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Abstract

We discuss Lurie’s (derived) bar and cobar constructions, the classi-
cal ones for simplicial groups and sets (due to Eilenberg-MacLane and
Kan), and the classical ones for differential graded (co)algebras (due to
Eilenberg-MacLane and Adams) and their relations, putting them into
an abstract framework which makes sense much more generally for any
cofibration of ∞-operads. Along these lines we give new and rather con-
ceptual existence proofs of Lurie’s adjunction (where bar is left adjoint)
and the classical adjunction (where bar is right adjoint). We also recover
various classical comparison maps, e.g. the Szczarba and Hess-Tonks maps
comparing Adams cobar with Kan’s loop group.
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1 Introduction

A small category I gives rise to a diagram

↓↑I
π1

��

π2

!!
I Iop

(1)

where ↓↑I is the (dual) twisted arrow category1. This yields for a complete and
cocomplete ∞-category C an adjunction

CI
BarC ∶=π2,!π

∗
1 // CIop

CobarC ∶=π1,∗π
∗
2

oo (2)

with π1,∗π
∗
2 right adjoint, where the π1,! and π2,∗ are the left and right Kan

extensions along π1, and π2, respectively. This is already (a simple special case)
of our derived bar and cobar adjunction. There is also an adjunction

C↓↑I
cobarC ∶=π1,! // CI
barC ∶=π∗1
oo

with π∗1 fully-faithful and π1,! left adjoint. This is already (a simple special case)
of our classical bar and cobar adjunction. Here we imagine a 1-category C, but
this is not necessary.

It might be surprising that these simple constructions can be useful. How-
ever, they have a straight-forward generalization to (co)fibrations of∞-operads2,
such that for a monoidal ∞-category C → O and I = O (planar associative op-
erad) we have

(Co)BarC→O = Lurie’s (co)bar construction.

1see Section 2.6 for a discussion and legitimization of the unusual notation.
2In these notes, so far, I decided to work with planar (co)operads as opposed to symmetric

ones, but nothing special about planar operads is used in the general definitions.
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In the presence of augmentations3 and for I = O, this yields a formula (where
ρ∗ is a certain equivalence of ∞-categories, see below)

BarC→O ∶= π2,! ○ π̃∗1 ≅ colim
∆op

○(ρ∗)−1 ○ π̃∗1 .

Here π̃∗1 — the “classical bar construction” barC→O in this case — is not a
simple pull-back as above anymore but a slightly twisted variant that transfers
an algebra into a coalgebra and also ↑↓I, for an operad I, is a bit different from
the usual notion. This implies the existence of Lurie’s bar construction, as soon
as geometric realizations exist, and hence a simple alternative to the existence
proof presented in [41].

For the classical (co)bar construction, we have (justifying the name)

dec∗ ○(ρ∗)−1 ○ bar(Set∆op
,×)→O =W

with the functor W (Eilenberg-MacLane classifying space) and

cobar(Set∆op
,×)→O ○ρ∗ ○ dec

∗ =MK

where MK is the geometric cobar construction, a simplicial monoid whose as-
sociated simplicial group is Kan’s loop group,

Also, we have for an Abelian tensor category (D,⊗):

dec∗ ○(ρ∗)−1 ○ bar(Ch≥0(D)/1,⊗̃)→O ≅ bar
EM

where barEM is the Eilenberg-MacLane bar construction and

cobar(Ch≥0(D),⊗̃)→O ○ρ
∗ ○ dec∗ ≅ cobarAdams ○P

where cobarAdams is the Adams cobar construction and P is the functor “con-
nected cover” with its canonical coaugmentation.

The reader familiar with Lurie’s definition will have noticed that this is
not the definition in terms of a certain pairing of categories that Lurie gives.
However, the (co)bar adjunction in the simple case above (i.e. over a point) can
also be described (not completely obviously) by saying that the functor ρ1 × ρ2
in the diagram

(↓↑C)I
ρ1

}}

ρ2

$$
CI (CIop)op

(3)

is a fibration represented by the the bifunctor

X,Y ↦ HomCIop (BarCX,Y ) ≅ HomCI (X,CobarC Y ).
3i.e. passing to a situation where the unit is final
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with Bar and Cobar defined in (2). This also generalizes straight-forwardly to
the setting of cofibrations of operads, and gives precisely Lurie’s definition.

The primary aim of these lectures was to explain the facts mentioned so
far in detail. Eventually, however, they grew into lectures about many related
things:

1. An alternative approach to Eilenberg-Zilber theorems using the notion of
symmetry (Section 4.7). In particular, we give definitions that do not
need any combinatorics, of the Alexander-Whitney and Eilenberg-Zilber
morphisms, which work in the non-Abelian and Abelian setting alike, yet
give back the classical morphisms in the Abelian case. Similar ideas are
already in [43, §13].

2. An alternative description of the canonical simplicial enrichment on sim-
plicial objects (Section 4.3, cf. also [48]):

Hom(X,Y )[n] ≅ HomC(∆op)n+1 (dec∗n+1X,dec∗n+1 Y ).

This is used to construct, for instance, the homotopy (Shih operator)
EzAw⇒ id using abstract principles (as opposed to specifying a formula,
or referring to the method of “acyclic models”).

3. A self-contained discussion of the Dold-Kan theorem with the least possi-
ble amount of calculation (Section 5.1).

4. A comparison between different classical cobar constructions (Section 6.10).
In particular, we recover from abstract principles the Szczarba map [53]
from the Adams cobar construction to the “singular chains” on the geo-
metric cobar constructions or Kan’s loop group, and its (homotopy) in-
verse, the Hess-Tonks map [33]. This uses the functoriality of (a com-
pletion) of cobar in the Abelian case in morphisms of A∞-algebras. To
this end, we discuss a connection between coherent transformations in the
sense of Cordier-Porter [19] and A∞-morphisms (Section 6.9).

5. Using (dual) classical cobar to construct cofree coalgebras (Section 3.7).

I would have liked to base all constructions in these lectures on abstract prin-
ciples (as opposed to writing down a formula). This could be largely achieved,
but not in every case. The most notable exception is the definition of the map
from coherent transformations to A∞-morphisms. Although the definition is
very simple it is by means of specifying a formula with signs... Another ex-
cepetion is the functoriality of the Abelian cobar in A∞-morphisms. This works
— in general — only after completion of the latter, thus one cannot expect a
too simple “abstract principle” behind. I hope to improve on these points in
the future.

Chapters 4–6 and the appendices deal almost entirely with 1-categories and
very classical constructions concerning them. The reader not familiar with ∞-
categories can thus concentrate on this part. Some facts and definitions from
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Chapters 1–3 are used, which are stated there for ∞-categories. However, the
relevant definitions and statements are not very different from the ones which
one would make restricting to 1-categories. Let me emphasize, however: Al-
though the definition of the derived (co)bar (as opposed to classical (co)bar)
could also be literally stated for 1-categories, it would be almost useless. Its
non-triviality is an entirely higher categorical phenomenon. Concerning pro-
functors, also a little care is needed4, therefore in the corresponding sections,
an explicit distinction of 1-categories and ∞-categories is carried along anyway.

1.1 (Co)bar

Bar and cobar constructions are ubiquitous in mathematics, especially in alge-
braic topology and homological algebra, and there seems to be no general defi-
nition encompassing all their appearances. Several attempts have been made to
generalize and unify them in certain contexts. The first most general definition
of a (one-sided, two-sided) bar construction in the context of monads has been
given by Godement [28]. In the homological context the first bar construction
is due to Eilenberg-MacLane [22] and the first cobar construction due to Adams
[3], cf. also [10]. Boardman and Vogt defined a very general bar construction
for “theories” in [15]. Meyer has suggested a unification of different kinds of
(co)bar constructions in [45, 46]. There are very general definitions of (co)bar
constructions in the context of differential graded (co)algebras and (co)operads,
cf. [38, 42]. In the ∞-categorical context, Lurie has given a quite general defi-
nition of a (co)bar duality in [41].

1.2 General classical and derived (co)bar duality

Lurie calls a diagram such as (3) a left and right representable pairing of cat-
egories (cf. Definition 2.79), if ρ1 × ρ2 is a fibration with groupoid fibers in
such a way that allows to extract the functors Bar and Cobar which are then
automatically adjoint.

Diagram (3) has a straightforward generalization to∞-(co)operads and more
generally to cofibrations of∞-operads C → S, and a small∞-operad I: Consider
the diagram5

(C↓↑)I
ρ1

}}

ρ2

%%
CI

""

((C∨)Iop)op

xx
SI

4The “embedding” CatPF → CatPF
∞ is not compatible with composition.

5In which C∨ → Sop is the fibration of cooperads with the same fibers obtained from C → S
and C↓↑ → S is the cofibration of operads whose fibers are the twisted arrow categories of the
fibers of C → S.
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which in the simplest case S = I = O, when C is just a monoidal ∞-category,
gives

Alg(↓↑C)
ρ1

yy

ρ2

&&
Alg(C) Coalg(C)op

the diagram Lurie considers to define his (co)bar functors.
We show that also the diagram (1) has a straight-forward generalization to

the relative setting of cofibrations of ∞-operads permitting thus to reduce the
existence of Lurie’s (co)bar functors to the existence of a certain relative (a.k.a.
operadic) Kan extensions. In fact (1) has also an switched form involving ↑↓I
and thus two generalizations:

(C∨)↓↑Iπ∗2S
op

??
π̃∗1

bb
π∗2

CIS (C∨)Iop

Sop

C↑↓IΠ∗2SCC
Π∗2

__
Π̃∗1

CIS (C∨)Iop

Sop

(4)

and we have (cf. Proposition 3.3) similarly that ρ1×ρ2 is the fibration represented
fiber-wise over S ∈ SI by equivalently

X,Y ↦ Hom(π̃∗1X,π∗2Y ) ≅ Hom(Π∗2X, Π̃∗1Y ).

Thus (the generalization of) Lurie’s (co)bar functors — which are, by definition,
functors such that ρ1 × ρ2 is the fibration represented fiber-wise by

X,Y ↦ Hom(BarX,Y ) ≅ Hom(X,CobarY )

— exist, if suitable relative Kan extensions along π2 and Π2 exist. The appearing
operad ↑↓I (resp. cooperad ↓↑I) is a generalization of the notion of “twisted arrow
category” to operads. It is an operad whose “category of operators” is not
quite the twisted arrow category of the category of operators of I but merely a
localization of it. Its objects can be identified with active morphisms in I.

The classical (co)bar adjunction generalizes to

(C∨)↓↑Iπ∗2S
op

cobarC // CIS
barC ∶= π̃∗1

oo .

Here barC always exists and is fully-faithful and cobarC is its left adjoint.
In the simplest case S = I = O this gives

(C∨)(∆act,∗′)op
99

π̃∗1

ee
π∗2

Alg(C) Coalg(C)

(5)
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where (∆act,∗′) is the monoidal category ∆act, the simplex category with endpoint-
preserving morphisms, equipped with the monoidal product ∗′ 6. It is quite un-
likely that π∗2 will have a left adjoint that commutes with the forgetful functor
(for S = I = O it certainly does not). However, if we replace C by the category
of augmented objects in C, which has the effect that the unit will become final

ρ∗ ∶ (C∨)(∆,∗)op → (C∨)(∆act,∗′)op (6)

is an equivalence. Here (∆,∗) is not monoidal anymore, because it lacks a unit,
but still pro-monoidal or, as we say, an exponential (even ∞-exponential) fibra-
tion of operads over O. (This suffices also to construct a Day convolution.) Now
π∗2 has a left adjoint that commutes with the forgetful functor under no assump-
tions at all7 (apart from existence of the colimit). In particular, on underlying
objects is just given by colim∆op (geometric realization). What happens here is
very simple. π̃∗1 maps an algebra A to the diagram of shape ∆op

act (all but one
degeneracy not depicted):

⋯ ////// A⊗A⊗A //// A⊗A // A 1oo (7)

whose morphisms are the structure morphisms of A with a canonical coalgebra
structure which extends thus, if the unit is final, canonically to a diagram of
shape ∆op (all but one degeneracy not depicted):

⋯
//
//
//
////// A⊗A⊗A ////

//
// A⊗A ////// A

//
// 1oo

with coalgebra structure now w.r.t. the monoidal product dec∗ − ⊠ −. The bar
construction Bar(A) is then just the colimit of this diagram. The cobar con-
struction Cobar is precisely the dual construction.

The classical cobar construction cobar is a left adjoint to the (fully-faithful)
association which maps A to the coalgebra (7). We show (Theorem 3.15) that
it can — under very general assumptions — be given as a certain colimit over
↑↓∆op

act (which is essentially the category of necklaces [7, 20, 50]). In the 1-
categorical context it is thus just given by mapping

⋯ ////// A[3]
//// A[2] // A[1] A[0]oo

(with its coalgebra structure) to the coequalizer of

∐A[1] ⊗⋯×A[0] ⊗⋯⊗A[1] ∐∐A[1] ⊗⋯×A[2] ⊗⋯⊗A[1] ⇉
∞
∐
n=0

A⊗n[1]

with maps, for instance, given by A[2] → A[1] (diagram map) and A[2] →
A[1] ⊗A[1] (part of the coalgebra structure), i.e. a very simple quotient of the
free algebra in A[1]. You will immediately recognize the construction of the fun-
damental group (or better: monoid) of a connected simplicial set as a special
case. In the ∞-categorical context the same construction works, only that we
have to take the full diagram of shape ↑↓∆op

act into account here, including the
other A[n] as well.

6In fact, we have an isomorphism (∆act,∗′) ≅ (∆op
∅ ,∗) by the “duality of ordered sets and

intervals” (Lemma 4.9) and you may choose your favorite model among both.
7The technical reason is that ∗′ is not cofinal, whereas dec = ∗ is cofinal.
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1.3 Concrete instances of classical bar and cobar

In Chapter 6 we show, as mentioned above, that the quite simple classical bar
and cobar constructions (in case I = S = O) agree with many constructions in the
literature, as for example the construction of Kan’s loop group and the Adams
cobar and Eilenberg-Maclane bar construction. However, these constructions
are not quite the same as the “classical bar” and “classical cobar” but have the
form of the (still adjoint) functors

dec∗ ○(ρ∗)−1 ○ bar

and
cobar ○ρ∗ ○ dec∗ .

(a way of thinking certainly inspired by Stevenson’s article [52]). Here ρ∗ is
the functor (6) above. To make this precise, we must turn dec∗ and dec∗ into
functors of (co)operads and then explicitly calculate the composition. This will

be done for C = (Set∆
op

,×) in 6.2, and for C = (Ch≥0(D), ⊗̃) with (D,⊗) Abelian
tensor category in 6.6.

The derived (Lurie’s) bar construction Bar can in these cases (under mild
assumptions on D in the Abelian case) also be computed as

dec∗ ○(ρ∗)−1 ○ bar

because dec∗ represents the (homotopy) colimit over ∆op. This will be explained
in detail in Section 6.7.

However, the left adjoint cobar ○ρ∗ ○ dec∗ is, a priori, not directly related
to the derived (Lurie’s) cobar construction Cobar. Note that the first is a left
adjoint before localization and the latter a right adjoint after localization. Of-
ten times, however, cobar ○ρ∗ ○ dec∗ also preserves weak equivalences at least
when restricted to a large subcategory, and the classical adjunction gives a de-
rived equivalence. Then, accordingly, also the (restrictions of the) two cobar
constructions agree.

The chosen notation “classical (co)bar” and “derived (co)bar” is thus prob-
ably a bit unfortunate. My motivation has been to stay as close to the existing
nomenclature as possible. Keep in mind, however, that while the classical bar
construction is really a component of the derived bar construction, the con-
structions denoted “cobar” denote something a bit different, yet related, in the
classical and derived case. Rather the following is true: The derived cobar is the
dual of the derived bar construction and thus the dual classical bar construction
bar∨ is a component of it.

1.4 Comparisons of Abelian and non-Abelian classical co-
bar constructions

One motivation of this work has been to understand the relation between the
geometric (Kan) cobar for simplicial sets and Adams cobar for complexes of
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Abelian groups. Since they are formally given by exactly the same construction
“cobar ○ρ∗ ○dec∗” one would expect a simple formal comparison. This is indeed
true, if one chooses on (non-negatively graded) complexes of Abelian groups
the monoidal product ⊗ (i.e. under Dold-Kan the point-wise tensor product
on simplicial Abelian groups). In this case, the construction (quite obviously)
commutes with the free Abelian group functor Z[−], i.e. “singular chains”. It
remains thus to compare the two purely Abelian constructions in complexes of
Abelian groups w.r.t. ⊗ and ⊗̃. This turns out to be fairly intricate:

• The difficulty in the construction of a map “cobar⊗̃ → cobar⊗” is the fol-
lowing: The morphism given by abstract functoriality w.r.t. the Eilenberg-
Zilber map does not land in the cobar construction of the dg-algebra Z[X]
with its usual (diagonal) coalgebra structure w.r.t. ⊗ but with its compo-
sition Z[X]→ Z[X]⊗Z[X]→ Z[X]⊗Z[X] with EZ ○AW! This problem
has been dealt with by either giving explicit constructions (Adams [3],
Szczarba [53], etc.) or using homotopy deformation theory (Shih [51],
etc.) We propose a more conceptual approach which is completely ex-
plicit. Roughly it is as follows (hiding here some details about the trans-
port along dec∗): The Shih operator Ξ ∶ id⇒ EZ ○AW will be constructed
from abstract principles, and not by specifying a formula. For a coalgebra
C it gives rise first to a coherent transformation exp(Ξ)(C) in the sense of
Cordier-Porter [19], and then — via a very general comparison map from
coherent transformations to morphisms of A∞-coalgebras — rise to a mor-
phism of A∞-coalgebras exp(Ξ)(C)∞. It turns out that the components
of this A∞-morphism are essentially8 the Szczarba-maps [53]. It gives
thus a map between the cobar constructions (a priori, only a completion
of cobar is functorial in A∞-morphisms).

There are many other attempts to understand the Szczarba maps in the
literature, see for example [24, 25, 47].

• The difficulty in the construction of a map “cobar⊗ → cobar⊗̃” is the fol-
lowing: We can make dec∗ naturally (lax) monoidal w.r.t. the respective
tensor products, but the resulting extensions dec∗⊗ and dec∗⊗̃ are not com-
patible with the AW-morphism! It turns out, however, that one can plug
in the inverse of the A∞-morphism exp(Ξ)∞ constructed before to get a
morphism in the other direction. It is however, in general, only defined
after a completion (or, a posteriori, localization) of cobar. It is very likely
that this is (up to the different indexing issue) the Hess-Tonks map [33],
although this remains to be checked in detail.

1.5 Plans

These lecture notes are far from complete and also far from how I would have
imagined them. The reason is mainly that they got quite long already and I

8Up to different indexing conventions
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wanted to make them available before (hopefully) being able to elaborate on
the following points:

1. A motivation for the bar and cobar constructions, in particular, for the
classical cases discussed in detail. This omission can hopefully be excused
for the moment because many of the sources discuss this thoroughly.

2. A discussion of the concrete properties of the bar and cobar adjunctions
(classical and derived) in the main cases simplicial sets and complexes and
Gpd∞ (spaces).

3. A discussion of the vast generalizations in the dg-setting: (co)bar for dg-
operads, Sweedler theory [5], and so on. Many of these features should
generalize (cf. also [17, 34, 49]).

4. A discussion of the classical and derived (co)bar for LMod, the planar
operad encoding (left) modules over algebras over O. For example, the
classical (co)bar (for simplicial sets) should recover the theory of prinicipal
twisted Cartesian products. The derived (co)bar should give a generaliza-
tion of Lurie’s duality to modules and comodules (cf. also [11]).

5. A concrete discussion of the derived (Lurie) (co)bar for other operads than
O and for non-planar (i.e. symmetric) operads. Whereas the abstract part
carries over to symmetric operads without modification, I would have liked
to include an extistence proof in the same spirit for Ek-(co)algebras at
least.

2 Categorical prerequisites

This chapter discusses several categorical concepts that will be used in the sequel
of these lectures. It is intended for referential purpose and to fix notation. Proofs
are only occasionally sketched. The reader is advised to skim over it on a first
reading.

2.1 Pro-functors

2.1. In this lecture Kan extensions which are the left adjoints α! or right
adjoints α∗ of pre-composition α∗ ∶ CJ → CI with a functor α ∶ I → J , are
ubiquitous. They comprise in particular all limits and colimits. The collection
of all α∗ and α! (say), where α runs through all functors α ∶ I → J between small
categories (or small ∞-categories) fulfill a rich algebra. This algebra is encoded
in the 2-category CatPF (resp. (∞,2)-category CatPF

∞ ) of small categories and
pro-functors. The reader who is not completely at ease with pro-functors should
keep in mind that they are all of the form β!α

∗ for suitable α and β and the 2-
morphisms between compositions are precisely those, that these functors acquire
universally for all categories C, or which amounts to the same, for C = Set (resp.
for C = Gpd∞ when working with ∞-categories). However, as definition, a more
concrete approach is convenient:

11



2.2. Pro-functors γ ∶ I → J are functors

Jop × I → Set

(resp. ∞-pro-functors are functors Jop × I → Gpd∞, where I and J can be
∞-categories themselves) with composition given by

β ○ α ∶= ∫
j

β(−, j) × α(j,−).

While this is a proper definition in the 1-categorical context, it is of course more
involved in the ∞-categorical setting (cf. [6] for a precise construction). There
are canonical functors

ι ∶ Cat → CatPF (resp.Cat∞ → CatPF
∞ )

mapping α ∶ I → J to j, i↦ Hom(j, α(i)), a pro-functor I → J , as well as

tι ∶ Cat1−op,2−op → CatPF (resp.Cat1−op,2−op∞ → CatPF
∞ )

mapping α ∶ I → J to tα ∶ i, j ↦ Hom(α(i), j), a pro-functor J → I. The
pro-functor tα is, in fact, right adjoint to α.

2.3. A cocomplete category C gives rise to a functor

LC ∶ CatPF,1−op → Cat (resp.CatPF,1−op
∞ → Cat∞)

I ↦ CI

mapping α to α∗ and its adjoint tα to α! (left Kan extension), and more generally

L(γ) ∶ CJ → CI

X ↦ ∫
j

γ(j,−) ×X(j).

A complete category C gives rise to a functor

RC ∶ CatPF,2−op → Cat (resp.CatPF,2−op
∞ → Cat∞)

I ↦ CI

mapping tα to α∗ and α to α∗ (right Kan extension), and more generally

R(γ) ∶ CI → CJ

X ↦ ∫
i
Hom(γ(−, i),X(i)).

2.4. There is an operation

op ∶ CatPF,1−op → CatPF (resp.CatPF,1−op
∞ → CatPF

∞ )

I ↦ Iop

γ ∶ I → J ↦ γ ∶ Jop → Iop

12



making the following commutative (and similarly in the ∞-categorical context)

Cat1−op
ι //

op

��

CatPF,1−op LC //

op

��

Cat

op

�� ��
Cat1−op,2−op

tι // CatPF RCop // Cat2−op

(8)

Furthermore, we have LC ι = RC tι.
We discussed pro-functors separately for usual categories and ∞-categories

for a good reason: Although they behave completely analogously, there does not
exist an embedding CatPF ↪ CatPF

∞ because the inclusion Set↪ Gpd∞ does not
commute with colimits and thus the compositions of pro-functors are different.
This reflects the fact that there much less relations between (co)limits and Kan
extensions in the ∞-categorical context than in the classical context.

2.5. A 2-morphism
γ ⇒ γ′

is an isomorphism precisely, if LC(γ)⇒ LC(γ′) is an isomorphism for all cocom-
plete categories (resp. ∞-categories) C or precisely, if LSet(γ)⇒ LSet(γ′) (resp.
LGpd∞(γ) ⇒ LGpd∞(γ′)) is an isomorphism. In fact, even more is true: The
functor on morphism categories:

LSet ∶ HomCatPF(I, J)→ Hom(SetJ ,SetI)
(resp.LGpd∞ ∶ HomCatPF

∞
(I, J)→ Hom(GpdJ∞,GpdI∞))

is full. The essential image is precisely the category of colimit preserving func-
tors.

2.6. There is a similar picture for additive categories and additive pro-functors
(only in the 1-categorical setting discussed and needed)

Jop × I → AB

forming a 2-category AbCatPF. There is an embedding

CatPF ↪ AbCatPF

applying Z[−] (free Abelian group) to the pro-functors. This is compatible with
composition because Z[−] commutes with coproducts and maps × into ⊗. We
have then

LC ∶ AbCatPF,1−op → AbCat RC ∶ AbCatPF,2−op → AbCat

into additive categories when C is additive and (co)complete and (co)tensored
over Abelian groups. Actually this will be applied to Abelian categories only.
These are automatically (co)tensored over Ab when they admit infinite (co)products.
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2.7. Consider an arbitrary pro-functor γ ∶ Jop × I → Set (resp. γ ∶ Jop × I →
Gpd∞). It gives rise to a category

∇ ∫ γ
lγ

}}

rγ

!!
I J

(applying the Grothendieck construction, and its dual, respectively) equipped
with a cofibration lγ , and a fibration rγ , respectively. We have then an isomor-
phism

γ ≅ rγ tlγ

i.e. all pro-functors can be expressed in this form. For α ∶ I →K and β ∶ J →K,
letting γ = tαβ, i.e. γ = Hom(α(−), β(−)), we get the diagram

I ×/K J

l

||

r

##
I J

(comma category) and hence an isomorphism tαβ ≅ r tl. This is commonly
known as Kan’s formula (For β ∶ ⋅ → K and applying LC it gives a point-
wise formula for the Kan extension because, being a cofibration, L( tlγ) = lγ,! is
computed fiber-wise). Here, when I, J and K are 1-categories, for both compo-
sitions, it accidentally does not matter whether they are considered in Set or
Gpd∞. More generally, we have

Definition/Lemma 2.8. A diagram of small categories (resp. small∞-categories)
of the form

I
α //

β

��
⇓

J

γ

��
K

δ
// L

(9)

is called exact (resp.∞-exact) if the following, equivalent statements hold true:

1. The mate
α tβ → tγ δ

is an isomorphism in CatPF (resp. CatPF
∞ ), i.e. for all objects (j, k) ∈ J×K

the canonical morphism

∫
i

HomJ(j, α(i)) ×HomK(β(i), k)→ HomL(γ(j), δ(k))

is an isomorphism.

2. β! α
∗ → δ∗ γ! is an isomorphism for diagrams in any cocomplete 1-category

(resp. ∞-category).
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3. γ∗ δ∗ → α∗ β
∗ is an isomorphism for diagrams in any complete 1-category

(resp. ∞-category).

4. For all objects (j, k) ∈ J ×K, the canonical functor

j ×/J I ×/K k → j ×/L k (= HomL(γ(j), δ(k)))

has connected fibers (resp. becomes an isomorphism9 in Gpd∞).

In particular, those conditions are satisfied (for 1-categories and ∞-categories
alike) if the 2-morphism is an isomorphism, the diagram is Cartesian, and one
of the following holds true:

1. γ (hence β) is a cofibration,

2. δ (hence α) is a fibration.

Observe that for squares of 1-categories, by criterion 4. for instance,∞-exact
implies exact but not vice versa.

2.9. A special case are diagrams of the form

I

��

α // J

��⋅ ⋅

In this case, we say that α is cofinal (resp. ∞-cofinal), if this diagram is exact
(resp. ∞-exact) or — in other words — if the pull-back α∗ does not change
colimits (resp. ∞-colimits).

Similarly, if
I

α

��

// ⋅

J // ⋅
is exact (resp. ∞-exact), we say that α is final (resp. ∞-final) or — in other
words — if the pull-back α∗ does not change limits (resp. ∞-limits).

Warning: This notation varies according to source.

Example 2.10. Let I be a small 1-category. Consider the nerve of I, i.e. the
simplicial set N(I) with n-simplices being sequences of morphisms i0 → ⋯→ in
(i.e. functors [n]→ I). This is, in fact, the usual nerve construction associated
with the cosimplicial object in 1-categories [n] ↦ [n]. As functor N(I) ∶ ∆op →
Set, it has an associated cofibration (unstraightening) which is equipped with a
functor

α ∶ ∫ N(I)→ I

9or if I, J,K,L are 1-categories, expressed more classically by saying that the nerve applied
to this functor is a weak equivalence of simplicial sets
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mapping a pair [n],{i0 → ⋯ → in} to in. One can show that it is ∞-cofinal10.
Since p ∶ ∫ N(I)→∆op is a cofibration, p! is computed fiber-wise by a coproduct
(because p is discrete) and the equation

colim
∆op

p! α
∗ ≅ πI,!

shows that any ∞-colimit over I can be computed by a fiber-wise coproduct (p!)
followed by a ∞-colimit over ∆op (called “geometric realization” by Lurie [40]).
Also, it is well-known that the inclusion

∆op
≥1 ↪∆op

is cofinal (but, of course, not ∞-cofinal) hence every 1-colimit can be computed
by a fiber-wise coproduct followed by a colimit over ∆op

≥1 (i.e. a split coequalizer).

