y%_k_l), and (yo,...,Y5_x_1), respectively, as in
by
Y] j2k-bo-1,
Y; j<E—b0—landy;<io,
Yi=3.7

Y+ zi j<k-by—1and y;»:i(h i.e. j = j; for some i; cf. ,'
yi+1 j<k-by—1 and Y5 > io.

The representation follows directly from the recursive property of Sz
and the construction of ¢’. We show and by induction on the length
k of 7, starting from by + 1.

The induction base is k = by+1, whence Ciy = Cip = Ci0+1_1,z: (ci0,767 e ),

0 = (50”15, z=(), s =id[o], and yields:

U
c ;-1
i i C_
Sz%.~>e50 j=1p+1,
~ ’
1,5 csqjo(j)

Sbo D% 5

T,hese yield . For the sign, notice that we have o/, = 5,01 (5) for j # i and

J
ol =y, + a1 and Bj’- = ﬂéiou(j) for j #io+1 and B;,+1 = 0. We have to show:

otherwise.

10

cio+i0é%—k+2(ai—l)ﬂj+2(ag—1)ﬁé modulo 2

i<j 1<J

=% -k - Z B + iy Big+1 modulo 2
10<J
However, we have c;, =io + ¥;;, 8 and Y b; = = k, so the statement holds.

We will now turn to the case k> bo +1 and and assume that the Lemma has
been proven for length k£ — 1.

~ ~ ~7 7 ~ ! ~/ . .
Denote 1 = (zo,zg,...,z—’éiz), i = (ig,1'g,---,1'5_3), with relevant derived
L I I’ " " A ! "7 "’
quantities ¢} and ¢}, y = (yo,%0-- - ¥, ) ¥ = Wo,v0 - > Y7, ), ete.
Doft j J k-2 k—k-2
efine

8" = 0051 0" 1= 0.

Thus the corresponding o, increases by 1 while 3,,, decreases by 1 and we have:

6" =6, 6  6":=6, 8.
Yo

Cyo

By construction, we have ¢y, =10 +1, yg = si,(y0) and ¢}, =1y +1 and one of
0
the three cases:

. 3 — = 14 .
I yo ¢ {io,io + 1}, 2=2", o = aiy;

s = " " " o_ .
I yO—ZO»Z—(Oa207""Z:c—2)7O‘ig = a5, + 1



I yo=do+1,Z=(1,20,..., 25 9), aj = Qg
We distinguish also the two cases:
A j#yo;
B j=vo.

We proceed to insert the recursive property of the Sz , respecively of the
B , in all 6 cases:

IA) Cj %70-}-1, Cjr %%704'1

"

! (e 11 RO s
Sbo SZ~” 'gm |[ ] * (Sk—Z—bos BZ") J =10,
" | III - a
~ J ~ O
Sk—l SZT"SII - SZ I 3’/// | (sk 2— bos BZ” ) J - 7’0 + ]‘
- U
570(J) .
SbyST_ Sz "5 otherwise.

IB) Cj :70 + ]_’ le :710 +1

— does not occur in this case — j =g,
C,<, 1 d . . s
i ; 1 ] — does not occur in this case — j=19+1
(SZ;" :S"' * ld[o]) - c/rr ’
- io () .
Sbo (Sz~,,°~ *id[o)) otherwise.

6//!

ITA) ¢; #70 +1, c; =) +1if j=i9+1 and ¢js #1) + 1 otherwise.

— does not occur in this case — j =1o,
<"’ C,’Lv” . al
ST-1 SZ~1, 7 : SZZ‘"%/ Itbo1 * ((s” * id[o]) $a- 1Bz”60 ° ) J=10+1,
=’ "
N .
SbyST_o Sz~,,°gj” otherwise.
IIB) ¢; =g +1, ¢j=1)+1
ua
0
., Sbo Sz "gm| ' ((s" *idoy)(BZr *id[o1))  J = o,
c !
J — N . . .
(SZ;"g,, *idfo}) = — does not occur in this case — j=1p+1,
— does not occur in this case — otherwise.

IIA) ¢; #790 +1, c; =ih + 1 if j =g and c; # + 1 otherwise.

I’
Sbo Sz;,9,g,,,| # (8" *idp1)s-18, ,,) j =1,

"

S . .
551 Sz ==y does not occur in this case — j=ig+1,
1, "
(€] .
Sig
SboSTr_o SZ 7 5o otherwise.
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IIB) ¢; =49+ 1, cjr =ip+1

— does not occur in this case — j =tig,
! ;” . . i -1 . .
(SZW 3 *idpgy) = Szﬁ%, o] * ((s” % idpop) (BLy * 1d[0])6g °) j=idg+1,
— does not occur in this case — otherwise.

Note that e.g. 5%—2-(;03” = (8" #id[g])sz-1. In each case the induction hy-
pothesis thus gives equality. For the sign equation , note that passing from
0 to §" and ¢’ to ¢", the quantity oy, (resp. oz;(,]) increases by 1 and 3y, (resp.
5;6) decreases by 1, hence

sgn(i’) = (-D)F w0 sgn((@)Y),
sen(@)) = (<07 sen(@)),
sgn(o)sgn(o) = Sgn(o’”)Sgn(~l,)(—1)zy0<JBj+z'i<y0(ai_1)7
sgn(o’)sgn(d’) = Sgn(o'”,)Sgn(NlI,)(_l)Zy6<jﬁ;+zi<y6(a;_1).

Inserting ¢y, = Yo + X<y, 35 and c;(,) =y + ngyg 6;- we see that the LHS of
picks up a sign of
(-1t R B D),

and the RHS of (92) picks up a sign (taking into account that k decreases by 1)
of
(_1)96‘1—’“2:«% (o-1)

In case I and IT their product is obviously 1. In case III their product is (=1)%o.
In turn, in case II, the expression (—1)Zi<i % (z:+1)+¥i @02 does not change (no-
tice that ay, also increases by 1). In case ITI the expression (—1)Zi<j 2 (zi+1)+Z; i 2:
changes by a (-1)%o. O

Proof of Proposition[5.58 In order to be non-degenerate, we must have by < &
by Lemma By Lemma we can write

PoHy i = Po(sp° @ Hj © sbk 0P, Hy

where o' = 0s;, and thus 0’ = §;,,10. We will sl}gw the statement for k = 0,
i=(), where the LHS is id[, by definition. Then i = (0,1,...,k - 1) and thus

sen(i¥V)=1,  sgn(i ) =1,

o : [e] - [0] is the contraction, and 7 : [k +e] — [k] is id[x) *'o, hence, sgn(o) =
sgn(bv) 1. Furthermore

=idgy s§0)sa1) = iden] -
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By induction on k, we may assume that the statement is true for k—1,n —
= SR
l,e+ 1,0 =(i1,...,45-1), with &' =k — 1. hence

,P Hb’ - Z E(SZ—7 ?5" *lslg/?});%/(l)) R Q (SZ k oy ,S]g/?]: 1) 5’(k))

i’ is a b'-reduction of 3’

therefore
PoHy,; = Ze'(sbo SZ?,S' ’slngol)"g(l)) Q- ®
(P§f05(of?3+1 Hbo (SZ~, 3 *'Slg&i;ea(lwz)))
®+ ® (S, SZ~, 5 Islg(+k1)+5(k+1))
where )
b = n(PCH ®1) H(l ® Pera+i)

(and recall oij =6(j+1)—0(4))-
We will show

Qg , Mg+l Y

= Zé‘z(s 20 XS5 S i0r)) © (SZJO+1 *' S5 stir2)) (93)

(Pk+6(zo) 'H" (SZJ‘L *! ]gai)l(s(zoﬁ)))

with
e, = (~1)Sio BT g

where, in each summand, the extension % is determined by i’ and z as in

Lemmam Equation together with and case 3. of in Lemmam
achieve the induction step and produce a global sign of

H (_1)bi—E—i+1.
=0

On the other hand by (75)
g bi—(k—i-1
sgn(op) = [T (-1)" D
i=0

where oy : [n] > [n - k]. This yields a product of (- 1)(k+k)k (- 1)(k*1)k

i

It remains to show equation QI) By Lemma [B.10, we can write Sz Ty "
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Sz ,”%, [bo] * s for a suitable degeneracy s : [k —bo—1] > [z]. Then

k+6(zg) n ig 1 _k+l+e
Paigstriger P (SZ~, 3 S8(io), S(i0+2))