Example 2.11 (Variant). Also the morphism

α′ ∶ ∫ N(I)→ ↑↓I

mapping a pair [n], i0 → ⋯ → in to i0 → in is ∞-cofinal11. This shows that a
1-coend (resp. ∞-coend) can be computed directly by the formula

colim
∆op

p! α
′∗ ι∗ ≅ colim

↑↓I
ι∗ = ∫

I

(where ι is the fibration ↑↓I → Iop × I) as a coequalizer of the last two maps
(resp. “geometric realization”) of the diagram

⋯∐i0→i1→i2 A(i0, i2)
//
//
// ∐i0→i1 A(i0, i1)

//
// ∐iA(i, i).

In fact, more generally, for a functor A ∶ ↑↓I → C:

colim
↑↓I

A = colim ( ⋯∐i0→i1→i2 A(i0 → i2)
//
//
// ∐i0→i1 A(i0 → i1) //

// ∐iA(idi) ) .

In the 1-categorical case one can even restrict the ∐i0→i1 to a generating set
of morphisms.

2.2 Commutative diagrams and correspondences

We are often in need to show commutativity of a diagram of 1-morphisms and
2-morphisms in a (2,1)-category12 C (in the examples: Cat or CatPF) in which
the 1-morphisms are compositions of a 1-morphism and the adjoint of another.

10Criterion 4. of Proposition 2.8 boils down to “N ∫ N(I ×/I i) contractible”. However,
for any 1-category J with final object N(J) is contractible, and there is a weak equivalence
X → N ∫ X for any simplicial set X [18].

11Criterion 4. of Proposition 2.8 boils down to “N ∫ N((i ×/I I ×/I j)α) contractible” for
any α ∶ i→ j. However also (i ×/I I ×/I j)α has a final object.

12The section has an analogue for (∞,2)-categories, that we will not mention because it is
not needed in these lectures.
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Definition 2.12. Let X and Y be objects. We define the 2-category

Cor(X,Y )

with objects diagrams
Z>>

f
__

g

X Y

in which f has a right adjoint tf . 1-Morphisms h ∶ (f, g) → (f ′, g′) and 2-
Morphisms h⇒ h′ are 2-commutative diagrams

Z>>
f

h

��

``
g

X ⇒ Y⇒

Z ′
  f ′ ~~ g′

Z>>
f

h ⇒

��

h′





``
g

X ⇒ Y⇒

Z ′
  f ′ ~~ g′

Lemma 2.13. There is a 2-functor

can ∶ Cor(X,Y )→ HomC(X,Y ),
(f, g)↦ tf ○ g,

h↦ (tf ○ g → tf ○ th ○ h ○ g → tf ′ ○ g′) (unit).

In particular, since the target category is a 1-category, any two 1-morphisms that
are connected by a chain of 2-morphisms are mapped to the same morphism13.

2.14. A diagram in the image of “can” is called of standard form and to
check its commutativity is thus a matter of checking the commutativity of two
diagrams involving only the left adjoints.

Of course, there is a dual construction, where f is assumed to have a left
adjoint, which we leave to the reader to state. If the f and g are of the form
ϕ∗, γ∗ and hence tf = ϕ∗ (or their corresponding 1-morphisms in CatPF) a
composition Cor(X,Y )×Cor(Y,Z)→ Cor(X,Z) can be defined, such that “can”
is compatible. And there is an operadic version of this, see e.g. [35].

2.3 Preliminaries on pre-sheaves

This section contains some basic facts about pre-sheaves. It should be consulted
only when needed, except for the following definition:

13In the analogous (∞,2)-categorical construction, 2-morphisms become isomorphisms.
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Definition/Lemma 2.15. Let C be a 1-category and I a 1-category. The

category CIop

is enriched in (SetI
op

,×) by the formula

Hom(C,D)k ∶= ∫
i∈I

Hom(HomI(i, k),Hom(C(i),D(i)).

If C has coproducts then it is left-tensored via

(C ×D)(k) = C(k) ×D(k).

This is called the canonical enrichment in pre-sheaves.

2.16. Consider an adjunction in 2 variables

F ∶ C ×D → E G ∶ Cop × E → D H ∶ E ×Dop → C.

It yields functors

CI ×DJ → EI×J (CI)op × EJ → DIop×J EI × (DJ)op → CI×J
op

by applying F,G,H point-wise. Assuming that suitable Kan extensions exist,
we also have again an adjunction in 2 variables

CI ×DJ → EI×J (CI)op × EI×J → DJ EI×J × (DJ)op → CI

where, for instance, the second functor is the composition

(CI)op × EI×J → DIop×I×J → DJ

in which the second functor is RC applied to the product of idJ with the pro-
functor Iop × I → ⋅ given by HomI(−,−) which is equivalently r tl for

↑↓I

l

{{

r

��
Iop × I ⋅

In fact, RC(r tl) = ∫I (the end). (Pre-)composing with the diagonal and its
adjoint, we get in particular an adjunction in two variables:

F ∶ CI ×DI → EI G ∶ (CI)op × EI → DI H ∶ EI × (DI)op → CI .

All this is nicely explained by the fact that the functor op ∶ I → Iop (2.4)
can be seen as the internal Hom HomCatPF(−, ⋅) (resp. HomCatPF

∞
(−, ⋅)) in pro-

functors, the “evaluation morphism” being r tl, but we will not discuss this
connection here.

Lemma 2.17. 1. Let α ∶ I → J be functor and F,G,H an adjunction as
above. We have

α∗F (−,−) ≅ F (α∗−, α∗−) (10)

or equivalently

G(−, α∗) ≅ α∗G(α∗−,−) H(α∗−,−) ≅ α∗H(−, α∗−)

18



2. If α is fully-faithful, we also have:

α∗G(α!, α∗) ≅ G(−,−) α∗H(α∗−, α!−) ≅H(−,−)

3. For cofibrations α ∶ I → J the mates of (10)

α!F (−, α∗−) = F (α!,−) α!F (α∗−,−) = F (−, α!−)

are isomorphisms as well, or equivalently:

G(α!,−) ≅ α∗G(−, α∗−) α∗G(−,−) ≅ G(α∗−, α∗)

H(−, α!) ≅ α∗H(α∗−,−) α∗H(−,−) ≅H(α∗−, α∗)

Proof. 1. is clear, 2. follows by observing that the assumption implies that α∗
and α! are fully-faithful, and 3. follows because the left Kan extension along
cofibrations is computed fiber-wise and F , being a left adjoint when regarded
as a functor of any of the two variables, commutes with colimits. The other
morphisms are the formal adjoints of the morphisms involving F .

2.18. For example: For a complete and cocomplete 1-category C, we have the
(co)tensoring adjunction

× ∶ Set×C → C Homl ∶ Setop ×C → C Homr = Hom ∶ Cop × C → Set

which induces as in 2.16 an adjunction on pre-sheaves

× ∶ SetI
op

×CI
op

→ CI
op

Homl ∶ (SetI
op

)op×CI
op

→ CI
op

Homr ∶ (CI
op

)op×CI
op

→ SetI
op

with formula (which can be extracted from the discussion in 2.16):

(C ×D)(k) = C(k) ×D(k)

Homr(C,D)(k) = ∫
i∈I

Hom(HomI(i, k),Hom(C(i),D(i))

The formula for Homr is valid even without any assumption on C and turns CIop

into a (SetI
op

,×)-enriched category. This gives 2.15.

2.4 (Co)operads

2.19. In these notes we adopt a very flexible notion of ∞-operad. However,
the purpose is clearly to discuss either ∞-(co)operads or planar ∞-(co)operads
in the sense of Lurie. Planar (co)operads (Definition 2.21) are combinatori-
ally very pleasant to discuss the classical bar and cobar constructions, whereas
more general ∞-operads will be important, for instance, for generalizations to
(co)algebras over the Ek (little discs) operads.

For simplicity, we understand in the sequel for the moment

(∞-)(co)operad = planar (∞-)(co)operad.
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This may change in a future version of these notes.

2.20. Let ∆ be the simplex category. We adopt the convention that its
objects are precisely the ordinals [n] = {0, . . . , n}. (One can include all finite
non-empty ordinals, obtaining an equivalent category, of course). Define ∆∅
be the category of the [n], including [−1] ∶= ∅. Call a morphism in ∆ of the
form i < i + 1 < ⋅ ⋅ ⋅ < i + k ↪ 0 < ⋅ ⋅ ⋅ < n inert and a morphism a ∶ [n] → [m]
active, if a(0) = 0 and a(n) =m. Every morphism factors uniquely as an active
morphism followed by an inert one. A morphism also factors uniquely into a
surjective map (called a degeneracy) followed by an injective map (called face
map). Call the subcategory of active morphism ∆act. This is sometimes called
the category of finite intervals. Both ∆∅ and ∆act are symmetric monoidal
with products ∗ and ∗′, given by

[n] ∗ [m] ∶= [n +m + 1]

concatenation and
[n] ∗′ [m] ∶= [n +m]

concatenation with identification of the extremal points. The units being ∅, and
[0], respectively. The restriction of ∗ to ∆act comes equipped with a natural
transformation

scan ∶ ∗⇒ ∗′ (11)

the canonical degeneracy, identifying the extremal points.

Recall that

Definition 2.21. A planar (∞-)operad is an (∞-)category C equipped with
a functor p ∶ C →∆op such that

1. coCartesian morphisms over inert morphisms exist,

2. for the standard family αi ∶ [n]↩ [1] of inert morphisms 14, the morphism
(choosing push-forward functors along these inert ones)

C[n] → ∏C[1]
X ↦ (X1, . . . ,Xn)

is an isomorphism such that it induces (via composition with the corre-
sponding coCartesian morphisms X →Xi) an isomorphism

Homf(Z,X) ≅ Homf1(Z,X1) ×⋯ ×Homfn(Z,Xn)

for all objects X,Z ∈ C and f ∶ p(Z)→ p(X).
We denote by (co)Op (resp. (co)Op∞) the (1,2)-category (resp. (∞,2)-
category) of planar (co)operads. We denote by O the associative planar
operad, i.e. the category ∆op equipped with the identity, considered as op-
erad.

14given by the inclusions αi ∶ {i < i + 1}↪ [n]
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A planar (∞-)cooperad is an (∞-)category equipped with a functor p ∶ C →∆
such that Cop, pop is a planar (∞-)operad.

2.22. The morphisms over the unique active morphism [n] → [1] may, via
the identification C[n] ≅∏C[1], be seen as as sets (resp. ∞-groupoids) of multi-
morphims

Hom(X1, . . . ,Xn;Y )
for all X1, . . . ,Xn, Y ∈ C[1] that are composed as in a multi-category. In fact
a planar 1-operad is the same as a non-symmetric multi-category and a planar
∞-operad is a non-symmetric multi-category which is “weakly enriched in ∞-
groupoids” in the same way that an ∞-category is a usual category “weakly
enriched in ∞-groupoids”.

2.23. Already, in general statements, only the following facts about operads
will be used, which are true for ∞-operads and planar ∞-operads alike, and
even in generalizations of these concepts:

1. There is an ∞-category O (in both cases we are interested in, in fact, a
1-category) with a unique factorization system in the sense of [40, 5.2.8.8]
into inert and active morphisms.

2. An operad X is an ∞-category with a functor X → O satisfying certain
conditions (as in Definition 2.21, for instance) including the existence of
coCartesian morphisms over inert morphisms. Such morphisms are again
called inert in X and arbitrary morphisms lying over active ones in O are
called active. They form thus again a unique factorization system in X
[41, Proposition 2.1.2.5].

3. A functor of operads X → Y is a functor of ∞-categories over O which
maps inert morphisms to inert morphisms. It is called a cofibration of
operads if it is, in addition, a cofibration of ∞-categories.

4. There is an operad Cat×∞ → O with functor × ∶ Cat×∞ → Cat∞ of ∞-
categories such that a cofibration X → I, where X is an arbitrary ∞-
category and I an operad, is a cofibration of operads if and only if the
straighening I → Cat∞ classifying X → I factorizes into

I → Cat×∞ → Cat∞ .

and the functor I → Cat×∞ is a functor of operads. In that case, it factors
in an essentially unique way. In other words, Cat×∞ (as operad) classifies
cofibrations of operads.

5. For two morphisms between cofibrations of operads classified by F,G ∶ I →
Cat×∞ with compositions with × denoted F × and G× we have15

HomOp∞ /M(∫ F ×,∫ G×) ≅ Homlax,inert−pseudo
CatI

(F ×,G×) ≅ Homlax,inert−pseudo
(Cat×∞)I

(F,G)

15where the first equivalence is induced by the usual one for cofibrations of ∞-categories,
cf. Proposition 2.54 below.
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for Cat×∞ is considered as (∞,2)-category in the obvious way.

6. For an operad I the functor

i↦ Iact ×/Iact i

(comma category) which, by the unique factorization, extends to a functor
I → Cat∞ factors through a morphism of operads I → Cat×∞.

2.5 (Co)fibrations, exponential fibrations, and Day con-
volutions

2.24. Recall the definition of fibration and cofibration for a functor F ∶ J → I.
The definition can be split up into two conditions of which one is shared by both
of them. Functors satisfying only the shared condition are a very convenient
class. First observe that any functor F ∶ J → I defines for every morphism
α ∶ i→ j a pro-functor α● ∶ Jj → Ji between the fibers given by

α● ∶ Jop
i × Jj → Set (resp. α● ∶ Jop

i × Jj → Gpd∞)

x × y ↦ HomJ(x, y)
where Ji is the fiber of F over i. In fact, there is an equivalence of categories
between pro-functors from X to Y and the category of functors C → [1] with
fibers Y and X (this is a 1-category (resp. (∞,1)-category) because the fibers
are fixed).

For composable morphisms α and β, composition in J yields a morphism:

α● β● ⇒ (βα)●. (12)

(One could say that F yields a lax functor Iop → CatPF (resp. Iop → CatPF
∞ ) but

we will not use this unless it is an actual functor). We consider the following
conditions:

Definition 2.25. 1. F is called locally coCartesian (resp. locally Carte-
sian), if for all α, the pro-functor α● is of the form tβ (resp. β) for a
functor β ∶ Ji → Jj (resp. β ∶ Jj → Ji).

2. F is called an exponential fibration (resp. an ∞-exponential fibra-
tion), if (12) is always an isomorphism.

3. F is called a cofibration (resp. a fibration) if it satisfies condition 2.
and the corresponding version of 1.

One does not have to distinguish between fibrations and ∞-fibrations for a
functor I → J of 1-categories because here fibration already implies∞-fibration.
Similarly for cofibrations.

Exponential fibrations (resp. ∞-exponential fibrations) without necessarily
satisfying a version of condition 1. are thus a natural generalization of both
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cofibrations and fibrations and they are classified by functors I → CatPF (resp.
I → CatPF

∞ ). Many important constructions that work for cofibrations and
fibrations alike have generalizations to exponential fibrations. The first is the
internal Hom in categories over I. Its existence is in fact equivalent to being
“exponential fibration” (cf. [6]):

Proposition 2.26. F is an exponential fibration (resp.∞-exponential fibration)
if and only if the functor

C ↦ J ×I C
has a right 2-adjoint in Cat/I (resp. Cat∞ /I)

C ↦DI(J,C).

In particular, sections of DI(J,C)→ I are equal to HomI(J,C).

The objects and morphisms in the category DI(J,C) can be explicitly de-
scribed: Objects are pairs of an object i ∈ I and a functor X ∈ (Ci)Ji and
morphisms (X, i) → (Y, i′) are morphisms α ∶ i → i′ in I together with an
element in

HomCatPF(α●I , (X,Y )∗α●C) = ∫
j,j′

Hom(α●I(j, j′),Hom(X(j), Y (j′)))

where α●C ∶ C
op
i ×Ci′ is the pro-functor extracted from C as in 2.24 (C does not have

to be small to extract it). One sees immediately that those can be composed,
if the α●I are functorial (and not only laxly functorial). The α●C can be laxly
functorial though. Taking this as a definition in the 1-categorical context, one
can show that it satisfies the universal property above. For the ∞-categorical
generalization, see [6].

For (co)operads (resp. ∞-(co)operads) the same is true mutatis mutandis.
See section 2.4 for a discussion of the definition, and of generalizations and an
axiomatization.

Definition 2.27. Let J → I be a morphism of (co)operads.

1. F is called locally Cartesian (resp. locally coCartesian), if α● is of
the form β (resp. t β) for a functor β ∶ Ji′ → Ji (resp. β ∶ Ji → Ji′)
for all active morphisms α ∶ i→ i′.

2. F is called an exponential fibration (resp. ∞-exponential fibration),
if (12) is always an isomorphism for active α and β.

3. F is called a cofibration (resp. a fibration) if it satisfies conditions 1.
and 2.

Remark 2.28. Usually, we state the definition of coCartesian for operads (over
I = O this is equivalent to being a monoidal category considered as operad) and
the definition of Cartesian for cooperads (over I = O it is also equivalent to
monoidal category, but considered as cooperad). In these cases, it is equiva-
lent to claim that the whole functor of associated categories (of operators) is a
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(co)fibration in the usual sense, because the locally (co)Cartesianity for the in-
ert morphisms holds by definition and the exponential fibration condition follows
for compositions involving inert morphisms from the other axioms. A fibration
of operads will also occasionally be considered. Be aware that, in the monoidal
case, say, this is different from the existence of a right adjoint w.r.t. to one of
the arguments, i.e. the existence of internal Homs.

Warning 2.29. For a general exponential fibration of operads according to the
above definition, (12), in general, does not have to be an isomorphism for com-
positions involving inert morphisms. This is related to the fact that × is not a
product in CatPF and ⋅ is not a terminal object.

The proposition holds also true for (co)operads:

Proposition 2.30. F ∶ J → I is an exponential fibration (resp. ∞-exponential
fibration) if and only if the functor

C ↦ J ×I C

has a right 2-adjoint in (co)Op/I (resp. (co)Op∞/I)

C ↦DI(J,C).

In particular, sections of DI(J,C) → I (e.g. I-(co)algebras) are equal to
HomI(J,C).

See e.g. [41, 2.2.6]. DI(J,C) is called theDay convolution of the (co)operads.
The objects and morphisms in the (co)operad DI(J,C) can be explicitly

described in the same way as before. E.g. in the cooperad case, objects (over
[1]) are pairs of an object i ∈ I[1] and a functor X ∈ (Ci)Ji and morphism
(X, i)→ (Y1, i′1), . . . , (Yn, i′n) are morphisms α ∶ i→ i′1, . . . , i

′
n in I together with

an element in

HomCatPF(α●I , (X;Y1, . . . , Yn)∗α●C)

=∫
j,j′1,...,j

′
n

Hom(α●I(j, j′1, . . . , j′n),Hom(X(j);Y (j′1), . . . , Y (j′n)))

where α●C ∶ C
op
i × Ci′1 × ⋯ × Ci′n is the pro-functor extracted from C as in 2.24 (C

does not have to be small to extract it).
In the following case, we have more control over the morphism spaces in this

(co)operad:

Definition 2.31. An arbitrary functor C → I of ∞-categories or ∞-cooperads
is

1. L-admissible, if the fibers are cocomplete and the canonical morphism

Hom(colim
J

X;Y1, . . . , Yn)→ lim
Jop

Hom(X;Y1, . . . , Yn)

via composition with the canonical element in limJop Hom(X, colimJ X) is
an isomorphism for all i ∈ I, J,X ∈ CJi , Y1, . . . , Yn.
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2. R-admissible, if the fibers are complete and for any small category J

Hom(X;Y1, . . . , lim
J
Yk, . . . , Yn)→ lim

J
Hom(X;Y1, . . . , Yn)

via composition with the canonical element in limJ Hom(limJ Yk, Yk) is an
isomorphism for all X,Y1, . . . , Yn, i ∈ I, k, J, Yk ∈ CJi .

Similarly for ∞-operads.

The following is clear from the definition:

Lemma 2.32. If C → I is a functor between ∞-categories (not ∞-(co)operads)
then the L-admissibility (resp. R-admissibility) amounts to C → I having (co)complete
fibers such that the inclusion of the fibers preserves (co)limits.

2.33. Definition 2.31 may be stated (for cooperads) as follows: Let α ∶
i → i′1, . . . , i

′
n be a morphism in I and X ∈ CKi , Yk ∈ CKk

i′
k
. We have for each

m ∈ {1, . . . , n} and a pro-functor β ∶Km →K ′m a morphisms of pro-functors

(X,Y1, . . . ,R(β)Ym, . . . , Yn)∗α●C → R(β)((X;Y1, . . . , Yn)∗α●C)

and for each pro-functor β ∶K ′ →K

(L(β)X;Y1, . . . , Yn)∗α●C → R(βop)((X;Y1, . . . , Yn)∗α●C)

which are isomorphisms if and only if C is R, resp. L-admissible.

2.34. We also have a canonical morphism

(X;Y1, . . . , Yn)∗αC → R(βop)(R(β)X;Y1, . . . , Yn)∗αC (13)

which is the composition with the counit L(β)R(β) → id, if L(β) exists. How-
ever, the morphism always exists.

We also have canonical morphisms

(X;Y1, . . . , Yn)∗αC → R(β)(X;Y1, . . . , L(β)Yk, . . . , Yn)∗αC (14)

which is the composition with the unit id→ R(β)L(β) if R(β) exists. However,
the morphism always exists.

2.35. By (slight) abuse of notation we continue to write × for the usual product
of two categories also as objects in CatPF

∞ . Notice, however, that (CatPF
∞ ,×) is

not Cartesian (as monoidal (∞,2)-category, i.e. × is not the product), yet there
is a natural morphism

HomCatPF
∞
(I1, . . . , In;J)→ HomCatPF

∞
(I1;J) ×⋯ ×HomCatPF

∞
(In;J)

given by composition with the pro-functor ⋅ → Ii given by the final object in
Hom(Iopi ,Set). Similarly for (CatPF

∞ ,×)∨, there is a natural morphism

HomCatPF
∞
(J ; I1, . . . , In)→ HomCatPF

∞
(J ; I1) ×⋯ ×HomCatPF

∞
(J ; In)

given by composition with the pro-functor Ii → ⋅ given by the final object in
Hom(Ii,Set).
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Lemma 2.36. 1. Let C → I be a cofibration of ∞-operads. Then it is au-
tomatically R-admissible if it has complete fibers and L-admissible if it
has cocomplete fibers and the push-forward functors are cocontinous in the
sense that for all α ∶ i→ i′1, . . . , i

′
n, and all entries ∈ {1, . . . , n} the diagram

C ×⋯ × CJ ×⋯ × C
α●,C //

id×⋯×colim×⋯×id
��

CJ

colim

��
C ×⋯ × C α●,C

// C

is commutative (and no condition on the 0-ary morphisms, e.g. units).

2. Let C → I be a fibration of ∞-operads. Then it is automatically L-
admissible if it has cocomplete fibers and R-admissible if it has complete
fibers and the pull-back functors are cocontinous in the sense that for all
α ∶ i→ i′1, . . . , i

′
n, the diagram

CJ
α●C //

lim

��

CJ ×⋯ × CJ

lim×⋯×lim
��

C
α●C // C ×⋯ × C

are commutative (and no condition on the 0-ary morphisms).
Similarly for cooperads.

In particular, for cofibrations of∞-operads, the notion of L-admissible is the
same as a “cofibration compatible with K-indexed colimits” (for all K) in the
sense of [41, Definition 3.1.1.18]. For example, a monoidal category (C,⊗) → O
is L-admissible, if and only if it is cocomplete and ⊗ commutes with colimits in
each variable separately.

Proposition 2.37. Let J → I be an (∞-)exponential fibration of (∞-)(co)operads,
and α ∶ i1, . . . , in → i (resp. α ∶ i→ i′1, . . . , i

′
n) be an active morphism in I with as-

sociated pro-functor α●J ∶ J
op
i′1
×⋯×Jop

i′1
×Ji → Gpd∞ (resp. α●J ∶ J

op
i′ ×Ji1×⋯×Jin →

Gpd∞).

1. If C → I is an L-admissible cofibration of (∞-)(co)operads. Then also

DI(J,C)→ I

is a cofibration with push-forward along α given by

L(α●J) ○ α●,C(−, . . . ,−) resp. (L(α●J,1), . . . , L(α●J,n)) ○ α●,C(−)

2. If C → I is an R-admissible fibration of (∞-)(co)operads. Then also

DI(J,C)→ I

is a fibration with pull-back along α given by

(R(α●J,1), . . . ,R(α●J,n)) ○ α●C(−) resp. R(α●J) ○ α●C(−, . . . ,−).
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Here the α●J,k are the projections of the pro-functor Ji′1 × ⋯ × Ji′n → Ji (resp.
Ji → Ji′1 ×⋯ × Ji′n) (2.35).

Proof. We prove the statements for cooperads, the others are dual. If C → I is
an L-admissible cofibration then

∫
j,j′1,...,j

′
n

Hom(α●I(j; j′1, . . . , j′n),Hom(X(j);Y1(j′1), . . . , Yn(j′n)))

≅∫
j,j′1,...,j

′
n

Hom(α●I(j; j′1, . . . , j′n),Hom((α●,C,1X(j));Y1(j′1)) ×⋯

×Hom((α●,C,nX(j)), Yn(j′n)))

≅∫
j′1,...,j

′
n

Hom(∫
j

α●I(j; j′1, . . . , j′n) × (α●,C,1X(j));Y1(j′1)) ×⋯

×Hom(∫
j

α●I(j; j′1, . . . , j′n) × (α●,C,nX(j)), Yn(j′n)))

≅∫
j′1

Hom((L(α●I,1)(α●,C,1X(j′1)));Y1(j′1)) ×⋯

× ∫
j′n

Hom(L(α●I,n)(α●,C,nX(j′n)), Yn(j′n))).

(notice that the end is just a limit, once the argument depends on the variable
only contra- or covariantly). If C → I is an R-admissible fibration then

∫
j,j′1,...,j

′
n

Hom(α●I(j; j′1, . . . , j′n),Hom(X(j);Y1(j′1), . . . , Yn(j′n)))

≅∫
j,j′1,...,j

′
n

Hom(α●I(j; j′1, . . . , j′n),Hom(X(j);α●C(Y1(j′1), . . . , Yn(j′n))))

≅∫
j
Hom(X(j);∫

j′1,...,j
′
n

Hom(α●I(j; j′1, . . . , j′n), α●C(Y1(j′1), . . . , Yn(j′n))))

≅∫
j
Hom(X(j);R(α●I)(α●C(Y1, . . . , Yn))(j)).

In each case (12) is an isomorphism by a formal calculation using the L−, resp.
R-admissibility.

Of course, instead of the L- or R-admissibility one needs only to assume the
existence of certain (co)limits and compatibility for them. We will not put this
into an explicit statement.

Example 2.38. Let J → O be an exponential fibration of operads (sometimes
J is then called a pro-monoidal category). For (C,⊗) a monoidal category with
C having the relevant colimits16 such that ⊗ commutes with them entrywise,
D(J, (C,⊗)) is again monoidal, with product

− ⊗ − ∶= L(m●) − ⊠−
16more precisely, the Kan extensions L(γ), where γ is one of the pro-functors encoding J

must exist
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where
⊠ ∶ CJ[1] × CJ[1] → CJ[1]×J[1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≅CJ[2]

is the point-wise application of ⊗. If J is itself monoidal (i.e. J → O a cofibra-
tion) with product dec ∶ J[1] × J[1] → J[1] then − ⊗ − ∶= dec! − ⊠ −. If C has the
relevant colimits but ⊗ does not commute with them then D(J, (C,⊗)) → O is
locally coCartesian but not a cofibration.

Similarly, if J → O is an exponential fibration of cooperads. For (C,⊗)∨ a
monoidal category (considered as cooperad) with C having the relevant limits such
that ⊗ commutes with them, D(J, (C,⊗)∨) is the monoidal category (considered
as cooperad) with product

− ⊗ − ∶= R(m●) − ⊠−

If J is itself monoidal (i.e. J → Oop a fibration) with product dec ∶ J[1] × J[1] →
J[1] then − ⊗ − ∶= dec∗ − ⊠ −.

This example is central for the understanding of the differences between the
two natural tensor products on non-negatively graded complexes in the Abelian
case (cf. 4.16).

Example 2.39. If J → I is a fibration and C → I is a cofibration of operads or
vice versa then DI(J,C) is a cofibration (or fibration, respectively) and we have

(DI(J,C))∨ ≅DI(J∨,C∨).

Moreover, if they are classified by functors ΞJ ∶ Iop → (Cat∞,×) and ΞC ∶ I →
(Cat∞,×) then DI(J,C) is classified by the functor

I → (Cat∞,×)
i↦ Hom(ΞJ(i),ΞC(i)) for i ∈ I[1].

Dually, the same holds true, of course, for cooperads.

2.40. A functor F ∶ C → D over I between (∞-)exponential fibrations of
(∞-)(co)operads gives rise to an oplax transformation

F ∶ Homoplax,inert−pseudo
(CatPF,×)Iop (ΞC ,ΞD) (resp. F ∶ Homoplax,inert−pseudo

(CatPF,×
∞ )Iop

(ΞC ,ΞD))

where ΞC ,ΞD ∶ Iop → (CatPF,×) (resp. (CatPF
∞ ,×)) are the classifying functors

and CatPF,× (resp. CatPF,×
∞ ) is the underlying (1,2)- (resp. (∞,2)-) category (of

operators) of (CatPF,×) (resp. (CatPF
∞ ,×)) with components for active α ∶ i→ i′:

Fi α
●
C → α●D Fi′ (15)

or equivalently, gives rise to a lax transformation (its mate):

F ∶ Homlax,inert−pseudo
(CatPF,×)Iop (ΞD,ΞC) (resp. F ∶ Homlax,inert−pseudo

(CatPF,×
∞ )Iop

(ΞD,ΞC))
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with components:
α●C

tFi′ → tFi α
●
D. (16)

Notice that the functors have values in CatPF,×
(∞) (not CatPF

(∞)). Therefore the

formation of mate lands in the full subcategory of inert−pseudo transformation
again. Notice also (CatPF

(∞),×) is to be considered as cooperad, if I is an operad

and vice versa. CatPF,×
(∞) depends on this!

Definition 2.41. We call F Cartesian (resp. ∞-Cartesian), if (15) is an
isomorphism for active morphisms and coCartesian (resp. ∞-coCartesian), if
(16) is an isomorphism for active morphisms.

Note that a functor is a morphism of fibrations in the usual sense (i.e. maps
Cartesian morphisms to Cartesian ones) if and only if it is Cartesian according
to the Definition above. Similarly, a functor is a morphism of cofibrations (i.e.
maps coCartesian morphisms to coCartesian ones) if and only if it is coCartesian
according to the Definition above.

Proposition 2.42. If C → I is an L-admissible functor of cooperads then the
functor Day convolution extends to a functor of 2-categories:

Hom1−oplax,1−inert−pseudo(Iop, (CatPF,×))1−op LC // coOp/I

If C → I is an R-admissible functor of cooperads then the functor Day convolu-
tion extends to a functor of 2-categories:

Hom1−lax,1−inert−pseudo(Iop, (CatPF,×)) RC // (coOp/I)2−op

The same is true with the decoration ∞ everywhere and for operads.

To be clear: The 2-category on the left hand side has as objects functors of
operads ΞC ∶ Iop → (CatPF,×) and morphism categories are given by

Homoplax,inert−pseudo
(CatPF,×)Iop (ΞD,ΞC)

and
Homlax,inert−pseudo

(CatPF,×)Iop (ΞC ,ΞD)

where CatPF,× is as before.

Proof. We will not rigorously prove this and be content with specifying the map
on morphism spaces. Let J → I,K → I be exponential fibrations of cooperads
classified by functors ΞJ ,ΞK ∶ Iop → (CatPF,×) and assume given a lax trans-
formation µ ∶ ΞJ ⇒ ΞK . For a morphism α ∶ i → i′1, . . . i

′
n in I this yields a

diagram

Ji′1 ×⋯ × Ji′n
α●J //

βi′
1
,...,βi′n

��
⇗

Ji

βi

��
Ki′1
×⋯ ×Ki′n α●K

// Ki
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Let α ∶ i→ i′1, . . . , i
′
n be a morphism in I. Then the map is given by:

[α●J , (X;Y1, . . . , Yn)∗α●C]
→ [α●J ,R(βop

i ) ((R(βi)X;Y1, . . . , Yn)∗α●C)] canonical map (13)

= [L(βop
i )α

●
J , (R(βi)X;Y1, . . . , Yn)∗α●C] L/R-adjunction

→ [L(βi′1 , . . . , βi′n)α
●
K , (R(βi)X;Y1, . . . , Yn)∗α●C] laxness constraint

= [α●K ,R(βi′1 , . . . , βi′n) ((R(βi)X;Y1, . . . , Yn)∗α●C)] L/R-adjunction

≅ [α●K , ((R(βi)X;R(βi′1)Y1, . . . ,R(βi′n)Yn)
∗α●C)] R-admissibility

Similarly for the L-functoriality:

[α●J , (X;Y1, . . . , Yn)∗α●C]
→ [α●J , (R(βi′1), . . . ,R(βi′n)) ((X;L(βi′1)Y1, . . . , L(βi′n)Yn)

∗α●C)] canonical map (14)

= [(L(βi′1 , . . . , βi′1)α
●
J , (X;L(βi′1)Y1, . . . , L(βi′n)Yn)

∗α●C] L/R-adjunction

→ [L(βop
i )α

●
K , (X;L(βi′1)Y1, . . . , L(βi′n)Yn)

∗α●C] oplaxness constraint

= [α●K ,R(βop
i ) ((X;L(βi′1)Y1, . . . , L(βi′n)Yn)

∗α●C)] L/R-adjunction

≅ [α●K , ((L(βi)X;L(βi′1)Y1, . . . , L(βi′n)Yn)
∗α●C)] L-admissibility

The operad case is dual and everything works the same with ∞-cooperads.

2.43. If C → I and D → I are exponential fibrations, an oplax transformation
(and inert-pseudo) of the associated functors ΞC ⇒ ΞD is called an oplax pro-
functor of (co)operads C → D, and a lax transformation (and inert-pseudo)
FD ⇒ FC is called a lax pro-functor of (co)operads C → D. We call an oplax
pro-functor Cartesian, if it a natural transformation (not only oplax) and a
lax pro-functor coCartesian if it a natural transformation (not only lax).

As just seen, a usual functor F ∶ C → D of (co)operads over I can be seen as
a either of these morphisms. This mirrors the situation over a point discussed in
2.4. In fact, if C → I is L-admissible, the whole diagram (8) extends to fibrations
of (co)operads over I:

(co)Opexp,1−op/I
ι //

op

��

Hom1−oplax,1−inert−pseudo(Iop, (CatPF,×))1−op
LC //

op

��

(co)Op/I

op

����
(co)Opexp,1−op,2−op/Iop

tι // Hom1−lax,1−inert−pseudo(I, (CatPF,×))
RCop // (co)Op2−op/Iop

where Op and coOp are interchanged in the two rows. Here LC and also RC , for
a category or (co)operad C → I, are given by the Day convolution on objects,
and on morphisms by Proposition 2.42.

Also ι and tι agree on objects. More generally, if F,G ∶ Iop → (CatPF,×) are
functors and

ρ ∈ Homoplax,inert−pseudo
CatPF,× (F,G)

30



has a point-wise right adjoint, then they assemble to a mate

tρ ∈ Homlax,inert−pseudo
CatPF,× (G,F )

(and vice versa) and for C → I we have

LC(ρ) = RC(tρ).

In particular, LC ι = RC tι also on morphisms. The same is true in the ∞-
categorical context.

2.44. Let C → I be an (∞-)exponential fibration of (∞-)(co)operads with
associated pro-functors α● ∶ Ci′ → Ci. Let ι ∶ C′ ↪ C be a full embedding. Then
the pro-functors associated with C′ → I are obviously given by (α′)● = tια●ι and
the transition morphism

tι g●ι tιf●ι⇒ tι(fg)●ι (17)

is induced by the counit ι tι → id. Thus C′ is an (∞-)exponential fibration
again, if and only if (17) is an isomorphism. This is obviously the case if ι is
(∞-)Cartesian (i.e. if ι tι f● ι → f● ι is an isomorphism) or (∞-)coCartesian (i.e.
if tι f● ι tι→ tι f● is an isomorphism). We have proven:

Lemma 2.45. Let C → I be an (∞-)exponential fibration of (∞-)(co)operads
and ι ∶ C′ ↪ C be a full embedding. If ι is (∞-)Cartesian or (∞-)coCartesian17

then C′ → I is again an (∞-)exponential fibration.

2.6 Twisted arrow categories for operads

2.46. Let Ξ ∈ {↓, ↑}n be an ordered sequence of directions. For an ∞-category,
or more generally, an∞-operad I, we will define∞-categories (resp.∞-operads)
ΞI such that for ∞-categories:

↓I = I, ↑I = Iop, ↓↑I = tw(I), ↑↓I = twop(I)

where tw(I) is the twisted arrow category [41, 5.2.1] and such that, more gener-
ally, the activemorphism spaces in ΞI are equivalent to the space of commutative
diagrams of the form

x1 //
OO

��

x2 //
OO

��

⋯ // xnOO

��
x′1 // x′2 // ⋯ // x′n

(18)

in which all morphisms are active, and where the arrow directions are dictated
by Ξ. For operads, the equation ↓↑I = tw(I) does not hold true when one under-
stands by tw(I) the usual twisted arrow category associated with the underlying
∞-category (of operators). The two are related, however, see Lemma 2.51 below.

17cf. Definition 2.41, which is not literally applicable as stated, thus interpreted as in 2.44
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Definition 2.47. Let I be an ∞-operad or ∞-category. Define inductively:

Ξ↓I ∶= ∫ Ξ(Iact ×/Iact i)

the unstraightening construction associated with the functor of ∞-categories (of
operators):

I → Cat∞

i ↦ Iact ×/Iact i

the functoriality being obtained by unique factorization into inert and active.
Finally set:

Ξ↑I ∶= (Ξ
′↓I)op

where in Ξ′ all arrow directions are reversed.

This defines recursively ΞI for all operads I. Notice that the ∞-operad
structure only plays a role in the first step; the comma category Iact ×/Iact i
is just to be considered as a plain ∞-category and does not carry any operad
structure.

Lemma 2.48. ΞI is an ∞-operad again, if the last arrow of Ξ is ↓, and other-
wise an ∞-cooperad. The last projection πn ∶ ΞI → I is a cofibration of operads,
resp. a fibration of cooperads πn ∶ ΞI → Iop.

Proof. By basic facts on ∞-operads 2.19, 6. the association

i↦ Iact ×/Iact i

factors
I → Cat×∞ → Cat∞

where the first is a functor of∞-operads, and thus the corresponding cofibration
is a cofibration of ∞-operads (cf. 2.19, 4.).

Definition 2.49. An active morphism which corresponds to a diagram (18)
in which all vertical morphisms, except for the i-th one, are isomorphisms, is
called a type-i morphism. With respect to the recursive definition, those are
precisely the morphisms that lie in the fiber for n − i steps and are coCartesian
for the next unstraighening (resp. for i = 1 are just any morphism in the fibers
for the last step). In particular, all type-i morphisms for i < n lie over an
isomorphism in O.

Lemma 2.50. Let I be an ∞-category. Let Ξ′ ⊂ Ξ be a non-empty subsequence
of arrow directions. Then the projection

π ∶ ΞI → Ξ′I

is a localization, i.e. it exhibits the target as the localization of ΞI at those
morphisms that are mapped to isomorphisms under π.
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Proof. By induction, it suffices to show the following. Let Ξ = L↓R be a sequence
of arrow directions and let Ξ′ = LR. One of R or L may be empty, but not
both. Then the projection

ΞI → Ξ′I

is a localization. We first discuss the case in which the right-most arrow of L is
↓ or the leftmost arrow of R is ↓. Then there is even a section

Ξ′I → ΞI

which turns Ξ′I a (co)reflective subcategory. Now assume that the condition is
not satisfied. If L or R is empty then this projection is actually a (co)fibration
with fibers of the form i ×/I I, resp. I ×/I i, hence contractible. The morphism
from a (co)fibration with contractible fibers to its base is a localization. If R
and L are not empty consider the projection

L↓RI

""

// LRI

}}
RI

This is a morphism of (co)fibrations (i.e. mapping (co)Cartesian morphisms to
(co)Cartesian ones) and the morphism between the fibers is of the form:

L↓I ×/I i→ LI ×/I i

hence of a form discussed already. A morphism of (co)fibrations which is fiber-
wise a localization is a localization itself [6, 4.1.11].

Lemma 2.51. Let I be an ∞-operad. There is a functor

Π ∶ twop(I)→ ↑↓I

which is a localization. Here twop(I) denotes the usual (dual) twisted arrow
category of I considered as ∞-category (of operators).

Proof. The functor is the unstraightening (in the sense of ∞-categories) of the
fiber-wise (over I) functor

I ×/I i→ Iact ×/Iact i

given by unique factorization. This is even a reflective localization. One checks
that for a morphism α ∶ i→ i′ in I one has a commutative diagram

I ×/I i //

��

Iact ×/Iact i

��
I ×/I i′ // Iact ×/Iact i′

where the left vertical functor is composition and the right hand side is the
functoriality used to define ↑↓I which also stems from the unique factorization.
They assemble to a natural transformation of functors I → Cat∞.
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2.7 (Co)fibrations of (co)operads and (op)lax limits

This section contains a brief discussion of the relation between (co)fibrations
of (co)operads and the corresponding notions of (op)lax morphisms of their
classifying functors (more background, explicit constructions in a particular
model of (∞,2)-categories, and proofs can be found in [1, 2, 6, 14, 26, 27, 30, 31]).

2.52. Let C be an (∞,2)-category and I a small ∞-category. We denote by

Homlax
CI (F,G)

the (∞,1)-category of lax natural transformations (cf. e.g. [2, 14, 31]). We adopt
the convention that for a lax transformation and for each morphism i → i′ in I
there is a diagram in C of shape

F (i) //

��
⇑

F (i′)

��
G(i) // G(i′)

(as opposed to the other direction of the 2-morphism). For F ∈ CIop

and G ∈ CI

we also denote by
Dinatlax(F,G)

a similar construction in which for each morphism i→ i′ in I there is a diagram
in C

F (i) oo

��
⇒

F (i′)

��
G(i) // G(i′)

We have the notions of (op)lax limit and colimit which are the 2-adjoint to
the constant functor. They exist with decoration for a set C of morphisms in
I, i.e.

Hom
(op)lax,C−pseudo
CatI∞

(F,α∗G) ≅ HomCat∞((op)laxcolim
C−pseudo

F,G)

where Hom
(op)lax,C−pseudo
CatI∞

⊆ Homlax
CatI∞

means the full subcategory of lax trans-

formation in which the constraint is an isomorphism for all morphisms in C
and

Hom
(op)lax,C−pseudo
CatI∞

(α∗F,G) ≅ HomCat∞(F, (op)laxlim
C−pseudo

G).

They are called partially (op)lax limits in [1, 14].
This allows to write also

(op)laxlimC−pseudo
G = Hom

(op)lax,C−pseudo
CatI∞

(⋅,G).
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Furthermore, we have

laxcolimF = ∫ F oplaxcolimF = ∫F.

the unstraightening construction, and its dual, respectively. These are a cofi-
bration, resp. a fibration over I. Then

C−pseudo
laxlim

I
G = HomCat∞ /I(I, laxcolim

I
G)C−cocart

oplaxlim
I

G = HomCat∞ /I(I,oplaxcolim
I

G)C−cart

Here C − (co)cart means the full subcategory of functors that map morphisms
in C to (co)Cartesian morphisms.

We have also

C−pseudo
laxcolim

I
Y G = laxcolim

I
G[{C−cart}−1]

C−pseudo
oplaxcolim

I
G = oplaxcolim

I
G[{C−cocart}−1]

(localization at the Cartesian morphism over morphisms in C) which will no be
needed in the sequel, though.

Lemma 2.53. If F,G ∶ I → (Cat∞,×) are functors of ∞-operads then the
association18

twop(I) → Cat∞

α ∶ i→ i′ ↦ Hom
p(α)
Cat×∞
(F (i),G(i′))

where p ∶ I → O is the structural morphism, factors through ↑↓I and induces an
isomorphism of (∞,1)-categories:

Homlax,inert−pseudo
(Cat×∞)I

(F,G) ≅
1−pseudo,inert−pseudo

laxlim
µ∶i→i′∈↑↓I

Hom
p(µ)
Cat×∞
(F (i),G(i′)).

Proof. Recall from Lemma 2.51 that

Π ∶ twop(I)→ ↑↓I

is a localization. Thus, we have to show that the functor maps morphisms β,
which are mapped to isomorphisms under Π, to isomorphisms. Such a β induces
a diagram

i1
ι1 //

β

��

i′
α // i

i2

ι2

@@

18Here Cat×∞ denotes the underlying (∞,2)-category (of operators) of the (∞,2)-operad
(Cat∞,×), i.e. with (Cat×∞)[n] = Catn∞.
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where ι1 and ι2 are inert and α is active, and which in turn induces a commu-
tative diagram

Hom
p(αι2)
Cat×∞

(F (i2),G(i))
OO
∼

F (β)○− // Hom
p(αι1)
Cat×∞

(F (i1),G(i))
OO
∼

Hom
p(α)
Cat×∞
(ι2,●F (i2),G(i)) //

jj
Hom

p(α)
Cat×∞
(ι1,●F (i1),G(i))

44

Hom
p(α)
Cat×∞
(F (i′),G(i))

Here ι1,● and ι2,● are the (2-categorical) push-forward along the inert morphisms
ι1, ι2. Since F is a functor of (∞,2)-operads the diagonal morphisms are iso-
morphisms as well.

The last assertion boils down to that statement that this following morphism
induces by the localization functor Π ∶ twopI → ↑↓I is an equivalence:

1−pseudo,inert−pseudo
laxlim

α∶i→i′∈twop(I)
Hom

p(α)
Cat×∞
(F (i),G(i′)) ≅

1−pseudo,inert−pseudo
laxlim

α∶i→i′∈↑↓I
Hom

p(α)
Cat×∞
(F (i),G(i′))

From the first part follows that

1−pseudo,inert−pseudo
laxlim

α∶i→i′∈twop(I)
Hom

p(α)
Cat×∞
(F (i),G(i′))

=Homtwop(I)(twop(I),Π∗ laxcolim
↑↓I

(Hom
p(α)
Cat×∞
(F (i),G(i′)))1−cocart,inert− cocart

=Hom↑↓I(twop(I), laxcolim
↑↓I

(Hom
p(α)
Cat×∞
(F (i),G(i′)))1−cocart,inert− cocart.

Π is a localization at inert type-1 morphisms. Those are mapped to isomor-
phisms by functors that map inert morphisms to coCartesian (here iso-) mor-
phisms. Hence this is the same as:

= Hom↑↓I(↑↓I, laxcolim↑↓I
(Hom

p(α)
Cat×∞
(F (i),G(i′)))1−cocart,inert− cocart.

Proposition 2.54. Let F ∶ I → Cat∞ be a functor.

1. Let I be an ∞-category and F,G ∶ I → Cat∞ be functors. Denote by
Cat∞ /I the slice (∞,2)-category (not lax slice) over I. Then we have a
natural isomorphism of (∞,1)-categories

HomCat∞ /I(∫ F,∫ G) ≅ Homlax
CatI∞
(F,G).

2. Let I be an ∞-category and F ∶ Iop → Cat∞ and G ∶ I → Cat∞ be functors.
Then

HomCat∞ /I( ∫F,∫ G) ≅ Dinatlax(F,G).
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3. Let I be an ∞-category and F,G ∶ Iop → Cat∞ be functors. Then

HomCat∞ /I( ∫F, ∫G) ≅ Homoplax

CatI
op
∞
(F,G).

4. Let I be an ∞-category and F ∶ I → Cat∞ and G ∶ Iop → Cat∞ be functors.
Then

HomCat /I(∫ F, ∫G) ≅ Dinatoplax(F,G).

2.55. If C is a class of morphisms in I then more generally

HomC−cocart
Cat∞ /I (∫ F,∫ G) ≅ Homlax,C−pseudo

CatI∞
(F,G)

where the LHS is the full subcategory of of those functors which map coCarte-
sian morphisms lying over morphisms in C to coCartesian morphisms and the
RHS is the full subcategory of those lax natural transformations where the cor-
responding 2-morphism is an isomorphism for every morphism in C. The same
is true dually.

This can be used to establish analogues of the preceding equivalences for
operads:

Let I be an operad and F ∶ I → (Cat∞,×) a functor of ∞-operads. We write
Cat×∞ → O for the category of operators of the target, i.e. with (Cat×∞)[n] =
Catn∞. The composition I → Cat×∞ → Cat∞ with × is denoted by F ×. Then F
classifies a cofibration of ∞-operads ∫ F → I whose underlying ∞-category (of
operators) is given by ∫ F × = laxcolimI F

×.

Proposition 2.56. 1. Let I be an ∞-operad and F,G ∶ I → (Cat∞,×) be
functors of ∞-operads. Then

HomOp∞ /I(∫ F,∫ G) ≅ Homlax,inert−pseudo
(Cat×∞)I

(F,G) ≅ Homlax,inert−pseudo
CatI∞

(F ×,G×)

2. Let I be an ∞-cooperad and F,G ∶ Iop → (Cat∞,×) be functors of ∞-
operads. Then

HomCoop∞ /I( ∫F, ∫G) ≅ Homoplax,inert−pseudo
(Cat×∞)I

op (F,G) ≅ Homoplax,inert−pseudo
CatI

op
∞

(F ×,G×)

Proof. Follows immediately from Proposition 2.54, the discussion in 2.55 and
basic facts on operads 2.19.

See [14, Proposition 5.2.] for a similar statement.

2.57. Let I be a small ∞-category. The twisted arrow categories ↓↑I, and ↑↓I,
discussed in Section 2.6 may be used to transfer between lax and oplax natural
transformations. This construction is at the heart of the (co)bar constructions
discussed in the next chapter. For ↑↓I, or more generally for categories of the
form ΞI, for Ξ ∈ {↑, ↓}n, we write i − pseudo instead of C − pseudo (2.55) for C
being the class of type i-morphisms (2.49).
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Homlax
CatI∞

∶

F (i)
F (α) //

µ(i)
��

⇑

F (i′)

µ(i′)
��

G(i)
G(α)

// G(i′)

Homoplax

CatI∞
∶

F (i)
F (α) //

µ(i)
��

⇓

F (i′)

µ(i′)
��

G(i)
G(α)

// G(i′)

Dinatoplax,1−pseudo ∶

F (i)

µ(i)
��

⇒

F (i)=oo

µ(i′)F (α)
��

F (α) // F (i′)

µ(i′)
��

G(i)
G(α)

// G(i′) G(i′)=
oo

Dinatoplax,2−pseudo ∶

F (i)

µ(i)
��

F (i)=oo

G(α)µ(i)
��

F (α) // F (i′)

µ(i′)
��

⇐

G(i)
G(α)

// G(i′) G(i′)=
oo

Homoplax,1−pseudo
Cat

↑↓I
∞

∶
⋅ = //

µ(i)
��

⇐

⋅
µ(i′)F (α)
��

⋅=oo

µ(i′)
��

Hom(F (i),G(i)) // Hom(F (i),G(i′)) Hom(F (i′),G(i′))oo

Homoplax,2−pseudo
Cat

↑↓I
∞

∶
⋅ = //

µ(i)
��

⋅
G(α)µ(i)
��

⋅=oo

µ(i′)
��

⇒

Hom(F (i),G(i)) // Hom(F (i),G(i′)) Hom(F (i′),G(i′))oo

(squares without depicted 2-morphisms commute, i.e. have invertible 2-
morphisms)

Figure 1: Illustration of the different categories appearing in Proposition 2.58.
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Proposition 2.58. Let F,G ∈ CatI∞. There are canonical isomorphisms:

Homlax
CatI∞
(F,G) ≅ Dinatoplax,2−pseudo(π∗1F,π∗2G) ≅

2−pseudo
oplaxlim

↑↓I
Hom(F (i),G(i′))

Homoplax

CatI∞
(F,G) ≅ Dinatoplax,1−pseudo(π∗1F,π∗2G) ≅

1−pseudo
oplaxlim

↑↓I
Hom(F (i),G(i′))

The same holds true with lax and oplax interchanged. The terms on the right
might be called (op)lax ends of Hom(F,G) as functor on Iop × I → Cat∞.

Mutatis mutandis the Proposition holds also for ∞-operads:

Proposition 2.59. Let I be an ∞-operad and F,G ∈ (Cat∞,×)I .

Homlax,inert−pseudo
(Cat×∞)I

(F,G) ≅
inert−pseudo,2−pseudo

oplaxlim
↑↓I

Hom
p(µ)
Cat×∞
(F (i),G(i′))

Homoplax,inert−pseudo
(Cat×∞)I

(F,G) ≅
inert−pseudo,1−pseudo

oplaxlim
↑↓I

Hom
p(µ)
Cat×∞
(F (i),G(i′))

Notice that the expression Hom
p(µ)
Cat×∞
(F (i),G(i′)) factors through ↑↓I → Cat∞ as

shown in Lemma 2.53.

Proof. Follows immediately from Proposition 2.58, the discussion in 2.55 and
basic facts on operads 2.19.

Remark 2.60. In the special case F = ⋅ we get, in particular:

oplaxlim
I

(G) ≅
1−pseudo
oplaxlim

↑↓I
(π∗2G),

oplaxlim
I

(Gop) ≅ (laxlim
I
(G))op ≅ (

2−pseudo
oplaxlim

↑↓I
(π∗2G))op.

Translated to the corresponding (co)fibrations this gives a way to relate cofibra-
tions of operads with fibrations of cooperads, which will be at the heart of the
(co)bar constructions, see 3.4.

2.61. We need a simple fact about compositions of fibrations that is, however,
a bit tricky to state: Recall that the composition K → J → I of two fibrations
is a fibration. If J → I is classified by G ∶ Iop → Cat∞ and K → J is classified
by F ∶ Jop = (oplaxcolimIop G)op → Cat∞ then K → I is classified by a functor
Iop → Cat∞ which is a left oplax Kan extension along Jop → Iop of F . It
maps i ↦ oplaxcolimG(i)op F ∣G(i)op . We get a corresponding functor between
categories of sections

HomCat∞/I (I,K)→ HomCat∞/I (I, J). (19)
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This has fibers over α ∶ I → J given by HomCat∞/I (I,α∗K) = oplaxlimI F ○ αop

where α∗K is defined by the Cartesian diagram

α∗K

��

// K

��
I

α // J

actually because the whole Hom-categories commute with fiber products (and
not just their groupoids of invertible morphisms). We claim: The construction
gives a functor

HomCat∞/I (I, J)op → Cat∞,

α ↦ oplaxlim
I

F ○ αop,

and the functor (19) is a fibration classified by this functor. A rigorous proof is
omitted for the moment. Translated purely in terms of the classifying functors
it means:

Proposition 2.62. Let G ∈ CatI
op

∞ be a functor and F ∈ Cat(oplaxcolimIop G)op
∞ a

functor. Then there is a canonical isomorphism:

oplaxlim
i∈Iop

(oplaxcolim
x∈G(i)op

F (i, x)) ≅ oplaxcolim
(x(i)∈G(i))i∈(oplaxlimIop G)op

(oplaxlim
i∈Iop

F (i, x(i))).

A similar statement holds true with a set C of morphisms in I:

C−pseudo
oplaxlim

i∈Iop

(oplaxcolim
x∈G(i)op

F (i, x)) ≅ oplaxcolim
(x(i)∈G(i))i∈(oplaxlimC−pseudo

Iop
G)op
(
C−pseudo
oplaxlim

i∈Iop

F (i, x(i))).

Remark 2.63. One can also construct the map (almost) purely by abstract
adjunction properties of lax limits and colimits. Because we have for F ∶ I →
Cat∞:

oplaxcolimF = ∫F
and

oplaxlimF = HomCat∞ /Iop(Iop, ∫F )

we have a canonical morphism

eval ∶ Iop × oplaxlimF → oplaxcolimF.