&(4 n-bo— < e
_ (ld bo] 'Pk bo—1+ (O)H bo 1)Sb0(SZ»Z_70 |[b0] 5% Slga‘i;’g(io_;.g))

i, Xig+1

= (idgu] 4+ PR—bo—1+6(i0) g n—bo~ 1)(Sz2 '5' [bo] * § * 35(10)5““2))85,(6, )-z

Qi Qi +1

. k e x
= (idpg) *s #' 55&5,5(1'0&))(82 75 l001 * Parigcigen T

_ Z(_l)ZKj zi(zj+1)+a X z;

QH»OL;,O +ai0+1 )5
S5

5 (cj )

(Sz~ 0

/ 0,7 _k+1+ 0410+0410+1
7 5/ 0] * 813 )

* 35(10) 5(i0+2) Savig 0t +avig et

k+l+e
55(i0),6(ig+1)

1¢ig=1 1 ktlte 0170+0170+1
® (SZ,(;, [bo] * B2, * 35(10)6(zo+2) 0,aiy )

Sk+1+e
8(ig+1),8(ig+2)

using Lemmam7 2. Thus equation follows from cases 1. and 2. of in
Lemma [B.10l O

C Decalage

This appendix contains a rather technical discussion of the compatibility of dec*

(total decalage), in the Abelian case, with ®, ®, and some (weak) simplicial

enrichments used throughout the text. It should be consulted only if needed.
Recall the explicit formule for dec® and dec, in the Abelian case (Proposi-

tion .

C.1 Symmetry

C.1. Let o: A°P x A°P be the morphism switching the factors. On the level of
double complexes ¢* has the effect of switching the indices. Let X be a double
complex with isomorphism

a:0"X2X

We do not have an isomorphism deco = dec but certainly an isomorphism of
Ab-enriched pro-functors

g:decozCdecorzCdect=dec.

Lemma C.2. Let X be a symmetric double complex. The composition of dec, a
with the mate of the morphism L(5)

dec, X 2 dec, 0" X 2 dec, X
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is giwen under the identification r (i.e. the identification described by Proposi-
tion as the morphism

D A; - D A

1+j=n i+j=n
aij =~ (-1)7a(a;y)
Proof. Tt suffies to show that

(-1 .
D, D; ———g*(D, 8 D,)

lscan Lscan
_—

dec*(D,,) L@ dect a*(D,,)

commutes. Like in the proof of Proposition 2. it suffices to see that in
degree n, we have N
(-1)Y¢d; Scan = ¢L(7) dy- Scan-

Since d Scan = id, the right hand side maps [{0,...,7}]®[{0,...,7}] to [{0,... i+
j+1}] and then applies the isomorphism [4] * [] 2 [4] * [¢] in FinSet switching
the factors. The left hand side morphism maps it to (=1)¥[{0,...,i+j +1}],
which is the same (cf. Lemma for a description of the action). O

Lemma C.3. 1. The mate
dec” dec, — decia 3.« decy o3

induced by (L applied to) the obvious isomorphism dec decya 3 = dec decy 23
s given by morphisms

Qnom * H A @ H A= H (Ai,j+m+1 ® Ai,j+m)

i+j'=n+m+1 i+j'=n+m i+j=n
product of the identities
Aijim+1 ® A jum = Ai jime1 © Ai jim
overi+j=n.
2. The mate
dec” dec, — decy 13« decy o3

induced by (L applied to) the obvious isomorphism C dec deca 13 ¢ = C dec decy 23 ¢
s given by morphisms

Onom * H Ay @ H Ay — H (Ai,n+j+1 @ Ai,n+j)

i+j'=n+m+1 i+j’=n+m i+j=m

product of
Aijins1 ® Ajjun = Aineje1 © Ajnsj

(_1)i(n+1) 0
(_1)(i+1)ndl (_1)in

overi+j=m.
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3. The mate
dec” dec, — deci3 24,5 decy 34

induced by (L applied to) the obvious isomorphism C dec decyg 24 ¢ = C dec decia34 ¢

s given by morphisms

Qnom - H Ai’,j’ (23] H Ai’,j’

i +j' =n+m+1 i'+j'=n+m

> [T T1 Akt et ® Aivket o © Airkjris © Airkjr)

i+j=n k+l=m
product of

(Aisrr1,o1 © Airkjrir1 )®Airk jrt = Aiskr1 jrie1©Aivks1 j1®Aik jr1e19Aisk

0 0 0
(=1)7(k+1) 0 0

0 (-1)DE g

0 0 (-1)7*

(with the left two factors from the first product) over i+ j=n,k+1l=m

Proof. The morphisms are in each case induced by a collection for n+m =x

anm: ] Ay = J] (Aijemer ® Aijim)

i+j'=n+m i+j=n
maps A; j to the factor A; jinm on the right with j' := j +m.