Then consider the diagram

I × oplaxlimIop G
eval //

π2

��

π1

))

oplaxcolimIop G

π

��
oplaxlimIop G

p

))

I

p

��⋅
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The non-horizontal functors are either cofibrations (the map π) or projec-
tions (in particular, fibrations and cofibrations). Therefore there exist fiber-wise
oplax limits and colimits (oplax Kan extensions) along these maps which we
denote here by p! and p∗. They form 2-adjunctions

CatI,oplax∞ ↔ CatJ,oplax∞

in the sense that there is an isomorphism of ∞-categories (not just groupoids)

Homoplax
CI (F,α∗G) ≅ Homoplax

CJ (α!F,G).

Therefore, we can calculate with them like with usual Kan extensions. First
obviously

π∗1p
∗ ≅ π∗2p∗

therefore there is a mate
p∗p∗ ⇒ π2,∗π

∗
1

which is an isomorphism because π2,∗ is computed fiber-wise. Hence we get a
morphism

p!π2,∗ ⇒ p∗π1,!

and finally:
p!π2,∗ eval

∗ ⇒ p∗π1,! eval
∗ ⇒ p∗π!

This is the functor in the statement.

Proposition 2.64. Let F ∈ CatI∞ be a functor and

X,Y ∈ oplaxlim
I

F

then we have a canonical equivalence

HomoplaxlimI F (X,Y )
∼Ð→ lim

↓↑I
HomF (i)(X(i), F (µ)Y (i′)) = lim↓↑I Homµ

oplaxcolimI F (X(i), Y (i
′))

where µ ∶ i→ i′ denotes an object in ↓↑I.

Proof. This has nothing to do with fibrations and is a simple consequence of
the end formula for morphisms in functor categories. Actually, for any functor
C → S, for X,Y ∈ CIS , for S ∈ S, we have

HomCI
S
(X,Y ) = lim

↓↑I
HomC,S(µ)(X(i), Y (i′)).

Indeed, we have

HomCI (X,Y ) ≅ lim↓↑I HomC(X(i), Y (i′))

and, by definition, the Cartesian diagram

HomC,S(µ)(X(i), Y (i′)) //

��

HomC(X(i), Y (i′))

��
{S(µ)} // HomS(S(i), S(i′))
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Applying lim↓↑I , we get a Cartesian diagram

lim↓↑I Hom
S(µ)
C (X(i), Y (i′)) //

��

HomCI (X,Y )

��
{idS} // HomSI (S,S)

Corollary 2.65. Let I be a small ∞-category. For a functor G ∈ CatI∞ there is
an isomorphism

oplaxlim
I

↓↑G ≅ ↓↑(oplaxlim
↑↓I

π∗2G)(1,2),(2,1)−pseudo

where the RHS is the full subcategory of objects X → Y ∈ ↓↑(oplaxlim↑↓I π
∗
2G)

such that X ∈ (oplaxlim2−pseudo
↑↓I π∗2G) and Y ∈ (oplaxlim1−pseudo

↑↓I π∗2G). Sim-

ilarly, let I be a small ∞-operad. For a functor G ∈ (Cat∞,×)I , inducing
G× ∶ I → Cat×∞ → Cat∞ classifying the categories of operators, there is an
isomorphism

inert−pseudo
oplaxlim

I

↓↑G× ≅ ↓↑(
inert−pseudo
oplaxlim

↑↓I
π∗2G

×)(1,2),(2,1)−pseudo

where ↑↓I means twisted arrow category in the sense of ∞-operads (2.47), ob-
serving that in all other occurrences it is applied to just ∞-categories.

Proof (sketch): Consider the functor ‘Hom ’ ∶ (oplaxcolimI G ×Gop)op → Gpd∞
given by Hom fiber-wise, where Gop is the composition of G with op. To see
that this is a valid morphism, observe that

‘Hom ’ ∈ Homlax
CatI∞
(Gop ×G,π∗I Gpd∞) ≅ HomCat∞(laxcolim

I
Gop ×G,Gpd∞).

≅ HomCat∞((oplaxcolim
I

G ×Gop)op,Gpd∞)

Apply Proposition 2.62 with (I,G,F ) being (Iop,G ×Gop, ‘Hom ’):

oplaxlim
I

(oplaxcolim
G(i)op×G(i)

‘Hom ’

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
↓↑G(i)

) ≅ oplaxcolim
(X,Y )∈(oplaxlimI G×Gop)op

(oplaxlim
I

Hom(X(i), Y (i))).

Using Remark 2.60 identify

oplaxlim
I

G × oplaxlim
I

Gop ≅
1−pseudo
oplaxlim

↑↓I
π∗2G × (

2−pseudo
oplaxlim

↑↓I
π∗2G)op. (20)

We have to show that there is a commutative diagram

(oplaxlimI G × oplaxlimI G
op)op ∼ //

oplaxlimI Hom

��

(oplaxlim1−pseudo
↑↓I π∗2G)op × oplaxlim

2−pseudo
↑↓I π∗2G

Hom

��
Hom(I,Gpd∞)

lim // Gpd∞
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By Proposition 2.64, and using the identification ↓↑(↓↑I) = ↑↓↑↓I (denoting an

object by i1
µ1 // i2

µ2 // i3
µ3 // i4 ), and denoting by X̃, Ỹ the image of

the pair X,Y under (20):

Homoplaxlim↑↓I
(X̃, Ỹ ) ≅ lim

↑↓↑↓I
HomG(i4)(X̃(i1 → i4),G(µ3)Ỹ (i2 → i3))

≅ lim
↑↓↑↓I

HomG(i4)(X(i4),G(µ3)G(µ2)Y (i2)) ≅ lim↓↓I HomG(i4)(X(i4),G(µ)Y (i2))

(using Lemma 2.50 and numbering ↓↓I with the corresponding subindices of
↑↓↑↓I) and this is

≅ lim
I

HomG(i)(X(i), Y (i)).

In the operad-case we get by Proposition 2.62

inert−pseudo
oplaxlim

I
(oplaxcolim
G(i)op×G(i)

‘Hom ’

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
↓↑G(i)

) ≅ oplaxcolim
(X,Y )∈(oplaxliminert−pseudo

I
G×Gop)op

inert−pseudo
oplaxlim

I
Hom(X(i), Y (i)).

and refining the argument above:

inert−pseudo
oplaxlim

I

↑↓G ≅ ↓↑(
inert−pseudo
oplaxlim
(twopI)op

π∗2G)(1,2),(2,1)−pseudo.

Then notice that

inert−pseudo
oplaxlim
(twopI)op

π∗2G = HomtwopI(twopI,oplaxcolimπ∗2G)inert− cocart

= HomI(twopI,oplaxcolim
I

G)inert− cocart

and that the morphism that go to isomorphisms under twopI → ↑↓I are pre-
cisely the type-1 inert morphisms which go thus to isomorphisms, hence by
Lemma 2.53 this is the same as

≅ HomI(↓↑I,oplaxcolim
I

G)inert− cocart

≅ Hom↓↑I(↓↑I,oplaxcolimπ∗2G)inert− cocart ≅
inert−pseudo
oplaxlim

↑↓I
π∗2G.

2.8 Relative (operadic) Kan extensions

Let C → S and α ∶ J → I be functors of ∞-(co)operads, the latter small. Let
S ∈ SI . By pre-composition, it gives rise to a functor

α∗ ∶ CIS → CJα∗S .

Definition 2.66. If a left adjoint α
(S)
! (resp. right adjoint α

(S)
∗ ) of α∗ exists,

we call it a relative left (resp. right) Kan extension.
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Note that this comprises, in particular, the functors called operadic Kan
extensions by Lurie [41, 3.1.2]. Various sufficient criteria for their existence will
be discussed in Sections 2.9–2.11.

2.67. We call a relative left Kan extension, if it exists, fiber-wise, if for any
object i ∈ I[1], the mate

colim
Ji

ι∗i → i∗ α
(S)
!

where ιi ∶ Ji ↪ J is the inclusion, is an isomorphism. Similarly for right Kan
extensions. Somewhat informally, we say that a relative left or right Kan exten-
sion is point-wise, if there is a simple formula à la Kan, cf. Proposition 2.76

for i∗ α
(S)
! .

2.9 Relative Kan extensions — fiber-wise case

Proposition 2.68. Let C, I, J,K be (∞-)(co)operads, the latter three small. Let
C → I be a functor and

J //

��

K

��
I

be a morphism of (∞-)exponential fibrations over I.

1. If C → I is L-admissible (Definition 2.31) and α is (∞-)coCartesian (Defi-
nition 2.41). Then the functor α∗ ∶DI(K,C)→DI(J,C) has a left adjoint
in the (∞,2)-category (co)Op∞/I (resp. in the (1,2)-category (co)Op/I).

2. If C → I is R-admissible (Definition 2.31) and α is (∞-)Cartesian (Defini-
tion 2.41). Then the functor, α∗ ∶DI(K,C)→DI(J,C) has a right adjoint
in the (∞,2)-category (co)Op∞/I (resp. in the (1,2)-category (co)Op/I).

Proof. The functor α can be seen as a morphism in Homoplax,inert−pseudo
CatPF,× (ΞK ,ΞJ)

or (via passing to the mate) as Homoplax,inert−pseudo
CatPF,× (ΞJ ,ΞK). The functor in

question is given equivalently by applying L to the first or R to the second
(cf. Proposition 2.42, assuming that C → I is L-, resp. R-admissible). If α
is (∞-)coCartesian we can also apply RC to the first, being a natural trans-
formation (not only oplax) in this case. This yields a right adjoint. If α is
(∞-)Cartesian, we can apply LC to the second, being a natural transformation
(not only lax) in this case. This yields a left adjoint.

Corollary 2.69. 1. If C → S is L-admissible (Definition 2.31) and α ∶ J →
K is a (∞-)Cartesian morphism of (∞-)exponential fibrations over I.
Then for each S ∈ SI , the functor

α∗ ∶ CKp∗
K
S → CJp∗

J
S
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has a left adjoint α
(p∗JS)
! , i.e. a relative left Kan extension exists. It is

computed fiber-wise over I, i.e. the mate

colim
Ji

ι∗i → i∗α
(S)
!

where ιi ∶ Ji → J denotes the inclusion of the fiber, is an isomorphism.

2. If C → S is R-admissible (Definition 2.31) and α ∶ J →K is a (∞-)coCartesian
morphism of (∞-)exponential fibrations over I. Then for each S ∈ SI , the
functor

α∗ ∶ CKp∗
K
S → CJp∗

J
S

has a right adjoint α
(p∗JS)
∗ , i.e. a relative (operadic) right Kan extension

exists. It is computed fiber-wise over I, i.e. the mate

i∗α
(S)
∗ → lim

Ji

ι∗i

where ιi ∶ Ji → J denotes the inclusion of the fiber, is an isomorphism.

Proof. We can pullback C → S along S ∶ I → S which preserves L/R-admissibility,
and assume w.l.o.g. that S = I and S = id. Then we have CKpK

= HomCat/I (I,DI(K,C))
and CJpJ

= HomCat/I (I,DI(J,C)) by the universal property of the Day convo-
lution. Hence the adjunction from Proposition 2.68 gives the required Kan
extension adjunction.

2.70. Let p ∶ J → I be an (∞-)exponential fibration. Then the functor is,
in particular, a morphism of (∞-)exponential fibrations. It is (∞-)Cartesian
(Definition 2.41), if

α● pJi
≅ pIi

and (∞-)coCartesian (Definition 2.41), if

tpJi α
● ≅ tpIi .

Obviously a fibration is always∞-Cartesian and a cofibration is∞-coCartesian.
A fibration is (∞-)coCartesian if and only if the pull-back functors are (∞-)cofinal
and a cofibration is (∞-)Cartesian, if and only if the push-forward functors are
(∞-)final. This shows the following:

Remark 2.71. Let C,S, I, J be (∞-)(co)operads (all of the same type), the
latter two small.

Let C → S and J → I be (co)fibrations of (∞-)(co)operads (not necessarily of
the same fibration type), we may summarize the assumptions of Corollary 2.69
as follows:

1. Relative left Kan extensions (that are computed fiber-wise) exist along J →
I, if C has cocomplete fibers, and
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C → S
J → I

fibration cofibration

fibration
pull-backs for J → I

always
are (∞-)cofinal

cofibration both properties hold
push-forwards for C → S
are (∞-)cocontinuous

2. Relative right Kan extensions (that are computed fiber-wise) exist along
J → I, if C has complete fibers, and

C → S
J → I

fibration cofibration

fibration
pull-backs for C → S

both properties hold
are (∞-)continuous

cofibration always
push-forwards for J → I

are (∞-)final

Note that it does not matter whether the objects are operads, or cooperads,
respectively, apart from the fact that fibrations of operads as well as cofibrations
of cooperads are not as commonly considered as the other cases.

2.10 Relative Kan extensions — point-wise case

The calculus of left relative Kan extensions is particularly rich for L-admissible
cofibrations of ∞-operads C → S. Recall that L-admissible here means that
the fibers are cocomplete and that the push-forward functors commute with
colimits (argument-wise). Similarly, of course, the same holds for right relative
Kan extensions for R-admissible fibrations of ∞-cooperads. In particular, they
always exist, and a point-wise formula holds true (analogous to Kan’s formula
for usual Kan extensions). See Proposition 2.76 below.

Definition 2.72. Let I and J be ∞-operads. A generalized morphism I → J
is a 2-commutative diagram

I
α //

��
⇓

J

��
O

such that α maps inert morphisms to inert morphisms and such that the 2-
morphism consists of active morphisms. Denote the corresponding (∞,2)-category
by Opg∞.

Definition 2.73. Let S be an ∞-operad. We define the (∞,2)-category Dia(S)
as the full subcategory of the lax slice category Opg∞ //S in which the objects are
honest morphisms of operads with small source. Similarly, we define Diaop(S)
as the oplax slice category.
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A morphism in Dia(S) is thus represented by a diagram

M
α //

  
⇓µ

N

��
S

in which µ consists point-wise of active morphisms. If µ is an equivalence,
we say that the morphism is of diagram type. The corresponding α is then
necessarily an honest morphism of operads.

2.74. Let C → S be a cofibration of ∞-operads. It gives rise to a functor of
(∞,2)-categories

y(C) ∶ Dia(S)→ Cat∞

mapping (I, S) to CMS , the fiber of CI → SI over S. A morphism of diagram
type α ∶ I → J is mapped to the functor ‘composition with α’:

α∗ ∶ CJ → CI .

Amorphism with components α = idI , µ ∶X → Y is mapped to the corresponding
push-forward functor

µ● ∶ CIX → CIY .

Definition 2.75 ((Co)operadic comma category). For two morphisms of ∞-
(co)operads J → I and K → I we define a (co)operadic comma category
together with a 2-commutative diagram in the 2-category Opg∞:

I ×/J K
π2

��
⇙

π1 // I

α

��
K

β
// J

where the morphism π1 ∶ I ×/J K → I is only a generalized morphism of operads
in the sense of Definition 2.72.

For any S ∈ SJ this yields a diagram in Dia(S) of the form

(I ×/J K,π∗2β∗S)

⇙µ

π̃1 //

π2

��

(I,α∗S)

��
(K,β∗S) β // (J,S)

We can define it as the limit of the following diagram of (co)operads and
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generalized morphisms:
I

��
↓↓J

π1 //

π2

��

J

K // J

where ↓↓J has been defined in Definition 2.47. One can also mimic the definition
of ↓↓J and define a functor of operads

K → (Cat∞,×)
k ↦ Iact ×/Jact

β(k) usual comma category

using factorization into inert and active. I ×/J K → K is then the associated
cofibration (unstraightening).

Proposition 2.76 (relative (operadic) Kan formula). If C → S is an L-admissible
cofibration of ∞-operads (or just ∞-categories) then relative left Kan extensions
exist along any functor α ∶ I → J of small ∞-operads whatsoever. Moreover,
there is an isomorphism

j∗α
(S)
! ≅ colim

I×/Jj
S(µ)●π∗1 (21)

for objects k ∈K and S ∈ SK .
There is a similar dual statement for R-admissible fibrations of ∞-cooperads.

Proof. We have an adjunction in the (∞,2)-category Dia(S)

(I ×/J J, π∗2S)
π̃1=(π1,S(µ)) // (I,α∗S)

(ι,id)
oo

and an isomorphism

α
(S)
! ≅ π(S)2,! ι

(π∗2S)
!

in the strong sense that the existence of the RHS adjoints implies the existence
of the LHS. By the adjunction in Dia(S), we have

ι
(pr∗2 S)
! ≅ π̃1∗ = S(µ)● π∗1

giving the formula:

α
(S)
! ≅ π(S)2,! S(µ)● π

∗
1

π2 is a cofibration of cooperads and thus a relative Kan extension exists and is
computed fiber-wise by Proposition 2.69. The formula (21) follows.
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Example 2.77 (Free algebra). Consider the morphism ⋅ → O where ⋅ is the
final category. Let (C,⊗) be a monoidal ∞-category such that ⊗ commutes with
colimits (in each variable separately). Then the left relative Kan extension

C → (C,⊗)O = Alg(C,⊗)

exists. Notice that this is (by definition) a free algebra functor (left adjoint to
the forgetful functor). Examining the proof, is suffices to see that C has count-
able coproducts and that ⊗ commutes with them (in each variable separately).
Formula (21) is the usual formula for the free algebra. For, observe that

⋅ ×/O O ≅ (N0,+)

(as discrete operad). If ⊗ does not commute with countable coproducts then
the construction of a left Kan extension becomes more difficult but not always
impossible (see Section 2.11 and Section 3.7 for a dual example).

2.11 Relative Kan extensions — general case

The last section settled the case of left Kan extensions along arbitrary functors
I → J of ∞-operads w.r.t. an L-admissible cofibration C → S of ∞-operads
(say). The L-admissibility of course can be weakened to the existence of certain
colimits (depending on I → J) and the commutation of the push-forwards in C →
S with those. Often times, however, the push-forward in C does not commute
with these colimits!

For example, dually, the functor “cofree coalgebra” is a special case of a
right relative Kan extension. Its construction by the general machinery accord-
ingly assumes that ⊗ commutes with countable products. This already fails in
(Ab,⊗)∨.

However, assuming (w.l.o.g. — by using the yoga of Section 2.10) that
I → J is a cofibration, and using the equivalence of 3.4, we may pass to the
corresponding fibration C∨ → Sop:

CIα∗S
∼ //

OO

α∗

(C∨)
↓↑J×JI,2−cart
π∗2α

∗Sop

OO

(α′)∗

CJS
∼ // (C∨)

↓↑J,2−cart
π∗2S

op

where ↓↑J ×J I → ↓↑J is a cofibration (sic) of cooperads constructed similarly to
the operadic comma category (cf. Definition 2.75).

Assume, that the fibers of C → S have all relevant colimits (but no commu-
tation!). Then, for fibrations, there is no further obstacle to construct left Kan

extensions, hence a left adjoint (α′)(π
∗
2S

op)
! exists (Corollary 2.69 and especially

Remark 2.71). However, it is only a functor

(C∨)
↓↑J×JI,2−cart
π∗2α

∗Sop → (C∨)
↓↑J
π∗2S

op .
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It will land in the full subcategory (C∨)
↓↑L,2−cart
π∗2S

op of 2-Cartesian objects precisely

if the commutativity of the push-forward in C with (the relevant) colimits is
satisfied. Hence this seems like circular reasoning. However, we gained some
additional information:

Proposition 2.78. Let C → S be a cofibration of ∞-operads with cocomplete19

fibers (not necessariy L-admissible). Then relative left Kan extensions along the
cofibration I → J exists, if the fully faithful inclusion

(C∨)
↓↑J,2−cart
π∗2S

op ↪ (C∨)
↓↑J
π∗2S

op

has a (partial) left adjoint (a Cartesian projector) defined on the essential image

of (α′)(π
∗
2S

op)
! .

As an illustration we will construct the cofree coalgebra using the (dual)
classical cobar construction in section 3.7.

2.12 Pairings

Definition 2.79 (cf. [41, Definition 5.2.1.5]). A fibration of ∞-categories

P → C ×Dop

with groupoid fibers, or equivalently, a functor

Cop ×D → Gpd∞

is called a pairing of ∞-categories. An object M ∈ P over (C,D) is called left
universal, resp. right universal, if it is a final object in the fiber over C,
resp. D. The pairing is called left (resp. right) representable if for each C
there exists a left universal object over C (resp. for each D there exists a right
universal object over D).

The distinguished example is the twisted arrow category ↓↑C → C×Cop. Here
idC is left universal over C ∈ C and right universal over C ∈ Cop. A pairing which
is left (resp. right) representable gives rise to a functor

F ∶ C → D,

respectively
G ∶ D → C,

in such a way that the pairing is classified by the functor

C,D ↦ HomD(FC,D) resp. C,D ↦ HomC(C,GD).

In particular, if P is left and right representable then F is left adjoint to G. The
distinguished example corresponds to F and G being both the identity C → C.
This characterizes the distinguished example up to equivalence:

19or such that at least the relevant colimits exits...
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Lemma 2.80 ([41, Corollary 5.2.1.22]). T.f.a.e. for a left and right repre-
sentable pairing:

1. The functors F and G are equivalences;

2. The pairing is isomorphic to the distinguished one given by ↓↑C → C × Cop;

3. An object of P is left universal if and only if it is right universal.

If these conditions are satisfied the pairing is called perfect.

3 Classical and Lurie’s (co)bar

This chapter, which forms the abstract heart of these lectures, discusses the
definitions of the derived and classical bar and cobar constructions. It contains
an existence proof of classical cobar in full generality, and an existence proof of
derived bar and cobar for monoidal ∞-categories.

3.1 The general classical and derived (co)bar

In this section, we define the notion of classical bar and cobar constructions
with cobar left adjoint (mainly for 1-(co)operads, but not necessarily) and the
derived bar and cobar constructions with cobar right adjoint. The latter are a
generalization of Lurie’s definition. We consider an arbitrary cofibration of ∞-
operads C → S, classified by a functor of ∞-operads Ξ ∶ S → (Cat∞,×). Denote
by C↓↑ the cofibration given by composing Ξ with the functor I ↦ ↓↑I (twisted
arrow category, cf. Section 2.6).

Denote by C∨ → Sop the fibration of cooperads which is classified by the same
functor Ξ. Then (C∨)op → S is the cofibration classified by composing Ξ with
the functor I ↦ Iop.

We thus get a diagram of cofibrations of operads over S

C↓↑
ρ1

��

ρ2

##
C

��

(C∨)op

{{
S

(22)

Notice that C↓↑ is not the twisted arrow category ↓↑C of the operad C in the
sense of Section 2.6 unless S is the terminal ∞-category.
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3.1. For each small ∞-operad I and S ∈ SI this gives rise to a diagram

(C↓↑)IS
ρ1

}}

ρ2

%%
CIS ((C∨)Iop

Sop)op
(23)

The derived bar and cobar adjunction can be derived from the fact that that
this is a pairing of ∞-categories which is left and right representable. We will,
however, proceed to give a more explicit definition of the bar and cobar functors
and then prove that (23) is isomorphic to the left- and right representable pairing
defined by their adjunction.

In the special case S = I = O and S = id, the diagram (23) is the one of Lurie
[41, Theorem 5.2.2.17]:

Alg(↓↑C)

yy &&
Alg(C) Coalg(C)op

because the cofibrations C → O, (C∨)op → O, and C↓↑ → O, are just monoidal ∞-
categories in this case and their associated∞-categories (forgetting the monoidal
structure) are just C[1], (C[1])op and ↓↑(C[1]), respectively. The monoidal struc-

ture are, in all cases, the obvious induced ones, e.g. for ↓↑(C[1]): (X1 → Y1) ⊗
(X2 → Y2) = (X1 ⊗X2 → Y1 ⊗ Y2).

3.2. For S ∈ SI , there are two natural diagrams

(C∨)↓↑Iπ∗2S
op

??
π̃∗1

dd
π∗2

CIS ((C∨)Iop

Sop)op

C↑↓IΠ∗2SCC
Π∗2

bb
Π̃∗1

CIS ((C∨)Iop

Sop)op

(24)

where Π∗2, π
∗
2 are of the form discussed in (2.74) (precomposition) but Π̃∗1 and

π̃∗1 are slightly twisted variants (see Definition 3.5 below). See Section 2.6 for
the definition of the twisted arrow (co)operads ↑↓I and ↓↑I for operads I. The
diagrams (24) are linked to the preceding (23) by the following:

Proposition 3.3. The pairing (23) is isomorphic to the pairing defined by the
two (isomorphic) groupoid valued functors

(CIS)op × (C∨)I
op

Sop → Gpd∞

(C,D)↦ Hom(C∨)↓↑I
π∗
2
Sop
(π̃∗1C,π∗2D) ≅ HomC↑↓I

π∗
2
S

(Π∗2C, Π̃∗1D).
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Before giving the proof, we have to discuss the precise definition of the
functors π̃∗1 and Π̃∗1.

3.4. To define the functors π̃∗1 and Π̃∗1 and to prove Proposition 3.3 and
Lemma 3.16, first observe the following. Let C → S be a cofibration of ∞-
operads which is classified by a functor of ∞-operads Ξ ∶ S → (Cat∞,×). We
can associate with it a fibration of cooperads C∨ → Sop which is classified by the
same functor. It may be described more directly by the following procedure:
Let I be a small operad and consider the pull-back:

C
↑↓I,2−cocart
π∗2S

��

// C↑↓I,2−cocart

��
SI

π∗2 // S ↑↓I

Here 2−cocart denotes the full subcategory of those functors mapping type-2
morphisms (Definition 2.49) to coCartesian ones. Then we have for the fibers

(C∨)I
op

Sop ≅ C
↑↓I,2−cocart
π∗2S

the identification being given by the composition:

(C∨)Iop

Sop

∼
��

C
↑↓I,2−cocart
π∗2S

∼
��

Homoplax,inert−pseudo
(Cat×∞)I

(⋅,Ξ) ∼ // Homlax,inert−pseudo,2−pseudo
(Cat×∞)

↑↓I (⋅, π∗2Ξ)

where the bottom equivalence is Proposition 2.59.

Definition 3.5. Using the discussion in 3.4, the functor bar ∶= π̃∗1

CIS
∼ // (C∨)

↓↑I,2−cart
π∗2S

op

� � // (C∨)↓↑Iπ∗2S
op

is called the classical bar construction, and a left adjoint (if it exists) will
be called the classical cobar construction. Dually, the functor bar∨ ∶= Π̃∗1 is
the composition

(C∨)Iop

Sop

∼ // C
↑↓I,2−cocart
π∗2S

� � // C↑↓Iπ∗2S

is called the dual classical bar construction, and a right adjoint (if it exists)
will be called the dual classical cobar construction.

The names are justified by the discussion in Chapter 6 where we will see
that these functors are closely related (up to composition with total decalage,
and its right adjoint, respectively) to the classical bar and cobar constructions
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of Kan for simplicial groups/sets and Eilenberg-MacLane and Adams for dg-
(co)algebras.

It would be equally reasonable to discuss the functor Π̃∗2 (dual bar construc-
tion) and its (potential) right adjoint, but this was rarely done classically. As
an illustation, however, section 3.7 uses this dual cobar construction to con-
struct the cofree coalgebra. Any statement concerning them can abstractly be
obtained by replacing C → S with (C∨)op → S. This interchanges Lurie’s bar
and cobar constructions but not the classicial bar and cobar constructions!

Corollary 3.6. The following are equivalent:

1. The pairing (23) is left representable;

2. Π̃∗1 has a (partial) left adjoint defined on the essential image of Π∗2;

3. π∗2 has a (partial) left adjoint defined on the essential image of π̃∗1 .

and dually:

1. The pairing (23) is right representable;

2. π̃∗1 has a (partial) right adjoint defined on the essential image of π∗2 ;

3. Π∗2 has a (partial) right adjoint defined on the essential image of Π̃∗1.

Definition 3.7. We call the composition

Bar ∶= π(S
op)

2,! π̃∗1

the derived (Lurie) bar construction if π
(Sop)
2,! (relative left Kan extension,

cf. 2.66) exists on the image of π̃∗1 . We call the composition

Cobar ∶= Π(S)2,∗ Π̃∗1

the derived (Lurie) cobar construction if Π
(S)
2,∗ (relative right Kan exten-

sion, cf. 2.66) exists on the image of Π̃∗1.

It is clear from Corollary 3.6 and [41, Theorem 5.2.2.17] that for I = S = O
these are precisely the (co)bar constructions defined by Lurie in [41, Definition
5.2.2.1].