Qnom * H Ay~ H (A peje1 ® A nej)

i+j'=n+m i+j=m
maps A; j to the factor A; i, on the right with j’:= j +n with sign (-1)".

nm: ] A [T (Aiskst ot ® Aivrjrin © Ajsrnt jor © Ain jit)

i +j'=n+m i+j=n,k+l=m

maps A; jo to the factor A;,x j; on the right with ¢/ =4+ k and j' := j + [ with
sign (-1)7*.
In each case, we get on

Ai/’j' D H Ai’,j’

i/ +j'=n+m+1 i/ +j'=n+m

the map
(dman,m+17 an,m)

where d,, is the differential in the m-direction (cf. proof of Proposition|5.39} 1.).
In case 1 the map is

(0 o) ) ) (5 )
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In case 2 the map is

4 0 0 0 0 (0 o), (o o
0 q (_1)(i+1)n 0 +(_) 0 0 (_1)“1 0 + 0 (_1)zn
~ (_1)i(n+1) 0
= ((_1)(i+1)ndl (_1)111)

In case 3 the map is

1 0 0 0 1 0 0 0 0 0 0
1 0 0 0 i 0 0 0 0 0 0
( )( 0 0 0)+(—1) ( 1)(0 0 0)*(0 0o 0
(-1)ik+D) g @ 0 (-1)i% o0 0 0 (-1)*
0 0 0
(-1)7+1) 0 0
= 0 (_1)(j+1)k 0
0 0 (-1)7% 0

C.2 dec is simplicially enriched

C.4.  The functor dec” : Chyo(C) - Chyo(Chso(C)) extends naturally to an
unbounded functor (given by the same formula as in Proposition 5.39} 2.)

dec” : Ch(C) - Ch(Ch(C))

and is left adjoint to tot!l. For this functor, we have (by inspecting Lemma
2.) a canonical isomorphism

dec (A®B) 2 A®dec B
where A € Chy(C) or A € Chy(Ab). On the right hand side the tensor is w.r.t.
the second variable. In particular

dec” : Ch(C) - Ch(Ch(C))

is simplicially enriched (w.r.t. the simplicial enrichment Homé) and so is the
restrictio

decyy : Chso(C) — Ch(Chso(C)).

Proposition C.5. On Hom-complexes the enrichment ofaézcyr s explicitly given
by:

Hom®(X,Y), - Hom®(dec X,dec’Y),

( ! ) q even
_\eomar g

((_1)i+1f )

of (-1)'f

67but not the restriction Chso(C) = Chyo(Chxo(C))!

f
q odd
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where 0 is the differential in the Hom-complez.

Proof. In Lemma 2., working with unbounded complexes (in one direction)
we have the morphism

dec” dec, — decy 13« decy o3
which is explicitly given by

anm: ] Aige ] Ay [I (Ainsjn ® Ainsg)

i+j'=n+m+1 it+j'=n+m i+j=m

whose value at the pair at 7, j is the value at the pair at i, 7’ = j +n transformed

by
(_l)i(n+1) 0
(_1)(i+1)ndl (_1)m
It extends to unbounded complexes in the j-direction and has an inverse there,
given by

-1 i(n+1) 0
(_1)(i+1)(n+1)dl (_1)7,77.
and letting j = j' - n.

Now let
HZAZé)B%C

be a morphism determined up to degeneracies by x({0,...,q} ® b;) = R(b;).
We have xd;({0,...,q} ® b;) = O(K)(b;) where 9 is the differential in the Hom-
complex. dec” k is the diagonal

H (AZ)z ® Bj’ 52 H (AZ)Z ® Bj’ = Cnim+1 @ C"rL+m

i+j'=n+m+1 i+j’'=n+m

and the composition

H (Az)i®(B”+j+1®B”+j) - H (Az)i@’Bj'@ H (A;)i‘g’Bj' = Craem+19Chim

i+j=m i+j'=n+m+1 i+j'=n+m
maps {0,...,q} ® (bm+j+1; bm+j) fori=q to
(_1)(1(”“)"‘5 0 bm+j+1
(D)@ DDoE) (1)) \ by
This gives the formula stated in the Proposition. O

Notice that this enrichment does not work properly in the bounded case.
However, see (C.6) for a workaround.
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C.3 Compatibility with ®

dec” is canonically monoidal for ® because the latter is computed point-wise
interpreting source and destination as (bi)simplicial diagrams. We denote the
corresponding functor as

dec™: (€277, ®) - (CA"A7  ®)

(the notation decg being reserved for its composition with the Alexander-Whitney
map in the second variable).

Since this functor cannot be extended to the unbounded case, we cannot
easily extend it to a simplicially enriched functor. However, we can do the
following:

C.6. Let’s call 751 the truncation with 0 in degree 0 and the grading of dec* X
is — as always — w.r.t. the second variable.

Denote 7decg := 751ty dec™. We will enhance this functor to a functor of
weakly simplicially enriched operads: We define a morphism
®,

Tdecg : Hom(c

tAop,®)o’v (X; Yi,..., Yk) — m?c’tAOPXAOP’é)O,V (7’21 dec” X711 dec” Yi,..., 71 dec” Yk)
- (94)
(cf. Definition as follows:
The morphism
dec” dec, — decy 13« decy o3

gives a comparison map
E:dec’ (A, ® X) > A, ®(dec” X)

which is an isomorphism in degree > n as follows from Lemma [C.3] 2.
Given a morphism
Oé!AnéX—)Y1®"'®Yk

Apply dec”, Aoy and 751 to get

A, &dec* X <= dec* (A, & X)
dec*
dec’ Y] ® - ®dec’ Y},

Q‘mg

dec* Y, ® ---®dec” Yy,

Ts1dec’ Y] ® - ® o dec” Yy,
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Since the comparison map c is an isomorphism in degree > n, for n < k, we get

a unique extension:

A, ®dec” X dec* (A, ® X)

|

|

|

[ dec*Y; ® - ® dec” Y},
|

|

I ~ ~

[ dec’Y; ® - ®@dec” Yy,
|

|

A

A, ®(1s1dec X) — — > 751 dec’ YV @+~ ® 71 dec™ Yy,

Proposition C.7. The morphisms

®,t
Tdecg : Hom®;

O A @)

assemble to a functor between weakly (AbAop, ®)-enriched cooperads.

(X;Y1,...,Y%) > Aw™ HO&E@C’ZOPMOK@W (151 dec”™ X; 751 dec” Y7,

Proof. We will show only the essential non-trivial case. Given morphisms X —
VieY, A,®Y; - Ziekl, and A, ® Yy —» Zflm, recall that their composition is

defined as

D0, ®X = (A, 00,)8(Y18Y5) > (A, 8Y1)® (A, 8Ys) - 28+ @ z8k

where the second map is the switch map (Definition [5.33). In the following

diagram

dec*(Ap @ X)

pr; Ap @dec* X

pr; Ap @dec* X

..., Ts1dec” Yy)

dec*((Ap®Ap)® (Y1 ®Y2)) — > pry(An ®Ap)®dec* (Y1 ®Yp) — > pri Ap @pry Ap @dec” Y] @dec” Yy

dec* switch

switch

dec*(Ap ® YY) ®@dec* (Ap @ Yy) —> (pr; Ap @dec* Y1) ® (pr; Ap @dec* Yo) —> prg Ap @dec* vy gprg Ap ®dec” Yo

dec* Z(1®k1 ® dec* Z?kl ——> (71 dec® Zl)§k1 ® (151 dec* Zl)gkl > (1 dec® Zl)@k1 & (751 dec* Zl)@kl

the middle left square commutes by Lemma [C-§ below and the others in the
left column obviously. The right column is essentially the same as in Proposi-
tion 2. The statement follows (suitably applying 7>1).
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Lemma C.8. We have a commutative diagram in which the switch map is

defined in Definition [5.33:

dec* (Y1 ® Y2) @ pri(A, ® A,) 2L ((dec” Y1) & (pr3 A,)) @ ((dec” V2)) & (prs A,))

4

TE@E
dec*((Yl ® 5/2) é (An ® An)) W dec*(Yl é An) ® dec*(b é An)