Remark 3.8. The above discussion already makes sense, if S is a usual ∞-
category — considered as a trivial ∞-operad with only 1-ary morphism spaces
— or even if S = ⋅ is the terminal category. In the latter case C is just an ∞-
category and I a diagram (small ∞-category). Then the discussion boils down
to the following statement: The diagram

(↓↑C)I

}} $$
CI (Cop)I

(25)
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defines a pairing classified by

(C,D)↦ HomC↑↓I (π
∗
2C,π

∗
1D) ≅ HomC↓↑I (π

∗
1C,π

∗
2D).

Thus this pairing is always left and right representable, i.e. the derived bar and
cobar constructions exist, if π∗2 or π∗1 has a right adjoint resp. left adjoint, i.e.
if C has the relevant limits and colimits.

Exercise 3.9. For I = ⌜ the pairing (25) is perfect if and only if C is stable.

Proof of Proposition 3.3. By the discussion in 3.4, and Corollary 2.65, the dia-
gram (23) is identified with

↓↑((C∨)↓↑Iπ∗2S
op)(1,2),(2,1)−cart

ρ2

))

ρ1

vv

(C∨)
↓↑I,2−cart
π∗2S

op (C
↓↑I,1−cart
π∗2S

op )op

where the functors are induced by the projections ρ1 and ρ2, and where

↓↑(C
↓↑I
π∗2S

op)(1,2),(2,1)−cart ⊆ ↓↑(C
↑↓I
π∗2S
)

is precisely the full-subcategory of the objects that map via ρ1 and ρ2 to the
full subcategories in the diagram. One sees immediately that ρ1 × ρ2 is, as full
subcategory of the twisted arrow category, a fibration with fiber over (E ,F) in
↓↑(C↓↑Iπ∗2S

op) being the groupoid

HomC↓↑I
π∗
2
Sop
(E , π∗2F)

where E is considered via π̃∗1 as an object in CIS ≅ C
↓↑I,2−cart
π∗2S

op and F an object

in (C∨)Iop

Sop . The other statement is obtained dually by replacing C → S by
(C∨)op → S.

3.2 The derived (co)bar for (co)algebras

In this section we discuss the derived (co)bar for plain (co)algebras i.e. the case
I = S = O. In particular, we establish easy criteria for the derived (Lurie’s)
(co)bar functors to exist. This gives an alternative (to [41]) approach to the
proof. For some statements concerning basic 1-operads appearing, which are
purely combinatorial, we refer to the subsequent Chapter 4 where these fact are
discussed thoroughly.

Hence let I = S = O be the associative planar operad and S = id. In this
case, a cofibration C → O is the same thing as a monoidal ∞-category C and

CIS ≅ Alg(C) (C∨)I
op

Sop ≅ Coalg(C)

The following is clear by construction (cf. also 4.10):
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Lemma 3.10. There is a canonical isomorphism of 1-cooperads (cf. 2.20)

↓↑O = (∆op
act,∗′)∨

where ∗′ is concatenation, identifying the extremal points.

The bar diagram (24, RHS) has the following form in this case:

. (C∨)(∆op
act,∗

′)op
88

π̃∗1

gg
π∗2

Alg(C) Coalg(C∨)

If the fibers of C → S have finite limits and ⊗ commutes with them, we have

(C∨)(∆
op
act,∗

′)op ≅D((∆act,∗′)op,C∨)O
op

= Coalg(C∆
op
act).

where D((∆act,∗′)op,C∨) is the Day convolution coalgebra (Proposition 2.30)
which, in this case is C∆op

act equipped with the new monoidal product

(A,B)↦ (∗′)∗A ⊠B

considered as cooperad (cf. Proposition 2.37).
π̃∗1 is a functor which maps an algebra A to a coalgebra in C∆op

act of the form
(not depicting all but one degeneracy):

⋯ ////// A⊗A⊗A //// A⊗A // A 1oo

in which the non-degenerate morphisms are given by the multiplication in A
and the degeneracies by inserting units.

By applying Proposition 2.76, π∗2 has a left adjoint, i.e. a relative (operadic)

left Kan existension π
(Sop)
2,! as soon as C is L-admissible. However, we do not

want to assume the commutation of ⊗ with any colimits, and this is also too
general, because we did not discuss augmentations so far20. Notice that it is not

reasonable to expect that π∗2 has a relative left Kan existension π
(Sop)
2,! that is

computed fiber-wise (i.e. here compatible with the forgetful functors forgetting
the coalgebra structure, i.e. given as the colimit of the underlying diagram of
shape ∆op

act). By Corollary 2.69 (cf. also Remark 2.71), a sufficient criterion
would be that ∗′ ∶ ∆op

act ×∆
op
act → ∆op

act is ∞-cofinal, which is not true. Notice
also that the colimit of the underlying diagram of shape ∆op

act would be just
evaluation at [1] because that is a final object in ∆op

act, and A does not carry a
coalgebra structure in general.

20We ignore whether it would make sense to consider this in the absence of augmentations.
It amounts probably to applying the augmented construction that we are about to discuss to
a freely (co)augmented (co)algebra.
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3.11. For the remaining part of the section we assume that C is a monoidal
∞-category admitting geometric realizations, and that in C the unit 1 is a final
object. Notice: This can always be achieved by considering augmented objects
in C (cf. [41, 5.2.3.9]). We do not assume any compatibility of ⊗ with geometric
realizations (no L-admissibility).

Theorem 3.12. 1. Under assumption 3.11

ρ∗ ∶ (C∨)(∆,∗)op → (C∨)(∆act,∗′)op

(cf. 4.12) is an isomorphism.

2. Furthermore, a fiber-wise relative left Kan extension

colim
∆op

∶ (C∨)(∆,∗)op → Coalg(C)

exists, and hence Lurie’s bar construction Bar = colim∆op ○(ρ∗)−1 ○ π̃∗1
exists.

Proof. 1. is Corollary 4.14. 2. follows from Corollary 2.69, because a) C∨ →
Sop is, as fibration of cooperads, automatically L-admissible (and geometric
realization is the only colimit needed) and b) by Lemma 4.8, (∆,∗)op → Oop

is an ∞-exponential fibration of cooperads (it is almost monoidal w.r.t. the
product ∗, i.e. a fibration of cooperads, but lacks counits) and the morphism is
∞-coCartesian (this amount to dec = ∗ ∶∆op ×∆op →∆op being ∞-cofinal).

Corollary 3.13 (Lurie [41, Theorem 5.2.2.17]). If C is a monoidal ∞-category
such that 1 is final and initial and which admits geometric realizations, and such
that Cop admits geometric realizations, then Lurie’s bar and cobar constructions
exist and form an adjunction

Alg(C)
Bar //

Coalg(C)
Cobar

oo

with Bar left adjoint.

3.14. Under assumption 3.11 Lurie’s Bar is thus given by the composition:

Alg(C)
bar=π̃∗1 // (C∨)(∆act,∗′)op (ρ

∗)−1 // (C∨)(∆,∗)op colim∆op // Coalg(C)

The composition (ρ∗)−1 ○ π̃∗1 maps an algebra A to a coalgebra in C∆op

of
the form (not depicting degeneracies):

⋯
//////// A⊗A

////// A
//// 1

in which the non-degenerate active morphisms are given by the multiplication in
A, the inert morphisms by the (canonical) augmentations, and the degeneracies
are given by inserting units. This will be discussed in more detail in Section 3.4.
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3.3 General classical cobar — existence

Theorem 3.15. Assume that C → S is an L-admissible cofibration of operads
(i.e. has cocomplete fibers and the push-forward functors respect colimits in each
variable separately) then for each small ∞-operad I and S ∈ SI , the classical bar
functor (Definition 3.5)

bar = π̃∗1 ∶ CIS → (C∨)
↓↑I
π∗2S

op

has a left adjoint cobar (classical cobar construction) given by the restriction of
the relative left Kan extension

π
(S)
3,! ∶ C

↓↑↓I,3−cocart
π∗3S

→ CIS .

The ∞-categories (C∨)↓↑Iπ∗2S
op and C

↓↑↓I,3−cocart
π∗3S

are canonically equivalent.

We stated the Theorem in its most simple form. It is easy to extract from
the proof, exactly which colimits need to exist and have to be preserved by the
push-forward functors.

Note that π3 ∶ ↓↑↓I → I is a cofibration and thus the Kan extension π
(S)
3,!

exists by Corollary 2.69 (assuming L-admissibility) and is computed fiber-wise.
For I = S = O, for instance, where there is only one fiber, is is given by a colimit
over ↓↑∆op

act which is essentially the category of necklaces (4.10). See Section 3.4
for a thorough discussion of classical cobar for I = S = O.

There is a morphism π̃1 ∶ (↓↑↓I, π∗3S) → (I, S) in Dia(S) (cf. 2.73) given by
the obvious diagram

↓↑↓I
π1 //

π∗3S   
⇓S(µ)

I

S��
S

Be aware that π1 is only a generalized morphism of ∞-operads (in the sense of
Definition 2.72). Nevertheless, π̃1 induces a pull-back functor

π̃1
∗ = S(µ)●π∗1 ∶ CIS → C

↓↑↓I
π∗3S

as explained in 2.74.

Lemma 3.16. We have a commutative diagram:

CIS

∼

��

π̃∗
1

))

π̃1
∗=S(µ)●π∗1 // C

↓↑↓I,3−cocart
π∗
3
S

∼

��
(C∨)↓↑I

π∗
2
Sop

∼

��

π̃∗
12

44

Homlax,inert,3−pseudo
(Cat×∞)

↓↑↓I (⋅, π∗3Ξ)

∼π∗234

��
Homlax,inert−pseudo

(Cat×∞)I
(⋅,Ξ) // Homoplax,inert−pseudo

(Cat×∞)
↑↓I (⋅, π∗2Ξ)

∼ // Homlax,inert,1,4−pseudo
(Cat×∞)

↑↓↑↓I (⋅, π∗4Ξ)
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where Ξ ∶ I → S → Cat∞ is the morphism classifying the pull-back of the cofi-
bration C → S via S, and where the lower horizontal morphisms are given by
Proposition 2.58 using the obvious isomorphism ↑↓(↑↓I) = ↑↓↑↓I. The dashed
morphism is defined by this diagram.

Proof. Follows from Propositions 2.54 and 2.58 examining the construction. For
the fact that π∗234 is an isomorphism use Lemma 2.50 and reason as in the proof
of Lemma 2.51.

Lemma 3.17. Let I be a small ∞-operad. Consider the ∞-coCartesian21 func-
tor

π13 ∶ ↓↑↓I → ↓↓I
of cofibrations over I (via π3). It has a transpose over Iop:

π∨13 ∶ (↓↑↓I)∨ → (↓↓I)∨

(which, by construction, can be identified with the functor of cooperads π13 ∶
↓↑↑I → ↓↑I).

1. The functor

C↓↓Iπ∗3S

π∗13 // C↓↑↓Iπ∗3S

has a left adjoint π
(π∗3S)
13,! (i.e. a relative left Kan extension).

2. An object E ∈ CKπ∗3S for either category K ∈ {↓↓I, ↓↑↓I} is 3-Cartesian22 if

and only if for all active α ∶ i′ → i in I

αC,●(ιi′)∗E → (α●,K)∗(ιi)∗E

is an isomorphism where ιi′ ∶Ki′ ↪K, resp. ιi ∶Ki ↪K are the inclusions
of the respective fibers.

3. The functor π∨13 is ∞-coCartesian (Definition 2.41) as well, i.e. for all
active α ∶ i′ → i in I

α●,↓↑↓I
tπ13 ≅ tπ13 α●,↓↓I .

Notice α●,↓↓I = α●↓↑I and similarly for ↓↑↓I.

4. The functor π
(π∗3S)
13,! preserves 3-coCartesian objects.

Proof. 1. follows from Corollary 2.69.
2. follows from the definitions.

21Because both are cofibrations this means just: it maps coCartesian to coCartesian mor-
phisms

22i.e. type-3 morphisms (choosing the same indexing in both categories) in K are mapped
to Cartesian morphisms
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3. Consider an active morphism α ∶ i→ i′ in I. The assertion is the statement
that the commutative diagram

↓↑I ×/I i
α●,↓↑↓I //

π13

��

↓↑I ×/I i′

π13

��
I ×/I i α●,↓↓I

// I ×/I i′
(26)

be exact. By Lemma 2.8, 4., this is the case, if for all objects i0 → i1 → i′ of
↑↓I ×/I i′ and objects i2 → i of I ×/I i the morphism

{i0 → i1 → i′} ×/↑↓(I×/I i′)
↑↓(I ×/I i) ×/(I×/I i) {i2 → i}→ HomI×I i′(i0 → i′, i2 → i′)

is an equivalence after forming groupoids. The left hand side is a category of
diagrams in I of the form

i0 // x //

��

y

��

// i1

��
i2 // i // i′

contravariant in x and covariant in y. There is chain of adjunctions to the
category of diagrams of the form

i0 i0

��

i0

��

// i1

��
i2 // i // i′

which is equivalent to HomI×/I i′(i0 → i′, i2 → i′). Therefore the diagram (26) is
exact.

4. Let E be a 3-coCartesian object. Using 2., we have to prove that

αC,●(ιi′)∗π13,!E → (α●,K)∗(ιi)∗π13,!E

is an isomorphism. Since π13,! is computed fiber-wise (w.r.t. π3) this is the same
as

αC,●π13,!(ιi′)∗E → (α●,K)∗π13,!(ιi)∗E .
Examining the proof of Proposition 2.68 we have a commutative diagram:

αC,●π13,!(ιi′)∗E // (α●,K)∗π13,!(ιi)∗E

π13,!αC,●(ιi′)∗E //

OO

π13,!(α●,K)∗(ιi)∗E

OO
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where the lower morphism is π13,! applied to the isomorphism expressing the 3-
coCartesianity of E and the vertical maps are the obvious mates. The left hand
side morphism is an isomorphism because of the L-admissibility of C and the

right hand side is an isomorphism by 3. Therefore π
(π∗3S)
13,! E is 3-coCartesian.

Proof of Theorem 3.15. By Lemma 3.16 the functor bar = π̃∗1 is isomorphic to
the functor

CIS
π̃1
∗=S(µ)●π∗1 // C

↓↑↓I,3−cocart
π∗3S

.

It is not reasonable to expect that π̃1
∗ has a relative left Kan extension on all of

C↓↑↓Iπ∗3X
(notice that π̃1 is not of diagram type). In the statement of the Theorem

it is claimed that the relative left Kan extension π
(S)
3,! is left adjoint to π̃1

∗ when
restricted to the full subcategory of 3-coCartesian objects.

Observe that the functor in question factors:

CIS
π̃1
∗=S(µ)●π∗1 // C↓↓Iπ∗3S

π∗13 // C↓↑↓Iπ∗3S

where we have numbered the indices in ↓↓I and ↓↑↓I in a coherent way. The left
functor is an equivalence onto the subcategory of 3-coCartesian objects of the
category in the middle and π̃1

∗π3,! = π̃1∗δ∗ = π∗1δ∗ is, in fact, a right coCartesian
projector, or in other words, π3,! is a right adjoint to the fully-faithful inclusion

π̃1
∗. The relative left Kan extension π

(π∗3S)
13,! exists and is computed fiber-wise

over π3 by Lemma 3.17, 1. It thus suffices to see that π
(π∗3S)
13,! preserves the

condition of being 3-coCartesian. This is Lemma 3.17, 4.

3.4 Classical cobar for coalgebras

In this section, we discuss the classical cobar construction (Definition 3.5) as-
sociated with the operad O for arbitrary monoidal (∞-)categories, i.e. letting
(C,⊗)→ O a monoidal (∞-)category (considered as cofibration of operads) and
I ∶= O and S ∶= id in the abstract setting (3.1).

Assume that C is countably cocomplete and such that ⊗ commutes with
countable colimits. Assume also that C is finitely complete, and such ⊗ com-
mutes with dec∗ (in the Abelian 1-categorical case this means only that ⊗ has
to commute with finite products which we always assume anyway).

Recall the abstract classical (co)bar adjunction:

((C,⊗)∨)↓↑O
cobar // (C,⊗)O.? _

bar
oo

We will always apply cobar to an object in the image of ρ∗:

((C,⊗)∨)(∆,∗)op ρ∗ // ((C,⊗)∨)↓↑O

(cf. 4.16 and 4.12).
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3.18. The source of ρ∗ is just Coalg(C∆op

, ⊗̃) under suitable R-admissibility.
If C is an Abelian 1-category, an object in Coalg(C∆op

, ⊗̃) is thus a coalgebra
in non-negatively graded complexes (a dg-coalgebra) w.r.t. to the usual tensor
product of complexes. In ((C,⊗)∨)(∆,∗)op it translates to an object A ∈ C∆op

with comultiplication and counit

µn,m ∶ A[n]∗[m] → A[n] ⊗A[m] A[n] → 1

in such a way that

A[n]∗′[m]
scan //

����

A[n]∗[m]
µn,m // A[n] ⊗A[m]

����
An+m mn,m

// An ⊗Am

is commutative, where in the bottom row, mn,m is the component of the comul-
tiplication in the complexes viewpoint (cf. Proposition 5.39).

Back in the general case, pulling back under the morphism ρ ∶ ↓↑O = (∆op
act,∗′)→

(∆,∗)op, we get an object ρ∗A in ((C,⊗)∨)↓↑O, i.e. the same A[n] with structure
maps

µ′n,m ∶ A[n]∗′[m] → A[n] ⊗A[m] A[0] → 1

which are nothing else then the composition with the canonical degeneracy
(considered before in the Abelian case) and the counit is the corresponding
restriction to A[0]. If 1 is final in D, Lemma 4.13 below implies, that A can be
recovered from ρ∗A.

To compute cobarρ∗A using Theorem 3.15, we have to identify

((C,⊗)∨)
↓↑O ≅ (C,⊗)

↓↑↓O,3−cocart

and then take the relative Kan extension π3,!. See 4.10 below for a more
thorough discussion of ↓↑↓O which is essentially the category of necklaces cf.
[7, 20, 50].

Since π3 is a cofibration this is computed fiber-wise (Corollary 2.69) and thus

its underlying object in C is given by a colimit over the category C↓↑↓O[1] = C
↓↑∆op

act .

ρ∗A corresponds to the following object B ∈ C↓↑∆op
act ∶ Active morphisms are

mapped
[n]← [m] ↦ A[n1] ⊗⋯⊗A[nm]

where [n] = [n1] ∗′ ⋯ ∗′ [nm] is the induced decomposition of [n] (which cor-
responds to taking fibers identifying ∆op

act ≅ ∆∅ via Lemma 4.9). A type-1
morphism

[n] oo
OO

[m]

[n′] oo [m]
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maps to the factor-wise structure morphism

A[n1] ⊗⋯⊗A[nm] → A[n′1] ⊗⋯⊗A[n′m]

while a type-2 morphism corresponds to applying the structure morphism of the
algebra, for instance

[n1] ∗′ [n2] oo [1]

δ1

��
[n1] ∗′ [n2] oo [2]

maps to the component of the comultiplication:

µ′n1,n2
∶ A[n1] ⊗A[n2] → A[n1]∗′[n2].

3.19. The colimit over ↓↑∆op
act can be computed using the observation 2.11. If

C is a 1-category then this colimit is very simple: In 2.11 it suffices to restrict
to the cokernel of the last two maps and we may restrict to a generating set of
morphisms and get:

cobarρ∗A = colim(
∐A[1]⊗⋯×A[2]⊗⋯⊗A[1]

∐
∐A[1]⊗⋯×A[0]⊗⋯⊗A[1]

⇉
∞
∐
n=0

A⊗n[1]) (27)

where the two morphisms are induced by

A[2] → A[1] ⊗A[1]

(comultiplication) and by
A(δ1) ∶ A[2] → A[1]

resp.
A[0] → 1

(counit) and
A(s0) ∶ A[0] → A[1].

In Chapter 6 this colimit is computed explicitly for a number of mostly
1-categorical examples.

3.5 Functoriality of (co)bar — non-connected (co)bar

3.20. Let C → S, D → S be cofibrations of ∞-operads and R ∶ C → D be a
functor of ∞-operads over S. Assume that R has a fiber-wise left adjoint. Then
those assemble to a functor of fibrations

Q ∶ D∨ → C∨

over Sop. For S ∈ SI , we get functors

R ∶ CIS → DI
S Q ∶ (D∨)I

op

Sop → (C∨)I
op

Sop
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which are — in terms of the classifying functors ΞC ,ΞD ∶ I → S → (Cat∞,×)
given by composition with R ∶ ΞC ⇒ ΞD which is a lax morphism:

Homlax,inert−pseudo
(Cat×∞)I

(⋅,ΞC)→ Homlax,inert−pseudo
(Cat×∞)I

(⋅,ΞD)

and gives via composition with Q ∶ ΞD ⇒ ΞC (its mate), which is an oplax
morphism, a morphism

Homoplax,inert−pseudo
(Cat×∞)I

(⋅,ΞD)→ Homoplax,inert−pseudo
(Cat×∞)I

(⋅,ΞC).

3.21. In this situation we can refine the (co)bar diagrams:

(Q ⊣ R)↓↑
ρ1

{{

ρ2

%%
D

$$

(C∨)op

xxS

(28)

where (Q ⊣ R)↓↑ is classified by the functor

S → Cat∞

S ↦ XS

where XS is the pairing defined by the adjunction QS ⊣ RS , i.e. classified by

Dop
S × CS → Cat∞

D,C ↦ Hom(Q(D),C) ≅ Hom(D,R(C))

For each small ∞-operad I and S ∈ SI this gives rise to a diagram

((Q ⊣ R)↓↑)IS
ρ1

yy

ρ2

''
DI

S ((C∨)Iop

Sop)op
(29)

3.22. For S ∈ SI , there are two natural diagrams

(D∨)↓↑Iπ∗2S
op

>>
π̃∗1

Q // (C∨)↓↑Iπ∗2S
op

dd
π∗2

DI
S ((C∨)Iop

Sop)op

D↑↓IΠ∗2SBB
Π∗2

C↑↓IΠ∗2S
Roo

bb
Π̃∗1

DI
S ((C∨)Iop

Sop)op

(30)
We have then similarly:
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Proposition 3.23. The pairing (29) is isomorphic to the pairing defined by the
two (isomorphic) groupoid valued functors

(DI
S)op × (C∨)I

op

Sop → Gpd∞

(D,C)↦ Hom(C∨)↓↑I
π∗
2
Sop
(Qπ̃∗1D,π∗2C) ≅ HomC↑↓I

π∗
2
S

(Π∗2D,R Π̃∗1C).

The proof is omitted for the moment.

Definition 3.24. We call

BarQ ∶= π(S
op)

2,! ○Q ○ π̃∗1 CobarR ∶= Π(S)2,! ○R ○ Π̃∗1

the derived (co)bar constructions w.r.t. the adjunction Q ⊣ R, when the respec-
tive Kan extensions exist.

As before, the Proposition shows that if BarQ and CobarR exist, then the
pairing (29) is left and right representable with those functors associated.

For the special case I = S = O one can deduce exactly as in Corollary 3.13:

Corollary 3.25. If D is a monoidal ∞-category such that 1 is final and which
admits geometric realizations, and If C is a monoidal ∞-category such that 1 is
initial and such that Cop admits geometric realizations, then the derived bar and
cobar constructions w.r.t. the adjunction Q ⊣ R exist and form an adjunction

Alg(D)
BarQ //

Coalg(C)
CobarR

oo

with BarQ left adjoint.

Notice that, if Q preserves the monoidal product (not only laxly), then
π̃∗1 ○Q ≅ Q ○ π̃∗1 and thus BarQ = Bar ○Q and we gain nothing new.

Example 3.26 (Non-connected (co)bar). Let C be a monoidal ∞-category such
that 1 is final (but not necessarily initial) and let X ∈ Coalg(C) be a coalgebra.
Consider the following adjunction between monoidal ∞-categories:

BimodX(C)X/
Q // CX/
R
oo

Here BimodX(C) is equipped with the monoidal product −⊗X − described in [41,
4.4.2], cf. [41, Proposition 4.4.3.12], and unit X (considered as X-bimodule) and
BimodX(C)X/ is, as undercategory under the unit, monoidal itself. However,
also the undercategory CX/ is monoidal because X is a coalgebra (two morphisms
X → Y1 and X → Y2 are mapped to the composition X → X ⊗ X → Y1 ⊗
Y2). Q is the forgetful functor which forgets the bimodule structure but keeps
the coaugmentation. R is the free-bialgebra functor [41, Proposition 4.3.3.12]
transferring the coaugmentation by means of the adjunction

HomBimodX
(X,RY ) ≅ HomC(QX,Y )
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where X is considered as bimodule over itself (= unit in BimodX).
Then X is initial in BimodX(C)X/ and X → 1 is final in CX/, hence if Cop

has geometric realizations and BimodX(C)X/ has geometric realizations (it has
by the dual of [41, 4.3.3.9] as soon as C has) then we have a derived (co)bar
adjunction

Alg(BimodX(C)X/)
BarQ //

Coalg(CX/)
CobarR

oo

Definition 3.27. We call Alg(BimodX(C)X/) = Alg(BimodX(C)) the category
of category objects of C with objects X in this case23.

See Section 3.6 for the Cartesian case, explaining the notion.
We proceed to discuss a functoriality of the classical (co)bar which will be

important for comparisons between different such construction (Section 6.10).

Proposition 3.28. There is an adjunction

cobar ○Q ⊣ bar ○R

which is to say there are morphisms

Q ○ bar ○R → bar cobar→ R ○ cobar ○Q

satisfying suitable compatibilities.

Proof (sketch). We have for the fibers

CIS ≅ (C∨)
↓↑I,2−cocart
π∗2S

op

the identification being given by the composition:

CIS

∼
��

(C∨)
↓↑I,2−cocart
π∗2S

op

∼
��

Homlax
(Cat×∞)I (⋅,Ξ)

∼ // Homoplax,inert−pseudo,2−pseudo
(Cat×∞)

↑↓I (⋅, π∗2Ξ)

and similarly dually. There is a commutative diagram where the natural trans-
formation is given (essentially) by the units of the point-wise adjunction.

Homlax
(Cat×∞)I (⋅,ΞD)

//

R

��
⇑

Homoplax,inert−pseudo
(Cat×∞)

↑↓I (⋅, π∗2ΞD)

Homlax
(Cat×∞)I (⋅,ΞC)

// Homoplax,inert−pseudo
(Cat×∞)

↑↓I (⋅, π∗2ΞC)

Q

OO

23I just became aware of the articles [39, 44] which contain related theory.
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and similarly with (op)lax exchanged.
This defines the 2-morpisms in the following diagrams

CIS

⇑R

��

(C∨)↓↑Iπ∗2S
op

//π̃∗1

DI
S (D∨)↓↑Iπ∗2S

op
//

π̃∗1

Q

OO

and

(C∨)↓↑Iπ∗2S
op

π̃∗12 //

⇑

C↓↑↓Iπ∗3S

π
(S)
3,! //

R

��
⇑

CIS

R

��
(D∨)↓↑Mπ∗2S

op
π̃∗12

//

Q

OO

D↓↑↓Iπ∗3S π
(S)
3,!

// DI
S

with the morphism π̃∗12 from Lemma 3.16. The proof that these two 2-morphisms
yield an adjunction is omitted for the moment.

3.6 Classical and derived (co)bar in the Cartesian case

We consider again the classical and derived (co)bar for I = S = O in which case
(C,⊗)→ O is just a monoidal ∞-category. We investigate the Cartesian case in
this section, i.e. ⊗ = ×.

Recall that if (C,×) is a Cartesian monoidal ∞-category then we have

Alg(C,×) ≅Mon(C), Coalg(C,×) ≅ C.

We will consider the non-connected case (cf. 3.26) right away. The connected
case can be obtained as the special case X = ⋅. Let X be an object of C which
we can see as “coalgebra” in this case. BimodX(C) is, in this case, nothing but

C/X×X

with product M1,M2 ↦ M1 ×pr2,X,pr1 M2. Objects in Alg(BimodX(C)X/) =
Alg(BimodX(C)) are thus category objects in C in the usual sense with ob-
jects X. In the adjunction

BimodX(C)X/
Q // CX/
R
oo

the functor Q is given by forgetting the morphismM →X×X (but remembering
the unit = coaugmentation) and R associates with X → Y the “free bimodule”
X × Y ×X with obvious augmentation X →X × Y ×X.
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Proposition 3.29. We have for X → Y in the category CX/

CobarR(X → Y ) =X ×Y X

with product given by the canonical “concatenation” operation:

(X ×Y X) ×X (X ×Y X) ≅X ×Y X ×Y X →X ×Y X.