Proof. By definition of the switch morphism this boils down to see the commu-
tativity of the three squares: 1.

dec* (A ® B) Qe () dec* (A ® B)

dec* B® pr3(A) e dec”(B) ® pr3(A)

This would follow from the commutativity of:

* dec* Ez * cx
dec” decy, —————————=dec™ §
decag , deciy, ————— 035 dec),
’ Ezdec],
which is adjoint to
Ez
dec, o*

* * *
dec, decgs . decyy —— dec, 055 decyy

This is in standard form (2.14)) such that it suffices to show that

. ccoP> ¥ o "
dec” ————=dec” §* dec

] |-

87, decly dec” —> 0 decls dec”

is commutative. Since C' commutes with dec” (cf. Lemma [5.17) it suffices to see
that the diagram of functors FinSet? — FinSet

C
decy =< dec, 0, decg

decs deCSJQ (55’12 < decs deCS’Qg 55112
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commutes. This is a straightforward check
2. The commutativity of

dec” (o)
dec* (A ® A, @ X Q®Y) - dec* (A @ X @A, ®Y)

lpr

pr;(An) ® pr3(An) ® dec™ (X) ® dec* (V) —— pr5(Ay,) ® dec* (X) ® pr;(An) ® dec*(Y)
is trivial.

3. The commutativity of

ec* (Aw ~
dec" (X ® A,) _deTAw) dec* (X ® A,)
prl

dec” (X) @ pri(A,) ——> dec” (X) @ pri(A,)

would follow from the commutativity of

A
dec* dec, <—2— dec” §*

*
decas, « deciy <—

0%, decy
A V23decip

which is adjoint to

A
dec, ul o*

Aw
dec, decas » dec]y, <—— dec, 035 dec),

This is in standard form (2.14)) such that it suffices to show that

decsy dec” 6% —=— dec], dec” §*

PTL ldec;’z u®P

* * * *
decyg 033 decyy ———— deciy
u°P dec,

is commutative, which follows from the commutativity (straighforward check)
of the diagram of functors A® - A? (no FinSet-symmetry involved):

d decdecas ddecdecyo
PTT ludeclg
d6012 (523 dec23 <~ d6012 O
decizu
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C.4 Compatibility with ®

Recall the adjunction

dec*
A°P —— 5 A A°PxAC°P
C _ C

dec,

where dec, % tot interpreting the objects as complexes, and double complexes,
respectively (cf. Proposition[5.39} 1.). It actually induces an adjunction between
cooperads

dec?

op ~ ® o (o) ~
(CA ¥ 7®)\/ —_— (CA PxA p’®)v
EC®Y*

as follows, where the monoidal product ® on the right hand side is given by
deci3 04,4 — B~

which can also be seen with the interpretation C2™ 2" = (CA™)A™ as the
usual ®-product
A® B=dec, AR B
where ® is the exterior product (C2™)A™ x(CA™)A™ » (CA™)AT*A™
(the internal) ® point-wise.
The functor dec, is actually monoidal by means of the isomorphism:

applying

dec,(A®B) = dec. deciz 24+ ARB = dec, decia 34+ ARB = (decy A) ® (dec, B)
where the middle isomorphism is induced by the isomorphism
dec dec13724 ~ Cdec de(313724 = Cdec dec12734 L= dec dec12734

of Ab-enriched pro-functors. It follows from Lemma that explicitly, for a
double complexes A, B:

tOt(A ® B) = @ Ai,j ® BkJ (tOt A) ® (tOt B) = @ Ai,j ® Bk,l
i,9,k,1 i,9,k,l

112

ik
aij®bry = (-1)""a;; ® by,

The left adjoint dec”™ is automatically lax monoidal (hence a functor of cooper-
ads) via the mate

dec’(A® B) =dec” dec. Am B — decis 24,5 decly 34 AR B =dec” A® dec” B

and induces an adjunction between the categories of coalgebras. An explicit

formula of the mate is given in Lemma [C:3] 3. We denote the corresponding

functors of cooperads (and of coalgebras) by decé, and decg ,, respectively.
Finally, in the corresponding adjunction

*
CA°p di> CAOP x A°P
1 <— 1
/ dec, /
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between augmented objects, both functors commute with the forgetful functors
forgetting the augmentation. For dec® this is clear, and for dec, it follows
because the latter is computed by a connected finite limit (Proposition .
Hence we will use them on augmented objects without further distinction.