In particular, for X = ⋅, we obtain the functor L (loop space).
Consider the morphism ρ ∶ ∆ ≅ ∆op

act ⊂ ∆op (cf. 4.12). Considering [n] as
discrete category {0, . . . , n}, ρop gives rise to a fibration p ∶ ∆ → ∆ with fiber
over [n] being {0, . . . , n + 1}. There is a morphism

ξ ∶∆→ ⌟

mapping fiberwise 0 to (0,1), n + 1 to (1,0) and everything else to (1,1).

Lemma 3.30. The morphism ξ is ∞-final.

Proof (Sketch) of Proposition 3.29. Consider the non-connected cobar diagram
(3.22) in this case:

(CX/,×)(∆act,∗′) R // (BimodX(C)X/,×X)(∆act,∗′)

CX/ ≅ Coalg(CX/,×)

bar∨

OO

Alg(BimodX(C)X/,×X)

OO

where bar∨ is the dual classical bar construction or, in other words the functor
Π̃∗2 from Definition 3.7. In the monoidal ∞-category BimodX(C)X/, we have
(dual of Corollary 4.14) because the unit X is initial:

ρ∗ ∶ (BimodX(C)X/)(∆,∗) ≅ (BimodX(C)X/)(∆act,∗′)

and we have by construction of bar∨ — for the underlying objects

(ρ∗)−1 ○R ○ bar∨(X → Y ) = p∗ξ∗
⎛
⎜⎜⎜
⎝

X

��
X // Y

⎞
⎟⎟⎟
⎠

(note that p is a discrete fibration and thus p∗ξ
∗ computes fiber-wise the product

X × Y n ×X) and therefore

CobarR(X → Y ) = lim
∆
○(ρ∗)−1 ○R ○ bar∨(X → Y )

≅ lim
∆
p∗ξ

∗
⎛
⎜⎜⎜
⎝

X

��
X // Y

⎞
⎟⎟⎟
⎠
≅ lim
⌟

⎛
⎜⎜⎜
⎝

X

��
X // Y

⎞
⎟⎟⎟
⎠
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(Lemma 3.30) or in other words:

CobarR(X → Y ) =X ×Y X
and a bit more refined argument shows that the induced algebra structure is as
claimed.

3.31. Let A ∈ Alg(BimodX(C)X/,×X). Then bar(A) is a coalgebra B of shape
∆op

act of the form

⋯ ////// A ×X A ×X A // // A ×X A // A Xoo (31)

where the morphisms are the structure morphisms of the algebra with canonical
coalgebra structure

B[i+j] ≅ B[i] ×X B[j].

Then apply the forgetful functor Q and then (ρ∗)−1 (in CX/ the unit becomes
final!) to get a simplicial diagram (with redundant coalgebra structure by the
trivial Eilenberg-Zilber Theorem 4.70)

⋯
//
//
//
////// A ×X A ×X A // //

//
// A ×X A ////// A

//
// X.oo

This is a simplicial diagram in CX/, not in Alg(BimodX(C))! Examining the
definitions, one can easily determine the morphisms. For instance, the two
morphisms A → X are given by the left and right comodule structure, i.e. by
the given morphism A→X×X (which are not bimodule morphisms themselves,
for instance). BarQ(A) is then the colimit over this diagram.

Remark 3.32. If C = Gpd∞ and for X = ⋅, we have 1 ×Y 1 = HomY (1,1),
where 1 ∈ Y denotes the distinguished object given by the coaugmentation with
the product given by composition.

Corollary 3.33 (Connected case, cf. also [41, Corollary 5.2.2.13]). There are
adjunctions

C

Σ

((F //
Mon(C)oo

Bar // C
Cobar

oo

L

hh

where Σ ∶ X ↦ 1 ∐X 1 is the suspension, i.e. the left adjoint of L ∶ X ↦ 1 ×X 1,
and F is the free monoid functor.

Of course dual statements are true for a coCartesian monoidal ∞-category
(C,∐), i.e. where ∐ is the coproduct.

3.34. Consider the diagram

((BimodX(C)X/,×X)∨)
↓↑O

Q

��
((C/X ,×)∨)

↓↑O ((C/X ,×)∨)(∆,∗)opρ∗

∼
oo ∼ // Coalg(C∆op

/X ,×) ∼ // C∆op

/X
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where the middle equivalence is given by the trivial Eilenberg-Zilber Theo-
rem 4.70. Unraveling the definitions, we see that the composition induces an
isomorphism:

((BimodX(C)X/,×X)∨)
↓↑O,2−cart ≅ (C∆

op

X/ )Segal,0
where the index “0” means the full subcategory in which X → Y[0] is an iso-
morphism and where “Segal” means the full subcategory of the Y satisfying the
Segal condition, that is, the induced morphism

Y[n+m] → Y[n] ×Y[0] Y[m]
is an isomorphism for all morphisms [n +m] = [n] ∗′ [m] → [n] ∗ [m] given by
the canonical degeneracy. In particular Y[n] ≅ Y[1] ×Y[0] ⋯×Y[0] Y[1]. Notice that

((Bimod(C)X/,×X)∨)
↓↑O,2−cart is precisely the image of the (fully faithful) clas-

sical bar construction in this case and thus isomorphic to Alg(Bimod(C)X/,×X)
(category objects). In the connected case, this implies:

Proposition 3.35. The connected (i.e. for X = ⋅) classical (co)bar adjunction
has the following form in the Cartesian case:

Mon(C⋅/)
bar
∼

// (C∆op

⋅/ )Segal,0
� � // C∆op

⋅/

cobar

jj

Note that the left adjoint “cobar” exists by Theorem 3.15, if C has geometric
realizations and × commutes with them in each variable, which is true in any
∞-topos, for example. The Proposition is a special case of results of [7] (see
also [32]).

Proposition 3.36. Via the identification Q ○ (ρ∗)−1 ○ bar of category objects
with Segal objects, we have for X → Y ∈ CX/

CobarR(X → Y ) ≅ Čech nerve of X → Y

and if C is an ∞-topos (e.g. C = Gpd∞), the restriction of the derived (co)bar
adjunction is an isomorphism

(C∆op

X/ )Gpd,0

BarQ

∼
// (CX/)(−1)−conn

CobarR

oo

where Gpd indicates the full subcategory of (C∆op

X/ )Segal,0 of groupoid objects24

and where (CX/)(−1)−conn is the full subcategory of morphisms X → Y which are
(−1)-connected.
Proof. The first part is clear from Proposition 3.29 and the definitions. The
fully-faithfulness of BarQ on groupoid objects is thus actually part of the axioms
of an ∞-topos. The characterization of the essential image is in [40, Proposi-
iton 6.2.3.15]).

24meaning, in the picture above, that, in addition to the Segal condition, Y[n+m] → Y[n]×Y[0]
Y[m] is an isomorphism induced by any partition of [n +m] sharing one vertex.
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3.7 Using cobar to construct Kan extensions — e.g. the
cofree coalgebra

In Section 2.11 an idea to construct relative (operadic) Kan extensions has been
discussed, even in situations which are not L- resp. R-admissible. This leads
precisely to the (dual) classical cobar construction discussed in this chapter and
is included as an illustration. It is otherwise not related to the main aims of
these lectures.

We will prove the following classical theorem using (the dual) cobar, not-
ing that this method to construct problematic relative Kan extensions can be
applied in far greater generality.

Theorem 3.37. Let (C,⊗) be an Abelian tensor category. Assume

1. ⊗ is exact;

2. the mate
(∏
i∈N
Xi)⊗ Y →∏

i∈N
(Xi ⊗ Y )

is a monomorphism;

3. ⊗ commutes with countable intersections.

Then the forgetful functor

Coalg(C,⊗)→ C

has a right adjoint (cofree coalgebra functor).

Proof. Denote c ∶ ⋅ ↪ Oop. As in the proof of Proposition 2.76 we have an
adjunction in the 2-category Diaop(Oop)

(Oop ×/Oop ⋅, π1)
π̃2=(π2,S(µ)) // (⋅, c)

(ι,id)
oo

and an isomorphism

c∗ ≅ π1,∗ ι(π1)
∗

in the strong sense that the existence of the RHS adjoints implies the existence
of the LHS. By the adjunction, we see that

ι
(π1)
∗ = S(µ)●π∗2 .

We have Oop ×/Oop ⋅ ≅ (N0,+)∨ as discrete cooperad and X ′ ∶= S(µ)●π∗2X is the
object

X ′n =X⊗n

with the coalgebra structure given by the isomorphisms

X ′i+j ≅X ′i ⊗X ′j X ′0 ≅ 1.
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A right relative (or operadic) Kan extension π1,∗ exists in general only if ⊗
commutes with infinite products. However, in 2.11 we saw that it suffices to
construct a (dual) cobar functor for the object X ′ pulled back to (↑↓O) ×Oop

(N0,+)∨ and then right Kan extended along the fibration (!) of operads

(↑↓O) ×Oop (N0,+)∨ → ↑↓O.

By the dual of Theorem 3.15, we have (C,⊗)↑↓O = ((C,⊗)∨)↑↓↑O,3−cart, and
the dual cobar is given by the Kan extension π3,∗ which is computed fiber-wise,

i.e. as limit over ((C,⊗)∨)↑↓↑O[1] ≅ C
↑↓∆op

act , if ⊗ commutes with the relevant limits.
We will argue that the same colimit works in this case as well without that

hypothesis. The corresponding object X ′′′ ∈ C↑↓∆op
act is the following:

([n1] ∗′ ⋯∗′ [nm]← [m]) ↦ X ′′[n1] ⊗⋯⊗X
′′
[nm]

(the [n1] ∗′ ⋯∗′ [nm] is the induced decomposition, cf. 4.10) with

X ′′[n] = ∏
k1,⋯,kn

X⊗k1 ⊗⋯⊗X⊗kn .

Thus the dual of the cobar formula (3.19) would give

cobar∨X ′ = lim(
∞
∐
n=0
(X ′′[1])⊗n ⇉

∏X′′[1]⊗⋯×X
′′
[2]⊗⋯⊗X

′′
[1]

∐
∐X′′[1]⊗⋯×X

′′
[0]⊗⋯⊗X

′′
[1]
) (32)

From 2. follows that the object X ′′′ has the property that type-2 morphisms go
to monomorphisms. Hence (32) is essentially a countable intersection.

The general existence Theorem 3.15 (better: its dual) cannot be applied as it
stands because ⊗ does not commute with limits (here countable products would
be sufficient, which we do not want to assume either). Examining the proof, we
see that this is used at two places:

1. to construct the Kan extension along π3 ∶ ↑↓↑O → Oop. However the relevant
objectX ′′′ has the property that type-2 morphisms go to monomorphisms.
To have a fiber-wise Kan extension the limit over the fiber must commute
with ⊗. This is Lemma 3.38, 2.

2. to see that the (fiber-wise for π3) Kan extension π1,∗ ∶ ↑↓∆op
act → ∆act

commutes with ⊗. This is Lemma 3.38, 1.

Lemma 3.38. Let (C,⊗) be an Abelian tensor category with ⊗ exact and com-

muting with countable intersections. If E ∈ Ab
↑↓∆op

act maps type-2 morphisms to
monomorphisms then

1. the Kan extension E ↦ π1,∗E ∈ Ab∆act commutes with −⊗X for any X ∈ C,

2. the limit E ↦ limE commutes with − ⊗X for any X ∈ C.

Proof. Exercise.
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Remark 3.39. In [4], for instance, it is shown for a large class of Abelian
tensor categories that, in fact, already

cobar∨X ′′′ = lim

⎛
⎜⎜⎜⎜⎜
⎝

X ′′[1]

��
X ′′[1] ⊗X ′′[1]

� � // X ′′[2]

⎞
⎟⎟⎟⎟⎟
⎠

.

4 Non-Abelian foundations

This chapter discusses basic properties of simplicial sets and simplicial objects
in categories culminating in the non-Abelian Eilenberg-Zilber Theorem 4.65. It
deals almost exclusively with 1-categories. Some facts from Sections 4.1–4.2
have already been used in Chapter 3.

4.1 The simplex category

4.1. Recall from 2.20 the definition of the simplex category, the notions of
active and inert morphism, and the definition of the concatenation products ∗
and ∗′.

4.2. Let C be a Barr-exact category ([8], we will here only be interested in
Set● and Abelian categories), and let X ∈ C∆op

. Then there is a filtration by
subobjects

F 0X[n] ⊂ ⋯ ⊂ FnX[n] =X[n]
such that each F kX[n] is the smallest subobject over which all X(ν) for degen-
eracies ν ∶ [m]→ [n] with m ≤ k factor. We define

Xnd
[n] ∶=X[n]/Fn−1X[n].

the quotient of non-degenerate elements. In fact, the F kX[n] assemble to

simplicial objects F kX themselves and are called the skeletal filtration.
For any n and k, consider a subset S ⊂ {s ∶ [k]↞ [n]} of the degeneracies.

Since each such degeneracy can be written uniquely as s = si1⋯sin−k with i1 <
i2 < ⋯ < in−k, the lexicographic ordering of the ij defines a total ordering on S.

Lemma 4.3. Fix integers m and n. For each subset S ⊂ {s ∶ [m] ↞ [n]} of
degeneracies, there is a face morphism D ∶ [n] ↩ [m] such that Ds = id for
s ∈ S precisely if s is the smallest element of S.

Proof. Let si be the smallest degeneracy occurring as a left-most factor of s ∈ S
and decompose

S = smS′ ∪ S′′

where S′ is a set of degeneracies [m + 1]↞ [n] and S′′ is a set of degeneracies
in which only sj for j > i occur. By induction, there is a face D′ ∶ [n]↩ [m+ 1]
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which is a section of the first element of S′ and not of any other. Then D ∶=D′di
does the job, because D′disis = D′s = id precisely for the first element of s ∈ S′
and not for any other, while D′disj1⋯sjms = D′sj1−1⋯sjm−1di for jk > i cannot
be the identity.

4.4. The Lemma is usually stated in a weaker form saying “the set of sections
of a degeneracy s ∶ [m] ↞ [n] is non-empty and determines s”. This follows
obviously from the previous Lemma, because it shows non-emptyness for #S = 1,
and, for #S = 2, that for each pair of degeneracies there is a section of the first
which is not a section of the second.

Lemma 4.5 (Eilenberg-Zilber). If C is Barr-exact and has a zero object (we
will be interested in Set● and Abelian Categories only), then

griXn ≅ ∐
s∶[m]↞[n]

Xnd
m (33)

where the coproduct runs over all degeneracies.

Proof. We will show this for C Abelian (by suitably embedding a suitable small
subcategory of C, this actually suffices, but we won’t discuss the technical de-
tails). Consider the morphism

⊕
s∶[m]↞[n]

Xnd
m → FmXn/Fm−1Xn.

It is an epimorphism by definition of the filtration, so we have to see that it is
a monomorphism. Let K be the kernel. If it is non-trivial, consider a minimal
subset S ⊂ {s ∶ [m]↞ [n]} with the property that

K ⊂⊕
s∈S

Xnd
m .

By the Lemma, there is D such that Ds = id precisely for the smallest s ∈ S.
All other Ds factor thus through a degeneracy and hence the composition with
D

⊕
s∈S

Xnd
m → FmXn/Fm−1Xn →Xnd

m

maps the first (w.r.t. the lexicographic ordering) Xnd
m isomorphically to Xnd

m

and all others to zero25. Thus

K ⊂ ⊕
s′∈S∖{s}

Xnd
m

in contradiction to the minimality. This shows that K is trivial.

Let X ∈ Set∆
op

be a simplicial set. Applied to C ∶= Set●, the category of
pointed sets, and X●, the statement of Lemma 4.5 translates to

Xn =∐
m

FmXn ∖ Fm−1Xn ≅ ∐
[m]→[n]

Xm ∖ Fm−1Xm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Xnd
m

,

25Note that D must map F i−1Xn to F i−1Xm and hence the morphism is well-defined.
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i.e. that every element in Xn is in the image of the non-degenerate elements of
Xm for a unique degeneracy [m]↞ [n]. (This follows even more directly from
the weaker form 4.4 of Lemma 4.3.)

The properties discussed here are shared by other diagrams than ∆op as well.
These are condensed, for example, in the notions of elegant Reedy category
and Eilenberg-Zilber category [12, 13].

4.2 Some basic (co)operads

This section discusses the following zoo of very basic (∞-exponential) operads
over O:

(FinSet∅,∐)OO

i

(∆∅,∐)

ιδ

88

OO

i

(∆∅,∗) = ↓↓O

ιdec

hh

OO

i

forget
oo (∆op

∅ ,∗) = ↑↓O

ρop

~~

(FinSet,∐)

(∆,∐)

ιδ

77

(∆,∗)

ιdec

hh

AWop=forget
oo

(34)

These operads (or their opposites) will occur in various related and unrelated
places, most notably:

1. The cooperad (∆,∗)op describes the canonical simplicial enrichment on
simplicial objects in a category C in a different way, which is very conve-
nient to construct homotopies. See, in particular, Proposition 4.25.

2. The cooperads (∆,∗)op and (∆,∐)op give, via Day convolution, rise to the
two different tensor products ⊗ (point-wise for simplicial objects) and ⊗̃
(usual tensor product of complexes) on simplicial objects = non-negatively
graded complexes in Abelian categories (cf. 4.16). The forgetful map gives
rise to the Alexander-Whitney map. In fact, the diagram above extends
(cf. Theorem 5.15) in the case of Ab-enriched operads so as to include a
model of the Eilenberg-Zilber map as well.

3. The morphism ρop can be described by generators and relations (cf. Lemma 4.13)
and plays an important role in the (co)bar construction (cf. Theorem 3.12),
more precisely, it takes care of the augmentation.

4. The product in (∆,∗)op, also denoted dec (decalage), connects (via pull-
back dec∗) the classical cobar construction (Definition 3.5) with the geo-
metric cobar construction (or Kan’s loop group), and Adams cobar con-
struction, respectively. Dually, its adjoint dec∗ (Artin-Mazur codiagonal,
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or total complex in the Abelian case) connects the classical bar construc-
tion with the classifying space, and Eilenberg-MacLane bar construction,
respectively.

4.6. In the diagram (34) the i’s are ∞-Cartesian (for the right hand side i
this is Lemma 4.8, for the others it is trivial), the ιδ’s are ∞-Cartesian, and the
ιdec’s are 1-coCartesian (for the upper trivial, it is even ∞-coCartesian, while
for the lower, it boils down to the 1-finality of ιop, Lemma A.6.)

4.7. Consider the category FinSet∅ of finite sets. It is monoidal w.r.t. to the
coproduct ∐ giving rise to an operad

(FinSet∅,∐).

Since ∐ ∶ FinSet∅ ×FinSet∅ → FinSet∅ has the right adjoint δ ∶ FinSet∅ →
FinSet∅ ×FinSet∅ the morphism

(FinSet∅,∐)→ O

is thus a fibration and cofibration of operads. On ∆∅ (totally ordered finite sets)
there is the concatenation product ∗ (obtained from ∐ by choosing one of the
two canonical total orderings) which is not symmetric anymore. ∆∅ can also be
turned into an operad (∆∅,∐) setting Hom(x, y; z) = Hom(x, z) × Hom(y, z).
This operad is not monoidal, of course, because ∆∅ does not have a coproduct,
but

(∆∅,∐)→ O
is also a fibration of operads. There are two morphisms of operads:

ιδ ∶ (∆∅,∐)→ (FinSet∅,∐)

which is a morphism of fibrations (i.e. maps Cartesian (active) morphisms to
Cartesian morphisms) and

ιdec ∶ (∆∅,∗)→ (FinSet∅,∐)

which is a morphism of cofibrations (i.e. maps coCartesian (active) morphisms
to coCartesian morphisms).

The concatenation product ∗ restricts from ∆∅ to ∆, but the unit doesn’t.
However, (∆,∗) is still pro-monoidal (even in the ∞-categorical sense), or in
other words:

Lemma 4.8. The restriction

i ∶ (∆,∗)↪ (∆∅,∗)

is ∞-Cartesian and thus (cf. Lemma 2.45) (∆,∗) → O is an ∞-exponential
fibration of operads. Furthermore, the morphism (∆,∗)→ O is ∞-Cartesian.
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Proof. Let α ∶ [n] ← [m] ∈ ∆op
act be an active morphism. For the pull-back

pro-functors α● in (∆,∗), and α●∅ in (∆∅,∗), we have

α● = timα
●
∅in.

Since the latter is a cofibration, the α●∅ are of the form tβ. They are, in partic-
ular, determined by (δ1)●∅ = t dec∅ and (s0)●∅ = t[∅] where dec∅ = ∗ ∶∆∅×∆∅ →
∆∅ is the monoidal product and [∅] ∶ [∅]↪∆∅ is the embedding. dec∅ restricts
to a morphism dec ∶∆×∆→∆. Thus (δ1)● = tdec. Furthermore [∅] ∶ [∅]↪∆∅
has the right adjoint π∅ ∶ ∆∅ → ⋅ (because [∅] is initial). Therefore t[∅] = π∅.
This restricts to π ∶∆→ ⋅, i.e. (s0)● = π. i being ∞-Cartesian boils down to

i tdec∞ ≅ tdec i π ≅ π∅ i

The second is trivial, while the first is shown (dually) in Lemma A.5.
The ∞-Cartesianity of (∆,∗) → O is trivial over degeneracies (because lo-

cally Cartesian morphisms exist) while for ∗, it is the ∞-finality (cf. (dually)
Lemma A.3).

Dually, we obtain, that
(∆,∗)op → Oop

is an∞-exponential fibration of cooperads. Notice that (∆∅,∗)op = (∆op
∅ ,∗)∨ is

again the cooperad associated with a monoidal category, namely ∆op
∅ with the

dual structure. Restricting the operad (∆op
∅ ,∗) to ∆op though gives an operad,

which is somewhat unnatural, and is never considered.

Lemma 4.9 (Duality between (finite) ordered sets and intervals). There is an
equivalence of operads (or, equivalently, monoidal categories):

(∆op
act,∗′) ≅ (∆∅,∗)

given by26

[n]↦ Hom∆act([n], [1]) ≅ [n − 1]
[m]↦ Hom∆∅([m], [1]) ≅ [m + 1]

This equivalence exchanges face and degeneracy maps.

Proof. A combinatorial exercise.

4.10. Recall from Section 2.6 the notions of (twisted) arrow operads ↑↓I and
↓↓I for an operad I. For I = O those are, being cofibered over I, in particular
monoidal categories, and we have isomorphisms

↑↓O ≅ (∆act,∗′) ≅ (∆op
∅ ,∗) (35)

26The total ordering on Hom∆∅([n], [1]) is the natural one with minimal element the
constant morphism 0 and with maximal element the constant morphism 1. The one on
Hom∆act([n], [1]) is its restriction.
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and also
↓↓O ≅ (∆op

act,∗′) ≅ (∆∅,∗)
in such a way that (for the first isomorphism) a multi-morphism [n0], . . . , [nk]→
[m] in (∆act,∗′) corresponding to

[n0] ∗′ ⋯∗′ [nk]→ [m]

(using the arrow direction in ∆op) is mapped to

[n1] ∗′ ⋯∗′ [nk]OO
[m]//
OO

[k] oo [1]

with the obvious maps. In the other direction an active morphism in ↑↓O resp-
resented by a diagram

[x]
OO

[m]//
OO

[k] oo [1]

determines a decomposition of [x] into [x1] ∗′ ⋯ ∗′ [xk], and is mapped to the
corresponding multi-morphism [x1], . . . , [xk]→ [m] in (∆act,∗′).

The category (of operators) (↑↓O)act ≅ (↑↓∆act) ≅ ↑↓∆∅ is essentially the
category of necklaces, cf. [7, 20, 50]). It is itself monoidal, which can be
expressed easiest by saying that

↑↓↓O → O

(or dually ↓↑↓O) is cofibered, and hence the left hand side is monoidal and its
fiber over [1] is the category (↑↓O)act. The associated monoidal product is just
∗′ applied to source and destination of the morphism. All that was said can be
translated replacing (via Lemma 4.9) (∆op

act,∗′) by the perhaps more tractable
(∆∅,∗) everywhere. For instance, the process of associating to

[x − 1]← [k − 1]

a decomposition [x1 − 1], . . . , [xk − 1] is then just collecting preimages of the
morphism in ∆∅.

The functor

Ξ∅ ∶∆∅ → Cat

[n]↦ (∆op
∅ )n+1

classifying the operad (35) (as covariant functor) but composing into CatPF, it
is rather associated with the cooperad functor:

(∆∅,∗)op ≅ ↑↑O → Oop
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There is also the functor

Ξ ∶∆∅ → CatPF

[n]↦ (∆op)n+1

where the transitions are the dec and the tpr. It is associated with the cooperad
(∆,∗)op.

Lemma 4.11. All functors in the image of Ξ∅ are cofibrations with discrete
fibers.

Proof. They are of the form

(∆∅ ×/∆∅ [n])op → (∆∅ ×/∆∅ [m])op

given by composition with [n]→ [m].

4.12. Denote by (∆op
act,∗′)∨ the associated cooperad, i.e.

Hom([n]; [k0], . . . , [km]) = Hom∆op
act
([n], [k0] ∗′ ⋯∗′ [km]).

The sets of 0-ary morphisms are Hom([n]; ) = ∅ for n > 0 and Hom([0]; ) =
{ρ0} with ρ0 corresponding to ∆0 = ∆0. The transformation (11) induces (by
composition) a functor of cooperads

ρ ∶ (∆∅,∗)∨ ≅ (∆op
act,∗′)∨ → (∆,∗)op.

Lemma 4.13. (∆,∗)op is obtained from (∆op
act,∗′)∨ by adjoining a 0-ary mor-

phism
ρ1 ∈ Hom([1]; )

subject to the relation that there be only one 0-ary morphism from any object:
Hom([n]; ) = {ρn} (including n = 0).

Notice that there are new 1-ary morphisms introduced, for example the
unique morphism in Hom([1]; [1], [1]) composed with ρ1 at one of the slots.

Proof. In the category obtained from (∆op
act,∗′)∨, as described in the Lemma,

we have ρn = ρ1pn where pn ∶ [n] ← [1] is the morphism to the final object in
∆op

act (also for n = 0). The category thus has multi-morphisms

Hom([m]; [k0], . . . , [kn]) = {[m]← [l0] ∗′ ⋯∗′ [ls]}

where the ki are an ordered subset of the li, such that no two consecutive
elements are missing, and such that all missing li are equal to 1. We can map
it to the unique morphism in Hom(∆,∗)op([m]; [k0], . . . , [kn]) corresponding to

[m]← [l0] ∗′ ⋯∗′ [ls]← [k0] ∗⋯ ∗ [kn]

mapping the [ki] to the corresponding factor. If there is no ki then we map it
to the unique 0-ary morphism in Hom(∆,∗)op([m]; ).
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On the other hand, consider an n-ary morphism in Hom(∆,∗)op([m]; [k0], . . . , [kn])
given by

α ∶ [m]← [k0] ∗⋯ ∗ [kn].
Now add factors [1] everywhere, where the condition that the extremal points
go to the same point, resp. to the inital and final points, is violated:

[m]← ([1]) ∗ [k0] ∗ ([1]) ∗⋯ ∗ ([1]) ∗ [kn] ∗ ([1]).

This morphism factors

[m]← ([1]) ∗′ [k0] ∗′ ([1]) ∗′ ⋯∗′ ([1]) ∗′ [nk] ∗′ ([1])
← ([1]) ∗ [k0] ∗ ([1]) ∗⋯ ∗ ([1]) ∗ [kn] ∗ ([1])

and thus corresponds to a multi-morphism in

Hom(∆op
act,∗′)∨([m]; ([1]), [k0], ([1]), . . . , ([1]), [kn], ([1]))

Compose this with at the various [1] with the ρ1 ∶ [1] → ∅ adjoint, to yield a
morphism

[n]→ [k0], . . . , [kn].
Finally, the unique 0-ary morphism in Hom([n]; ) in (∆,∗)op is mapped to ρn.
The two constructions obviously determine an isomorphism of cooperads.

Corollary 4.14. For any monoidal ∞-category C in which the unit is a final
object, ρ∗ induces an isomorphism

(C∨)(∆,∗)op ≅ (C∨)(∆
op
act,∗

′)∨ .

Proof. That is an obvious consequence of Lemma 4.13 in the 1-categorical case
but needs some careful argument for ∞-categories that is omitted for the mo-
ment.

4.15. (FinSet∅,∐) restricts to (FinSet,∐), not as cofibration over O (the unit
is lacking) but as fibration, in particular still ∞-exponential. Similarly (∆∅,∐)
restricts to (∆,∐) as a fibration and (∆∅,∗) restricts to (∆,∗), which is neither
a cofibration nor a fibration, but ∞-exponential by Lemma 4.8. Furthermore
there are obvious forgetful maps (∆∅,∗)→ (∆∅,∐) etc.

4.16. Cf. also Example 2.38. Let C be a finitely complete category with
monoidal product ⊗ commuting with finite limits. It defines a cooperad

(C,⊗)∨.

We will be interested in the Day convolution cooperads

D((∆,∗)op, (C,⊗)∨) and D((∆,∐)op, (C,⊗)∨).
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By Proposition 2.30, those are again cooperads on C∆op

associated with monoidal
products

− ⊗̃ − ∶= dec∗ − ⊠ − and − ⊗− ∶= δ∗ − ⊠−,
while in both cases the unit is given by π∗1, where 1 is the unit in C. Note that
finitely complete is sufficient for the monoidality, because dec∗ is effectively
computed by finite limits (see Proposition 4.89 and also 5.39). The product
−⊗− is just the point-wise extension of ⊗ on C∆op

. If (C,⊗) is an Abelian tensor
category, then − ⊗̃ − translates via Dold-Kan into the usual tensor product of
complexes (and commutation with finite products is sufficient). This will be
discussed at length in Section 5.2.

4.17. The cooperad (C∆op

,⊗)∨ is always fibered over Oop (i.e. comes from a
monoidal product), regardless of any properties of (C,⊗). In fact, this is the
situation of 4.16. We can thus equally well describe the operad

(C∆
op

,⊗) =D((∆op,∐), (C,⊗))

as a Day convolution. Notice that ((∆,∐)op)∨ = (∆op,∐). The operad (C∆
op

, ⊗̃),
however, cannot be described as a Day convolution27.

4.3 Canonical enrichments in pre-sheaves

Let I be a small category and let C a category. We have recalled in 2.15 that
CIop

has a canonical enrichment in pre-sheaves SetI
op

(with particularly easy left
tensors — if C is cocomplete — namely just given by the point-wise tensoring
of C with Set). There is a second description of the same enrichment, which
will be very convenient in Section 4.5 to construct homotopies, as, for example,
the homotopy between EzAw and id. In these applications, we will always have
I =∆ and the second description amounts to the fact that

Hom(X,Y )[n] ≅ HomC(∆op)n+1 (dec∗n+1X,dec∗n+1 Y )

and thus (under suitable (co)completeness assumptions) ∆n ⊗ X can also be
described as decn+1,! dec

∗
n+1X with the functoriality in ∆n (essentially) given by

certain adjunction units, and HOM(∆n,X) as decn+1,∗ dec∗n+1X. This second
description is well-known (cf. [48]) but seems not to be widely used in the
literature.

Definition 4.18. Let I be a small category with final object i. Consider a
functor

F ∶ Iop → Cat

and define

HomF ∶ Iop × F (i)op × F (i) → Set

(j,X,Y ) ↦ HomF (j)(F (pj)X,F (pj)Y )

where pj ∶ j → i denotes the unique morphism to i.
27Notice that it involves morphisms departing from a right Kan extension.
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Proposition 4.19. The HomF of Definition 4.18, defines an enrichment on

F (i) in SetI
op

w.r.t. the point-wise product

SetI
op

×SetI
op

→ SetI
op

.

If the functors w.r.t. all pj for all objects in I have a left (resp. right adjoint),
and F (i) is cocomplete (resp. complete) then this is left, resp. right tensored.

More generally a functor

F ∶ Iop → Cat/J or F ∶ Iop → (co)Op/J

gives rise to a SetI
op

enriched category or (co)operad F (i)→ J . If the F (i)→ J
are (co)fibrations, then this only yields again a (co)fibration of simplicially
enriched categories (i.e. induces a structure of simplicially enriched functor
on the pull-backs, resp. push-forwards) if F has values in (co)fibrations and
(co)Cartesian functors.

Proof. For fixed j the morphisms in HomF (−,−) can obviously be composed
and the composition is functorial in j. If all F (pj) have left adjoints G(pj),
then we can define

I × F (i)→ F (i)
j,X ↦ j ⋉X ∶= G(pj)F (pj)X

This gives rise to a left tensoring defined by

SetI
op

×F (i)→ F (i)

C,X ↦ ∫
i

C(i) × (i ⋉X)

4.20. If the F (pj) have left adjointsG(pj), then the isomorphisms F (α)F (pk)⇒
F (pj) for α ∶ j → k yield morphisms j⋉X → k⋉X by means of applying Yoneda
to the commutative diagram

Hom(F (pk)X,F (pk)Y )
F (α) //

∼
��

Hom(F (α)F (pk)X,F (α)F (pk)Y )

∼
��

Hom(k ⋉X,Y ) // Hom(j ⋉X,Y )

Note that the upper horizontal arrow is the functoriality of the construction in
the last Proposition. These morphisms can be described equivalently as follows:

1. G(pk)F (pk) ≅ G(pk)F (α)F (pj) ⇒ G(pj)F (pj) where G(pk)F (α) ⇒
G(pj) is the mate of F (α)F (pk) ≅ F (pj).

2. If the F (α) also have left adjoints then this may be described even more
easily as

G(pk)F (pk) ≅ G(pj)G(α)F (α)F (pj)⇒ G(pj)F (pj)

given by the counit G(α)F (α)→ id.

82



We leave the proof as exercise.

4.21. Let
F,F ′ ∶ Iop → Cat

be functors and assume that the F (pj) (resp. F ′(pj)) have left adjoints G(pj)
(resp. G′(pj)). A natural transformation

µ ∶ F ′ ⇒ F

yields a natural transformation

k ⋉ µX → µ(k ⋉X)

defined as the composition

G(pk)F (pk)µ(k) ∼ // G(pk)µ(i)F ′(pk) // µ(k)G′(pk)F ′(pk)

where the right hand side morphism is the mate of the isomorphism featuring
in the natural transformation.

Lemma 4.22. The transformation k⋉(µ−)⇒ µ(k⋉−) defined in 4.21 is natural
in k, even if not all F (α) have left adjoints.

Proof. We have to show that the outer square in

G(pk)F (pk)µ //

∼

��

G(pk)µF ′(pk) //

∼

��

µG′(pk)F ′(pk)

∼

��
G(pk)F (α)F (pl)µ

��

// G(pk)F (α)iF ′(pl)

��

// G(pk)µF ′(α)F ′(pl) // µG′(pk)F ′(α)F ′(pl)

��
G(pl)F (pl)µ // G(pl)µF ′(pl) // µG′(pl)F ′(pl)

commutes. Here obviously everything commutes, except

G(pk)F (α)µ

��

// G(pk)µF ′(α) // µG′(pk)F ′(α)

��
G(pl)µ // µG′(pl).

This is an exercise with mates, that is left to the reader.

Proposition 4.23. Let I be a small category with a final object i and let C be
a category. Consider the functor

f ∶ I → Cat

j ↦ (I ×/I j)op
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classifying the fibration ↑↑I → Iop (or, equivalently, the cofibration ↑↓I → I). It
yields via composition with LC (see 2.3) a functor

F ∶= LC ○ fop ∶ Iop → Cat .

Notice that C does not have to be cocomplete, because the composition consists
entirely of pull-backs. The enrichment in SetI

op

obtained by this functor F
in Definition 4.18 is naturally isomorphic to the canonical enrichment in pre-
sheaves (2.15) (i.e. to the one right adjoint to the point-wise tensoring, if the
latter exists), given by

(CI
op

)op × (CI
op

)→ SetI
op

C,D ↦ j ↦ ∫
k
Hom(HomI(k, j),HomC(C(k),D(k)).

Proof. We have

Hom(p∗jC,p∗jD) ≅ lim
k′→k→j∈↑↓(I×/Ij)

HomC(C(k),D(k′))

and there is a canonical isomorphism, functorial in j, F and G:

lim
k′→k→j∈↑↓(I×/Ij)

HomC(C(k),D(k′)) ≅ lim
k′→k∈↑↓I

Hom(HomI(k, j),HomC(C(k),D(k′))

because ↑↓(I ×/I j)→ ↑↓I is a fibration with discrete fibers HomI(k, j).

4.24. Applying Proposition 4.23 to the functor (cf. 4.10)

Ξ∅ ∶∆∅ → Cat

with Ξ∅([0]) = ∆op
∅ , classifying the monoidal cooperad (∆∅,∗)op, we see that

the enrichment on C∆op
∅ defined by

[n]↦ Hom(dec∗∅,n+1X,dec∗∅,n+1 Y )

(i.e. obtained by letting F ∶= LC ○ Ξop
∅ in Definition 4.18) is the same as the

canonical enrichment in Set∆
op
∅ .

Now assume that C is cocomplete. We have seen (cf. 4.10), that there is a
functor

Ξ ∶∆∅ → CatPF

with Ξ([0]) =∆op, classifying the ∞-exponential cooperad (∆,∗)op. We have a
transformation

ti ∶ Ξ∅ ⇒ Ξ

which is natural (and not only oplax) by Lemma 4.8. By applying LC it gives a
functor

LC ○Ξop ○ i ∶∆op → Cat
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and a natural transformation

LC(i) ∶ LC ○Ξop ○ i⇒ LC ○Ξop
∅ ○ i

and the the enrichment on C∆op

defined by28

[n]↦ Hom(dec∗n+1X,dec∗n+1 Y )

(i.e. obtained by letting F ∶= LC ○Ξop ○ i in Definition 4.18) is again the same as

the canonical enrichment in Set∆
op

:

Proposition 4.25. The structure on C∆op

obtained by letting F ∶= LC ○ Ξop ○ i
in Definition 4.18 is again naturally isomorphic to the canonical enrichment
(2.15) in pre-sheaves (i.e., here, simplicial sets).

Proof. Cf. [48] for a similar proof (for n = 1). From Lemma 4.22 applied to the
natural transformation LC(i) (4.24), we get a morphism functorial in n

[n]⋉(i!−) = dec∅,n+1,! dec∗∅,n+1 i! ≅ dec∅,n+1,! i! dec∗n+1 ≅ i! decn+1,! dec∗n+1 = i!([n]⋉−)

which is an isomorphism (because the mate is just the adjoint of the equality
dec∗n+1 i

∗ = i∗ dec∗∅,n+1). We have thus functorially in [n] ∈∆op:

HomC∆op (X,Y )[n] ≅ Hom
C∆

op
∅
(i!X, i∗Y )[n] Lemma 2.17, 2.

≅ Hom
C∆

op
∅
([n] ⋉ (i!X), i∗Y ) Proposition 4.23

≅ Hom
C∆

op
∅
(i!([n] ⋉X), i∗Y ) as seen above

≅ HomC∆op ([n] ⋉X,Y ) i is fully-faithful.

Remark 4.26. The enrichment of C∆op

in Set∆
op

given by procedure 4.18 (i.e.

applied to LC ○ Ξop instead of LC ○ Ξop ○ i) is in fact an enrichment in Set∆
op
∅ .

It follows from the definition, that we have

Hom(X,Y )[−1] = HomC(π!X,π!Y ).

Corollary 4.27. If a left tensoring exists, the diagram of functors

id ≅ pri,! dec∗
//
// dec! dec

∗ // id

is canonically equivalent to the diagram

id ≅∆0 ⊗ −
δ0 //

δ1

// ∆1 ⊗ −
s0 // ∆0 ⊗ − .

Furthermore, for a morphism f ∶ dec∗X → dec∗ Y , denote by f the correspond-
ing ∆1 ⊗X → Y . Then the following is commutative

∆1 ⊗X

fg

))
δ⊗X

// ∆1 ⊗∆1 ⊗X
∆1⊗g

// ∆1 ⊗ Y
f

// Z

28Note that, although this seems similar to before, the face maps now act as partial colimits!
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Proof. The transition pro-functors for s0 ∶ [1] → [0] and δ0, δ1 ∶ [0] → [1] in Ξ
are given by dec ∶ (∆op)2 → ∆op and tpri ∶ ∆op → (∆op)2, respectively, which
are mapped by LC to dec∗, and pri,!, respectively.

4.28. The isomorphism (cf. Corollary 4.27)

Hom(dec∗X,dec∗ Y ) ≅ Hom(∆1 ⊗X,Y )

can be made very explicit: A morphism

F ∶ dec∗X → dec∗ Y

which is in components given by

F[i],[j] ∶X[i]∗[j] → Y[i]∗[j]

also determines morphisms F[−1],[j] and F[i],[−1] via the colimit.
In turn, an element

G ∶∆1 ×X → Y

is given in degree n by

(G[n],i)i ∶ Hom∆op([1], [n]) ×X[n] → Y[n]

where i = −1, . . . , n index the elements of Hom∆op([1], [n]). If F and G corre-
spond under the isomorphism above, we have explicitly:

G[n],i = F[i],[n−i−1] .

This can be seen, for instance, from the formula

(dec!K)[n] = ∐
i+j=n−1
i,j≥−1

K[i],[j]

established in Proposition 4.89 below.

There is a monoidal version of the above:

Proposition 4.29. Let (C,⊗) be a cocomplete monoidal category such that ⊗
commutes with colimits. The category of simplicial objects is equipped with the
point-wise monodial structure. The corresponding operad (C∆op

,⊗) can also be
seen as the Day convolution D((∆op,∐), (C,⊗)), and the corresponding coop-
erad (C∆op

,⊗)∨ as the Day convolution D((∆,∐)op, (C,⊗)∨) (cf. 4.16). The
simplicially enriched structure on ⊗ given by

K ⊗ (X ⊗ Y )→ (K ⊗X)⊗ (K ⊗ Y ) (36)

induced by the diagonal K → K × K (all ⊗ are computed point-wise) can be
equally given (using the procedure in Definition 4.18 above) by a functor:

Ξ ∶∆∅ → Hom1−oplax,1−inert−pseudo(Oop, (CatPF,×)∨)
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with Ξ([0]) classifying (∆op,∐) → O (Ξ consists actually of natural transfor-
mation — not only oplax) and applying L(C,⊗) (Proposition 2.42). Likewise, it
can be given by a functor

Ξ∨ ∶∆∅ → Hom1−oplax,1−inert−pseudo(O, (CatPF,×))

with Ξ∨([0]) classifying (∆,∐)op → Oop (Ξ∨ does not consist of natural trans-
formations) and applying L(C,⊗)∨ (Proposition 2.42).

Proof. We need to observe that the exponential operad (∆op,∐) extends to a
functor Ξ ∶∆∅ → Hom1−oplax,1−inert−pseudo(Oop, (CatPF,×)∨) or, in other words,
that there is a functor29

Ξ ∶∆∅ ×∆op
∅ → CatPF

sending ∗ to products in both variables, and roughly speaking, encoding the
operad Z[(∆op,∐)] vertically and the cooperad Z[(∆,∗)op] horizontally. For
this one one has to construct the following commutative diagram:

(∆op)2 dec //

δ12,34

��

(∆op)

δ

��
(∆op)4

dec13,24

// (∆op)2

which is obvious, and

(∆op)

δ

��

oo
tπ ⋅

(∆op)2 oo
tπ
⋅

(∆op)
π

��

oo
tπ ⋅

⋅ ⋅

which is the cofinality of δ (Lemma A.4), and the cofinality of π, i.e. the con-
tractibility of ∆op, and a fourth type which is trivial. The fact that this yields
the structure defined by (36) follows basically by unraveling the definition, and is
left to the reader. For this functor all diagrams commute (not only oplaxly), i.e.
it is morphism-wise Cartesian, reflecting the fact that this yields a simplicially
enriched structure on the push-forward ⊗. The functor

Ξ∨ ∶∆∅ → Hom1−oplax,1−inert−pseudo(O, (CatPF,×))

is formed by applying t in the δ-direction and passing to mates. We get only
oplax commutativity.

29Shifting slightly the perspective and considering ∆∅ instead of the usual ∆op
act via

Lemma 4.9.
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4.4 Naive homotopy

4.30. Recall the notions of simplicially enriched category, functor, and
natural transformation (see, for instance [37]). Let C, D be simplicially en-
riched categories, and µ ∶ A⇒ B a natural transformation between simplicially
enriched functors. µ is simplicially enriched, if

Hom(i, j)

B

��

A // Hom(A(i),A(j))

µ(j)○
��

Hom(B(i),B(j))
○µ(i)

// Hom(A(i),B(j))

commutes. The set of simplicially enriched natural transformations can be en-
hanced to a simplicial set turning the category Fun(C,D) into a simplicially
enriched category, as follows:

4.31. Given a simplicially enriched category C, for each simplicial set K,
we may define a simplicially enriched category CK with the same objects and
morphisms

Hom(K,Hom(X,Y )) = Hom(K ×X,Y )
with composition induced by the diagonal K → K ×K. There is a simplicially
enriched inclusion functor

C ↪ CK
given by composition withK →∆0 and a simplicially enriched functor F ∶ C → D
induces a functor

FK ∶ C → D ↪ DK .

For a second such functor G there is a simplicial set Nat(F,G) characterized by

Hom(K,Nat(F,G)) = Hom(FK ,GK)

which can also be expressed using the enriched end:

Nat(F,G) ≅ ∫
c
Hom(F (c),G(c)).

This can also be seen as the natural enriched Hom-object in the enriched functor
category of functors from C → D.

4.32. Let I be a small category or (co)operad and let C → I and D → I
be simplicially enriched cofibrations (of categories or (co)operads) classified by
functors ΞC ,ΞD ∶ I → SCat (resp. I → (SCat,×)) where SCat denotes the 2-
category of simplicially enriched categories. We have

HomI(C,D) = Homlax(ΞC ,ΞD).
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The compatibility with the simplicially enriched structure is as follows: HomI(C,D)
consists of simplicially enriched functors. For µ ∈ Homlax(ΞC ,ΞD) the µ(i) have
to be simplicially enriched and

ΞC(i)
µ(i) //

ΞC(α)
��

⇐µ(α)

ΞD(i)

ΞD(α)
��

ΞC(j)
µ(j)
// ΞD(j)

the natural transformations µ(α) have to be simplicially enriched, in the sense
of 4.30.

Let I♭ the underlying set of objects (only those in I[1] in the (co)operad case).
Denote ()♭ the composition with (or pull-back to) I♭ ↪ I. Fix an object X ∈
Hom(C♭,D♭) = Hom(lax)(Ξ♭C ,Ξ♭D) that is simplicially enriched, i.e. a collection,
for all objects i ∈ I, of a simplicially enriched functor X(i) ∶ Ci → Di.

Denote by HomI(C,D)X ≅ Homlax(ΞC ,ΞD)X the set30 of functors (resp. lax
natural transformations) that map to X.

Each simplicial set K define categories HomI(C,DK) = Homlax(ΞC , (ΞD)K)
where (ΞD)K is the functor that maps i to the simplicially enriched category
Di,K .

Definition 4.33. We define a simplicial set of naive deformations

DefX(ΞC ,ΞD)

such that

Hom(K,DefX(ΞC ,ΞD)) = HomI(C,DK)X = Homlax(ΞC , (ΞD)K)X .

The adjective “naive” is used to distinguished these deformations from the
coherent transformations discussed in Section 4.9, which are more sophisticated,
and encode higher coherence as well. Sometimes, however, this higher coherence
data can be built from a naive deformation, see Proposition 4.85.

4.34. Let us unravel the definition: For a simplicial set K the following set of
data are the same

1. Hom(K,DefX)

2. For each morphism f ∶ x→ y in C a morphism

µf ∶K ⊗X(x)→X(y)

which if f lies over an identity of I is the constant morphism X(f) ∶
X(x)→X(y). If C is simplicially enriched, then we have a morphism

Hom(x, y)→ Hom(K ×X(x),X(y)).
30This is a set, because the functors between fibers are fixed, only the values on morphisms,

resp. the laxness constraint, are variable.
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mapping inert morphisms to inert morphisms, and compatible with com-
position.

3. For each morphism f ∶ i→ j in I a K-natural transformation:

µf ∶ Hom(K,Nat(X(j)F (f),G(f)X(i)).

(invertible if f is inert) compatible with composition.

If the simplicially enriched structure on J = C is discrete — and we will be
mainly interested in this case — the deformations F ∶ J → D over X ∶ J ♭ → D♭
can also be described as follows:

4.35. Let D be a left tensored simplicially enriched category. Let (M ∈
End(D),m,u) be a simplicially enriched monad. Then for each simplicial set
K and object G ∈ D, we may define a set of M ×K-algebra structures on G by
morphisms µK ∶MG ×K → G such that

G ×K
(u,id) //

pr
&&

MG ×K
µK

��
G

and

M(MG ×K) ×K oo δ

(MµK ,id)
��

M2G ×K
(m,id) // MG ×K

µK

��
MG ×K µK

// G

commute, where in the arrow δ also the simplicially enriched structure of M is
involved. This is clearly functorial in K and thus, in particular, given G, we get
a simplicial set of M -algebra structures

Alg
M
(G)[n] = {∆n ×M -algebra structures on G}

which represents the previous functor on simplicial sets.

4.36. Let I be a small category or (co)operad and let D → I be a simplicially
enriched cofibration and p ∶ J → I a usual (discrete) cofibration. Let I♭ be the
set of objects of I and ν ∶ I♭ ↪ I the canonical functor and J ♭, resp. D♭ the
pull-backs. We have a pull-back diagram

J ♭
ν //

p♭

��

J

p

��
I♭

ν // I

We assume that ν∗ ∶ DJ
p → DJ♭

ν∗p = (D♭)J
♭

p♭ has a left adjoint ν
(p)
! (relative left

Kan extension, see Proposition 2.76 for sufficient criteria for its existence). It is
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well-known that the adjunction is monadic and thus DJ
p can be reconstructed

as the algebras in (D♭)J♭p♭ w.r.t. the monad

M = ν∗ν(p)! .

In the special case that J is an operad and I = O, this is the interpretation of
algebras over the operad J as algebras for a monad.

The monad is simplicially enriched w.r.t. the simplicially enriched structure
on D → I. We have then

DefX(J,D) = Alg
ν∗ν(p)

!

(X).

4.5 Acyclicity (Construction of homotopies)

4.37. A functor
Y ∶∆∅(≅∆op

act)→ CatPF .

defines a structure of simplicially enriched category (in fact enriched over Set∆
op
∅ )

already on
HomCatPF(Y[0],X)

for any category X as follows: Its objects are pro-functors α ∶ Y[0] → X and we
define simplicial sets of morphisms by

Hom(α,β)[n] ∶= Hom(αY (pn), βY (pn)).

If C is a (finitely) cocomplete category, then LC ○ Y equips LC(Y[0]) = CY[0]
with the structure of simplicially enriched category by means of Proposition 4.19,
and we have a map of simplicial sets:

Hom(α,β)→ Hom(LC(α), LC(β))

turning LC into a simplicially enriched functor. Here the Hom on the RHS is
the simplicial enrichment of functor categories Hom(CX ,CY[0]) (4.31), but with
the trivial (discrete) structure on CX !

The standard example is the functor Y = Ξ obtained from the cooperad
(∆,∗)op determined by Ξ[0] = ∆op, Ξ(p1) = dec and Ξ(p∅) = tπ. We have seen
in Proposition 4.25 that LC ○Ξ yields the canonical enrichment in simplicial sets
for simplicial objects in C.

For now it was not used that Y comes from a cooperad, i.e. that it is com-
patible with the product ∗ on ∆∅ and × on CatPF. This circumstance has
strong acyclicity implications for the simplicial sets considered above (and also
their cousins Def(⋯) discussed in 4.40 below) that are eventually the source
of all homotopies constructed in these lectures. This is in some sense paral-
lel to the theory of acyclic models [9], but has the advantage of being entirely
constructive, and not limited to Abelian situations.
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In particular, two homotopic transformations µ, ν ∶ α⇒ β induce homotopic
transformations LC(α)⇒ LC(β). In particular, if Y = Ξ is the standard exam-
ple, and W is a class of weak equivalences in C∆op

satisifying (W1) of 4.48 then
for the induced

L(α)′, L(β)′ ∶ CX → C∆
op

[W−1]
we have L(µ)′ = L(ν)′.

4.38. Assume that also X extends to a functor

X ∶∆∅(≅∆op
act)→ CatPF

and assume that X and Y have the following properties:

1. They are monoidal w.r.t. the concatenation product ∗ on ∆∅ and × on
CatPF. (This is the case if and only if they correspond to exponential
fibrations of cooperads I → Oop. )

2. The unit ⋅ ≅ X∅ → X0 is given by tπ. (By 1. this determines all values of
X under injective maps.)

Proposition 4.39. If α and β extend to an oplax transformation, and lax
transformation, respectively:

α̃ ∈ Homoplax,p∅−pseudo,×(Y,X) β̃ ∈ Homlax,p∅−pseudo,×(Y,X)

((op)lax, pseudo on p∅
31 , and compatible with the product structure) then

Hom(α,β)

is empty or contractible.

4.40. Before we give the somewhat technical proof, we discuss a functorial
version of 4.37. Consider a category or (co)operad I and functors

C,D ∈∆∅ → Hom1−oplax,1−inert−pseudo(Iop, (CatPF,×))

which satisfy the properties of 4.38 point-wise in i, such that also the oplax-ness
constraints are compatible with the product structure. Let

F ∶D∣I♭ → C ∣I♭

be a natural transformation (i.e. a collection of pro-functors F (i) ∶D(i)→ C(i))
compatible with product. Then define

Def(D,C)F,[n] ∶= Homoplax,inert−pseudo(D[n],C[0])F[0]○D♭(pn)

31Unraveling the definition, in view of assumption 2., this means that α and β must be
cofinal, i.e. satisfy α tπ = tπ and β tπ = tπ.
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writing D♭ ∶= D∣I♭ . The functoriality for α ∶ [n] → [m] is given by the pre-
composition maps

Homoplax,inert−pseudo(D[m],C[0])→ Homoplax,inert−pseudo(D[n],C[0])

induced by D(α) ∈ Homoplax(D[n],D[m]). Note that this yields a set, because
the “values” of the natural transformations are fixed; the only variable is the
oplaxness constraint. Notice: For this definition, the structure extension of C[0]
to ∆∅ does not play a role, yet!

4.41. If C → I is a functor of categories or (co)operads with (finitely) cocom-
plete fibers, then D equips LC(D[0]) = D(D[0],C) (the Day convolution) with
the structure of simplicially enriched category over I (cf. Proposition 4.19), and
we have a map of simplicial sets (cf. Definition 4.33 for the RHS):

Def(D,C)F → Def(D(C[0],C),D(D[0],C))LC(F )

in which D(C[0],C) is considered discrete and D(D[0],C) receives its simplicial
structure from the functor LC ○D. Warning: The Day convolution D(D[0],C)→
I is only a simplicially enriched cofibration over I, if C → I is a cofibration and
D is actually a functor ∆∅ → Hom(Iop,CatPF) i.e. maps morphisms to natural
transformations (as opposed to oplax ones).

Whether D(D[0],C) → I is a simplicially enriched fibration, cannot be in
general detected with the calculus of pro-functors, because this concerns R and
the simplicial structure is encoded via L. If D[0] actually corresponds to a
fibration (i.e. has morphisms in im tι), we may form tD0, and this can be done
in certain cases.

4.42. For I = [1], as a special case, we obtain the situation in 4.37, in case
α̃ and β̃ are actually natural transformations (not only lax or oplax), with the
following data: C and D then encode α̃ and β̃ as cofibrations over I = [1] and
F is the identity. Then we have

Hom(α,β) = Def(D,C)id.

4.43. For I = [2] and α = α2α1 and β = β2α1, encoded by C andD, Def(D,C)id
consists of those simplices in

Hom(α1, β1) ×Hom(α2, β2) ×Hom(α,β)

such that the pasting

Hom(α1, β1)×Hom(α2, β2)→ Hom(α2α1, α2β1)×Hom(α2β1, β2β1)→ Hom(α,β)

maps the elements (of the same degree) in the former pair of simplicial sets to
the one in the latter. For the map Hom(α2, β2) → Hom(α2β1, β2β1) to exist,
it is essential, that β1 is “simplicially enriched” meaning that it extends to a
functor ∆∅ × [1]→ CatPF.
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4.44. There is a canonical element in Def(D,C)F,[−1] given by

Homoplax(D∅ = ⋅,C[0])F[0]○D♭(p∅)
´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≅C♭(p∅)

given by C(p∅). If that one consists of isomorphisms then it is the unique
element in there.