C.5 More adjoints

We also have the formula
dec, = [ "Z[AN] 6 X
which comes from the tautological formula (Yoneda):
X - f A X,

and the fact that dec, obviously commutes with colimits (as one can see from
the explicit formula dec, 2 tot, cf. Proposition|5.39). This implies that dec, has
a further right adjoint given by

(dec” X)pn1.e = HOM(Z[A,], X)),
or also (modulo degeneracies)
(dec” X)p.0 = HOM(Dy, X).,

which is similar to dec” except in low degrees:

"HX4®X3HX3®X2HX2

"*>X3€BX2*>X2@X1 *>X1

X5 X, Xo
Lemma C.9. There is a natural transformation
pry = dec’

(adjoint of dec, pry = id whose inverse is induced by dec® = pr3. ) which is a
row-wise quasi-isomorphism.

Proof. This can be seen directly by inspection or by the argument of Lemmal4.49
using that A; ® X — X is a quasi-isomorphism and hence by associativity
HOM® maps the homotopy equivalence (w.r.t. ® and hence also w.r.t. ®)
Z[A,] = Z[Ag] to a quasi-isomorphism. O
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We have a functor of cooperads
: P g P = op op op  ~
Pryg - (CA ,®)V N ((CA ,®)V)(A’*) ~ (CA XA ’®)v

which comes from the functoriality of the Day-convolution w.r.t. the projection
(A, #)°P - 0°P. Unraveling the definition it boils down to the obvious morphism

pry(X®Y) > prs X ®pry Y

noticing that, in the complexes viewpoint, prj X places X in horizontal degree
0 and is zero other-wise. Since this is an isomorphism, we also have a morphism
between the corresponding operads:

pry g (C27,8) > (C2747,8).

On the other hand, in [C:4] we have enhanced dec, to a morphism of coop-
erads:
OP Y AOP  ~ op  ~
decg , (CATAT Q) - (€27, ®)Y

Being monoidal, it is actually also a morphism of the corresponding operads,
and induces a right adjoint

dec : (CA7,8) - (CA™A™ . ®)

Lemma C.10. The natural transformation from Lemma[C.9 is actually a nat-
ural transformation between functors of operads:

pry g = decé
Proof. This boils down to the commutativity of

pri(X®Y)<——nprs X @pri YV

l l

dec’ (X ®Y) <——dec’ X ®dec’ Y
or equivalently to the commutativity of
dec, pr3(X ® Y) <—— dec.(pr3 X ® pry V)

. ];

X®Y - dec, pry X ® dec. pr3 Y

which we leave to the reader to verify. O
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C.6 Further compatibilities

Recall the enhancements of dec” to a functor of cooperads (which is monoidal,

cf. also [4.29))

dec* . (CAOD7 ®)V N (CAoprop’ ®)V
and (cf. [C.4)

dech : (C27,8)Y —» (CA™ A7 &)Y
Lemma C.11. The following is commutative:

*

o ~ decg o o ~
(CA p’®)v ® (CA PxA p’®)v

GSl l(GB,GB)

(CAOP7®)V ? (CAOPXAOP,®)V
ec

Remark C.12. The corresponding square with the Alexander- Whitney-maps is
not commutative!

Proof. Need to show the commutativity of

dec” dec, — decy3 24,4 decyy 34

Ezj l(EZJ‘EZ)

dec* §* ——— 01324 decf2734
which is adjoint to

*
dec, ———— dec, deci3 24,« decis g4

unitoEz\j l(Ez,Ez)

* *
dec, dec” 0" ——— dec, 075 o4 decyy 34

which is in standard form (2.14) and thus it suffices to see that

(Acop)7LCDP7) deC*
* * * *
dec” ——————> 073 94 decy3 o4 dec

dec* ‘c"p’\ la

* o * * * *
dec” 0" dec” === 075 94 decy; 3, dec

commutes. Using the commutativity of C' with dec® (Lemma [5.17)), this boils
down to the (trivial) commutativity of the following diagram of functors FinSet? —

FinSet:
decs (c,c)
decs <———— dec; dec; 13,24 05,13,24

cdecg ] TU

dec; 65 decs === dec; decs 12,34 65,13,24
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