Proposition 4.45. In the situation of 4.40, the fiber of

Def(D,C)F

over the canonical element C(p∅) in Def(D,C)F,[−1] is empty or contractible.

Proof of Proposition 4.39. By Lemma 4.47, 2. below it suffices to construct a
section of the natural map

dec∗Hom(α,β)→ Hom(α,β) ⊠Hom(α,β).

Given µ1 ∶ αY (pn)⇒ βY (pn) and µ2 ∶ αY (pm)⇒ βY (pm) we have to define a
morphism

ν ∶ αY (pn+m+1)→ βY (pn+m+1)
which applied to Y (δl) and Y (δr) gives back µ1 and µ2. It is defined as the
pasting

Y (pn+m+1)

!!

α̃n+m+1

��

β̃n+m+1⇒

��

Y (pn+m+1)

}}

α

!!

⇒

X(pn+m+1)

��

⇒

β

}}

(37)

where the middle natural transformation is (µ1, µ2) exploiting the product struc-
ture on α̃n+m+1 and β̃n+m+1. We have to show that be get back µ1 after pre-
composition with Y (δl) (and similarly, µ2 after pre-composition with Y (δr)).

Claim: The pasting

Y (δl) //

β̃n+m+1

77

α̃n+m+1

⇓ ''
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is equal to the pasting:

α̃n+m+1

��

⇓Y (δl)

GG

Y (δl)

��

βY (pn)

66

αY (pn)

⇓µ1 (( X(δl) //

⇓
β̃n+m+1

AA (38)

Both diagrams are actually products, namely

Y (idn)//

Y (pn)β

77

Y (pn)α

⇓µ1 '' ×
Y (pm+1

∅ )
//

Y (pm)β

77

Y (pm)α

⇓µ2 ''

and

Y (pn)α

��

⇓Y (idn)

GG

Y (idn)

��

Y (pn)β

66

Y (pn)α

⇓µ1 (( X(idn)//

⇓
Y (pn)β

AA ×

Y (pm)α

��

⇓Y (pm+1
∅ )

GG

Y (pm+1
∅ )

��

= X(pm+1
∅ )
//

⇓
Y (pm)β

AA

For the left parts the assertion is thus clear. For the right parts note that
by assumption X(p∅) = Y (p∅) = tπ and that α̃ and β̃ are pseudo on p∅, thus
Y (p∅)α and Y (p∅)β are thus both isomorphic to tπ which is a final object. This
proves the claim.

The conclusion is made by pre-composing (37) with Y (δl) and inserting
(38).

Proof of Proposition 4.45. By Lemma 4.47, 2. below, it suffices to construct a
section of the natural map

dec∗Def(D,C)F → Def(D,C)F ⊠Def(D,C)F .

Given µ1 ∈ Homoplax(Dn,C0)F0○D♭(pn) and µ2 ∈ Homoplax(Dm,C0)F0○D♭(pm),

we have to produce ν ∈ Homoplax(Dn+m+1,D0)F0○D♭(pn+m+1) connecting the two.
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This is more or less the same construction as in the proof of Proposition 4.39:
We have given for each α ∶ i→ j:

F0(j)○D(pn,j) //

Dn(α)
��

⇓µ1 C0(α)
��

F0(i)○D(pn,i)
//

F0(j)○D(pm,j) //

Dm(α)
��

⇓µ2 C0(α)
��

F0(i)○D(pm,i)
//

or which is the same:

C(pn,j)○Fn(j) //

Dn(α)
��

⇓µ1 C0(α)
��

C(pn,i)○Fn(i)
//

C(pm,j)○Fm(j)//

Dm(α)
��

⇓µ2 C0(α)
��

C(pm,i)○Fm(i)
//

and have to construct a 2-morphism in

D(pn+m+1,j) //

Dn+m+1(α)
��

⇓ν

F0(j) //

C0(α)
��

D(pn+m+1,i)
//

F0(i)
//

The square is isomorphic to the outer square in

C(pn∗pm,j)Fn+m+1(j)//

Dn+m+1(α)
��

⇓(µ1,µ2)

C(p1,j) //

⇓C1(α)
��

C0(α)
��

C(pn∗pm,i)Fn+m+1(i)
//

C(p1,i)
//

and it is clear from the functorialities that the constructed element yields a valid
element of Def(D,C)F,n+m+1.

We have to see that we get back µ1 and µ2 after applying δl, δr. Investigate
the case of δl, the other is analog:

D(δl,j) //

Dn(α)
��

⇓

C(pn∗pm,j)Fn+m+1(j)//

⇓(µ1,µ2)Dn+m+1(α)
��

C1(α)
��

C(p1,j) //

⇓ C0(α)
��

D(δl,i)
//

C(pn∗pm,i)Fn+m+1(i)
//

C(p1,i)
//

The left squares are the product

Dn(α)
��

Dn(α)
��

C(pn,j)Fn(j) //

⇓µ1 C0(α)
��

C(pn,i)Fn(i)
//

×

D(pm+1
∅ ,j)

//

Dm(α)
��

C(pm,j)Fm(j) //

⇓µ2 C0(α)
��

D(pm+1
∅ ,i)

//
C(pm,i)Fm(i)

//
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in which the second factor is isomorphic to a diagram of the form

C(p∅,j) //

⇓ C0(α)
��

C(p∅,i)
//

and we have by assumption that µ1 and µ2 map to the oplaxness-constraint
given by C(p∅). (If that is an isomorphism, then both compositions are the
final object and thus there is only one 2-morphism anyway. ) We can thus write
the pasting as

C(pn,j)Fn(j) //

Dn(α)
��

⇓µ1

C(p1∗p∅,j) //

⇓C0(α)
��

C1(α)
��

C(p1,j) //

⇓ C0(α)
��

C(pn,i)Fn(i)
//

C(p1∗p∅,i)
//

C(p1,i)
//

which gives back µ1.

The following Lemma and its Corollary, which is well-known, can also be
obtained easily without calculation from the description of homotopies via dec
but is a bit different, and also more elementary than the Propositions discussed
before.

Lemma 4.46. The canonical map

P ∶ decn ⇒ [n] ○ π ∶∆op →∆op

is a homotopy equivalence in the sense of 4.37 (for Y = Ξ the standard example).

Proof. (cf. also the proof of Lemma A.3). Define

S ∶ [n] ○ π⇒ decn

by the degeneracy [n] ↞ [x] ∗ [n] which maps [x] to the minimal element in
[n]. Obviously, PS = id. We have to define a morphism

ξ ∶ decn dec→ decn dec

such that the pre-composition with tpr0 gives back the identity and the pre-
composition with tpr1 gives back SP . We define the morphism

ξ ∶ [a] ∗ [b] ∗ [n]→ [a] ∗ [b] ∗ [n]

as the identity on [a] and [n] and mapping [b] to the minimal element of [n].
We may in fact extend ξ to a morphism

ξ∅ ∶ dec∅,n dec∅ → dec∅,n dec∅ .
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That one has the obvious property that composition with p0 = ([∅], id) ∶∆op
∅ →

∆op
∅ ×∆op

∅ gives back (the restriction of) SP and composition with p1 gives back
the identity. Thus

tidec∅,n dec∅ pii→ tidec∅,n dec∅ pii

is SP , and id, respectively. But tidec([n], id)dec ≅ dec(ti, ti)([n], id)dec ≅
dec([n], id)tidec ≅ dec([n], id)dec(ti, ti) using Lemma A.5 and finally (ti, ti)pii =
πi using Lemma A.2.

Corollary 4.47. 1. The canonical map

dec∗ ⇒ pr∗1 ∶ C∆
op

→ C∆
op×∆op

is, point-wise in the second variable, a homotopy equivalence, i.e. all the
canonical maps dec∗nX →Xn where Xn is considered constant, are homo-
topy equivalences.

2. If X is a simplicial set such that there is a section of the natural morphism

dec∗X →X ⊠X

then X is either empty or contractible.

Proof. 1. is an obvious consequence of Lemma 4.46. For 2. consider the mor-
phism

dec∗0X →X ×X0

which has a section by assumption. The fiber over any element of X0 of the left
hand side is contractible by 1. That is thus also the case for X.

4.6 Weak equivalences and geometric realization

The non-Abelian Eilenberg-Zilber theorem that will be investigated in the next
two sections is a statement “up to weak equivalence”. Indeed, even the Eilenberg-
Zilber morphism that will be constructed is only defined as a morphism in the
homotopy category (unless the situation is strongly symmetric, as in the Abelian
case). We do not want to restrict the situation unnecessarily, allowing for sim-
plicial objects C∆op

in a general 1-category (being mainly interested in C = Set
and C Abelian in these lectures). The proper language for such a general situa-
tion would be, of course, that of model categories. However, as long as we are
in a situation (as in these main examples), where “potentially” every simplicial
object is cofibrant, much less is needed for our purposes:

4.48. Let C be a (finitely) complete and cocomplete category. We consider
the following axioms on a class of “weak equivalences” W in C∆op

.

(W1) ∆1 ⊗X → X (or equivalently X → HOM(∆1,X)) is a weak equivalence
for all X32.

32where ⊗ and HOM are the (co)tensoring of the canonical simplicial enrichment 2.15.
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(W2) δ∗ ∶ C∆op×∆op → C∆op

maps point-wise weak equivalences (in either direc-
tion) to weak equivalences.

Lemma 4.49. The two versions of (W1) are equivalent and also imply that
X → Hom(∆n,X), and ∆n ⊗X →X are weak equivalences for all n.

Proof. Any of the two statements in (W1) implies that homotopy equivalences
are weak equivalences, and, since ⊗ is associative, − ⊗X and Hom(−,X) map

homotopy equivalences in Set∆
op

to homotopy equivalences in C∆op

, and s ∶
∆n →∆0 is a homotopy equivalence in Set∆

op

.

Lemma 4.50. The axioms of 4.48 hold true for C = Set, and for C Abelian,
and the classW of usual weak equivalences, and the class of quasi-isomorphisms,
respectively.

Proof. Case C = Set.
(W1) holds true because ⊗ = × is a left Quillen bifunctor (cf. [29]), every

object is cofibrant, and δ0, δ1 ∶∆0 ↪∆1 are trivial cofibrations, therefore id×δ0 ∶
X → X ×∆1 is a trivial cofibration, and therefore the first map of (W1) which
is a section of id×δ0 is a weak equivalence. (W2) is shown e.g. in [29, IV,
Proposition 1.7].

Case C Abelian.
(W1) If two morphisms f, g ∶ X → Y are ⊗-homotopic, i.e. if there is a

morphism ∆1⊗X → Y such that the restrictions give f and g, respectively, then
the composition ∆1 ⊗̃X →∆1 ⊗X → Y with the Eilenberg-Zilber map yields a
homotopy in the usual sense (cf. also Lemma 5.29) which implies that f and g
induce the same map on homology groups. Hence homotopy-equivalences w.r.t.
⊗ are quasi-isomorphisms as well. Then argue as in the proof of Lemma 4.49.

(W2) The proof of the Eilenberg-Zilber theorem does not need (W2) in the
strongly symmetric case (cf. Definition 4.54). Thus it suffices to show that
dec∗ ≅ tot (cf. Proposition 5.39) preserves quasi-isomorphisms in any direction.
This is true in any Abelian category for non-negatively graded complexes.

Note that we have (for the examples C Abelian, and Set, and more generally
in case that (C∆op

,W) is part of a model category structure) an equivalence of
localizations:

(C∆
op

[W−1])∆
op

≅ C∆
op×∆op

[W−1v ]
at the vertical weak equivalences ([18, Proposition 7.9.2.]). This is not at all
true for the 1-categorical localizations. The statement below makes sense for
them as well, if one takes C∆op×∆op[W−1v ] and the homotopy colimit, i.e. the
derived functor of the colimit.
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Proposition 4.51. If 4.48 hold then we have a commutative diagram of ∞-
categories:

C∆op×∆op δ∗ //

��

C∆op

��
(C∆op[W−1])∆op

colim∆op

// C∆op[W−1]

in which the vertical functors are the canonical ones into the localizations which
we consider as ∞-categorical localizations. In other words

δ∗ = geometric realization.

Proof. Let δ ∶ [n]↦∆n be the canonical cosimplicial simplicial object. We have

δ∗X ≅ ∫
n

∆n ⊗X●,n.

This is left adjoint to the functor

(δ∗X)●,n ≅HOM(∆n,X).

By 4.48 and Lemma 4.49 both functors preserve weak equivalences and thus
descend to an adjunction between the localizations. However, by Lemma 4.49
the morphism pr∗2 → δ∗ induced by ∆n →∆0 is a (point-wise) weak equivalence.
The statement follows thus from the uniqueness of adjoints.

Remark 4.52. In a situation in which the Eilenberg-Zilber Theorem holds (e.g.
if C∆op

is symmetric w.r.t. W), thus also dec∗ computes geometric realization
in the localization.

In the Abelian case, the same proof gives also directly that dec∗ = geo-
metric realization: We have, denoting ∆○● ∶= Z[∆●] the cosimplicial object in
Ch≥0(Ab)∆:

dec∗X ≅ ∫
n

∆○n ⊗̃X●,n.

(because dec∗ = tot obviously commutes with colimits) and this has the right
adjoint (cf. also Section C.5)

dec? ∶X ↦HOM⊗̃(∆○,X).

Again both functors preserve quasi-isomorphisms and the second functor is iso-
morphic to pr∗2 in the localization.

Remark 4.53. The statement in Proposition 4.51 is obviously also equivalent
(using that δ is ∞-cofinal, see Lemma A.4) to the commutativity of the diagram

C∆op

**��
(C∆op[W−1])∆op

colim∆op

// C∆op[W−1]
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where the vertical morphism is induced by the composition C → C∆op → C∆op[W−1].
In other words, every object in C∆op[W−1] is the “colimit of itself considered as
simplicial diagram”.

4.7 Symmetry

This section contains a discussion of the symmetries of simplicial objects that are
at the heart of the Eilenberg-Zilber theorems, Theorem 4.65 in the general case,
and Theorem 5.15 in the Abelian case. These symmetries are more tractable
and efficient in the Abelian case. Let ι ∶ ∆op → FinSetop, where FinSet is the
category of non-empty finite sets33, be the inclusion.

Definition 4.54. We say that C∆op

(with chosen class of weak equivalences W)
is (strongly) symmetric if there is a functor:

C ∶ C∆
op

→ CFinSet
op

with a natural transformation
id→ ι∗C

which is object-wise a weak equivalence (resp. an isomorphism).

4.55. Recall the axioms 4.48. (W2) is only needed in the non-strongly sym-
metric case.

Lemma 4.56. If W is a class of weak equivalences such that (4.48) hold then
there is a weak equivalence δ∗ dec∗ → id. In particular, δ∗ dec∗ preserves weak
equivalences.

Proof. Lemma 4.47 shows that dec∗ → pr∗1 is point-wise in the second variable
a homotopy equivalence. Thus by (W1) it is point-wise in the second variable
a weak equivalence. Thus by (W2)

δ∗ dec∗ → δ∗ pr∗1 = id

is a weak equivalence.

Lemma 4.57. Set∆
op

is symmetric and C∆op

is strongly symmetric for any
Abelian category C.

Proof. The standard cosimplicial objects

∆T
n = {(x0, . . . , xn) ∈ R[n] ∣ ∑xi = 1}

in T OP and
(∆○n)i = Z[Hom∆([i], [n])]

in (Abfg)∆op

extend to functors ∆T,s
n and ∆○,s from FinSet (the first by obvious

action of Sn on the coordinates and the second using the action of Lemma 5.6).

33for simplicity, the equivalent category with the same objects as ∆op
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Defining C ∶= N∆T,s
n
R∆T

n
, and C ∶= N∆○,sR∆○ , respectively, we have ι∗C =

N∆T
n
R∆T

n
, and ι∗C = N∆○nR∆○n , respectively, which come equipped with a natural

transformation (unit of the N , R adjunction) id→ ι∗C. It is a weak equivalence
of simplicial sets, and an isomorphism in C∆op

, respectively.

Lemma 4.58. Let C be Abelian. For the functor C of Lemma 4.57 we have

C = LC((tC)op) = RC(Cop)

where C and tC are the Ab-enriched pro-functors C ∶ FinSet → ∆ (resp. tC ∶
∆→ FinSet) with C left adjoint:

C ∶ n,m ↦ Hom(∆○n,∆○m) ∈ Hom(∆op × FinSet,Ab)
tC ∶ n,m ↦ Hom(∆○n,∆○m) ∈ Hom(FinSetop ×∆,Ab)

and there is an isomorphism of pro-functors C ι ≅ id (resp. tι tC ≅ id).
In the definition of C (resp. tC) ∆○ in the right slot (resp. left slot) is con-

sidered as functor on FinSet as defined by Lemma 5.6.

Proof. Recall that N∆○n commutes with colimits and ⊗ (see proof of Theo-
rem 5.11). Hence we have

C(X)n = Hom(∆○n,∫
m

∆○m⊗Xm) = ∫
m

Hom(∆○n,∆○m)⊗Xm = LC((tC)op)(X)

(which is isomorphic to Xn as object in C, of course, but now gives a FinSetop-
valued functor).

We also have:

C(X)n = ∫
m
HOM(Hom(∆○m,∆○n),Xm) = RC(Cop)(X)

which is also isomorphic to Xn. Applying this to C = Ab, we see that LAb(Cop)
is left adjoint to LAb((tC)op), thus Cop right adjoint to (tC)op and thus C left
adjoint to tC.

This shows also that there is a similar operator:

Cn ∶ C∆
op×⋯×∆op

→ CFinSet
op ×⋯×FinSetop

by applying the Ab-enriched pro-functor C ×⋯ ×C.
For general symmetric C∆op

, we have something weaker:

Lemma 4.59. Let C∆op

be symmetric. There is an operator34

C2 ∶ C∆
op×∆op

→ CFinSet
op ×FinSetop

with a natural transformation

id→ (ι, ι)∗C2

which is a composition of natural transformations which are point-wise in one
or the other direction weak equivalences.

34and similar for higher powers, which will not be needed.
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Proof. For X ∈ {∆op,FinSetop} denote by

(C, id) ∶ C∆
op×X → CFinSet

op ×X

the point-wise application of C and similarly for (id,C). We then set C2 =
(C, id)(id,C), noting that the factors do not commute in general. However,
(id, ι)∗ commutes with (C, id). And thus

(ι, ι)∗C2 = (ι, id)∗(C, id)(id, ι)∗(id,C)

and there is a morphism
id→ (ι, ι)∗C2

defined as the compositon

id→ (id, ι)∗(id,C)→ (ι, id)∗(C, id)(id, ι)∗(id,C) = (ι, ι)∗C2

The two morphisms are point-wise in the first (resp. second variable a weak
equivalence).

Proposition 4.60. For any cocomplete category C, the composition

ι∗ι!ι
∗ ι∗c // // ι∗

uι∗ // ι∗ι!ι∗

of functors CFinSetop → C∆op

is homotopic to the identity.

Proof. Recall diagram

(FinSet,∐)op

(∆,∐)op

ιδ

77

(∆,∗)op

ιdec

gg

forget
oo

All cooperads (being exponential) translate to functors

∆∅(≅∆op
act)→ CatPF

which are compatible with products, p∅ is mapped to tπ, and the oplax transfor-
mations ιδ and ιdec (also compatible with products) have lax mates (consisting
point-wise of tι) denoted tιδ and tιdec. Since ιδ is Cartesian (4.6), tιδ is natural,
and since ιdec is coCartesian (4.6), ιdec is natural. Therefore, the following are
lax and oplax extensions, respectively, of of ι tι ι:

ιdec
tιdec ιdec ιδ

tιδ ιdec.

Thus Proposition 4.39 shows that Hom(ι tι ι, ι tι ι) is connected and thus any
two natural transformations ι∗ι!ι

∗ ⇒ ι∗ι!ι
∗ given by morphisms of pro-functors

are homotopic. Notice that the above being “pseudo on p∅” translates to the
1-cofinality of ι (Lemma A.6).
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Corollary 4.61. If W is a class of weak equivalences such that 4.48, 1. holds
then the unit id → ι∗ι! is a weak equivalence on objects in the image of ι∗.
Furthermore

id→ (ι, ι)∗(ι, ι)!
is a composition of morphisms which are point-wise in one or the other direction
weak equivalences, on objects in the image of (ι, ι)∗.

Proof. The first statement follows directly from Proposition 4.60, while the
second follows from a similar reasoning as in the proof of Lemma 4.59.

4.8 The non-Abelian Eilenberg-Zilber theorem

4.62. There is a diagram

∆

ι

��

δ //
∆ ×∆

dec
oo

(ι,ι)
��

FinSet
δs //

FinSet×FinSet
decs

oo

in which the corresponding squares commute. The functors decs = ∐ and δs
are adjoint on FinSet (as the coproduct is always adjoint to the diagonal by
definition) with unit

u ∶ id⇒ δs decs

([n], [m])→ ([n] ∗ [m], [n] ∗ [m])
given by the obvious face maps and counit

c ∶ decs δs ⇒ id

[n] ∗ [n]→ [n]
given by (the opposite of) the diagonal. Notice that the morphism u is point-
wise in ∆ whereas c is not, reflecting the fact that dec is not a coproduct in
∆.

For FinSetop-diagrams we get, in particular, an isomorphism δ∗s ≅ decs,∗ (or
equivalently δs,! ≅ dec∗s). Assume C∆op

is symmetric w.r.t. a class of weak equiva-
lencesW satisfying 4.48. While c is not a morphism in ∆ we may may conjugate
the morphism cop ∶ id → δ∗ dec∗ to a morphism ‘cop’ in Fun(C∆op

,C∆op)[W−1]
by means of the commutative diagram

id

∈W
��

‘cop’ // δ∗ dec∗

∈W
��

ι∗C
ι∗copC

// ι∗δ∗s dec
∗
s C = δ∗ dec∗ ι∗C
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(using that δ∗ dec∗ preserves weak equivalences by Lemma 4.5635). If C∆op

is strongly symmetric, e.g. if C is Abelian, then ‘cop’ is an honest morphism
(without need to invert weak equivalences).

Definition 4.63 (Alexander-Whitney and Eilenberg-Zilber morphism). 1. The
morphism

Aw ∶ δ∗ → dec∗

is defined as the composition

δ∗ // dec∗ dec
∗ δ∗

dec∗ u
op

// dec∗ .

2. Assume Cop is symmetric w.r.t. a class of weak equivalences W satisfying
4.48. The morphism

Ez ∶ dec∗ → δ∗

in Fun(C∆op×∆op

,C∆op)[W−1]36 is defined as the composition (cf. 4.62):

dec∗
‘cop’ dec∗ // δ∗ dec∗ dec∗ // δ∗.

If C∆op

is strongly symmetric, e.g. if C is Abelian, then we understand
Ez ∈ Fun(C∆op×∆op

,C∆op) as an honest natural transformation (no need to
invert anything).

If C∆op

is strongly symmetric then Ez is still not inverse to Aw. If C is
Abelian37, then Aw is the familiar Alexander-Whitney morphism, and Ez is
the familiar Eilenberg-Zilber morphism usually defined in terms of shuffles, see
Proposition 5.42.

4.64. In the strongly symmetric case, Aw and Ez are in morphisms in“standard
form” (2.14), image of the morphisms of correspondences

Aw ∶ dec∗

��

dec∗

��

= ⇒uop

δ∗

__

Ez ∶ δ∗

��

dec∗

??

⇒‘cop’ =

δ∗

��

a fact that will be convenient to prove all kinds of compatibilities using compo-
sitions in the 2-categories Cor(−,−) (2.14).

35of course not needed in the strongly symmetric case
36By abuse of notation, here W denotes the class of morphisms that are object-wise weak

equivalences.
37and provided the symmetry operator C is the canonical one given by Lemma 4.57
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The goal of this section is to prove

Theorem 4.65 (Eilenberg-Zilber, general version). Let C∆op

be symmetric with
weak equivalences W satisfying 4.48, for example C Abelian (with W the quasi-
isomorphisms), or C = Set (with W the usual weak equivalences)38. Then Aw
and Ez are mutually inverse isomorphisms

dec∗ ≅ δ∗

in Fun(C∆op×∆op

,C∆op)[W−1].

For C = Set there are several proofs in the literature, see [16, Theorem 1.1],
[52, Theorem 1.1], [54].

In the non-strongly symmetric case, it follows also that dec∗ preserves mor-
phisms which are weak equivalences point-wise in one direction, because δ∗ does
so by assumption. For Abelian C we will make the Theorem more precise, and
coherent, with a simpler proof, in section 5.2.

4.66. This theorem automatically implies a coherent version: The forgetful
morphism of cooperads

AW ∶= forget ∶ (∆,∗)op ⇒ (∆,∐)op

can be seen as an oplax transformation in Hom1−oplax(∆∅,CatPF) and induces
as oplaxness constraint on p1 a morphism Aw ∶ dec⇒ tδ such that R(Aw) is the
map Aw above (cf. also the proof of Theorem 5.15). If (C,⊗) is monoidal, on
Day convolutions “forget” induces

AW ∶= R(forget) ∶D((∆,∐)op, (C,⊗)∨)→D((∆,∗)op, (C,⊗)∨)

which is nothing but

AW ∶ (C∆
op

,⊗)∨ → (C∆
op

, ⊗̃)∨

with ⊗ = δ∗(− ⊠ −) the point-wise product and ⊗̃ = dec∗(− ⊠ −) and the mor-
phism on monoidal products is induced by the map Aw. If ⊗ (with a constant
object) preserves weak equivalences, Theorem 4.65 implies thus that these yield
monoidal cooperads

AW[W−1] ∶ (C∆
op

[W−1],⊗)∨ → (C∆
op

[W−1], ⊗̃)∨

and the functor is an equivalence. If ⊗ was the Cartesian product ×, this is
actually trivial, cf. Theorem 4.70 below.

The following theorem puts this into perspective, but does not imply Theo-
rem 4.65 directly.

38If C∆op
is strongly symmetric (W2) is not needed.
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Theorem 4.67. Let C∆op

be symmetric with weak equivalences W satisfying
4.48. Set Ws ∶= (ι∗)−1W. Then the functor induced on the ∞-categorical local-
izations

ι∗ ∶ CFinSet
op

[W−1s ]→ C∆
op

[W−1]
is an equivalence of ∞-categories.

Proof. We show that ι∗ and C constitute inverse functors up to a chain of point-
wise weak equivalences. We have a weak equivalence

id⇒ ι∗C

by definition. This also shows that C preserves weak equivalences. Furthermore,
we have a chain of natural transformations

Cι∗ ⇐ ι!ι
∗Cι∗ ⇐ ι!ι

∗ ⇒ id

which are all point-wise in Ws, for apply ι
∗ and extend to a commutative dia-

gram

ι∗Cι∗

1
��

ι∗
5

oo

3
��

ι∗Cι∗ ι∗ι!ι
∗Cι∗

2

oo ι∗ι!ι
∗oo

4

// ι∗

The natural transformations 1 – 4 are (point-wise) weak equivalences by

Proposition 4.60 and map 5 is a weak equivalence by definition of “sym-
metric”.

Proposition 4.68. Assume C∆op

is symmetric w.r.t. a class of weak equiva-
lences W satisfying 4.4839. Then the compositions40

dec∗ dec
∗ dec∗ dec

∗ ‘cop’ // dec∗ dec
∗ δ∗ dec∗

dec∗ u
op dec∗ // dec∗ dec

∗

and

δ∗
‘cop’δ∗ // δ∗ dec∗ δ∗

δ∗uop
// δ∗

are the identity in Fun(C∆op

,C∆op)[W−1], and in Fun(C∆op×∆op

,C∆op)[W−1],
respectively.

If C∆op

is strongly symmetric, then

dec∗
dec∗ ‘cop’ // dec∗ δ∗ dec∗

uop dec∗ // dec∗

(which makes sense now, because ‘cop’ is an honest morphism) is even the iden-
tity without inverting weak equivalences.

39If C∆op
is strongly symmetric 4.48, 2. is not needed.

40Note that dec∗ dec∗ preserves weak equivalences, being isomorphic to HOM(∆1,−) by
Proposition 4.25.
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Proof. We have the following commutative diagram

dec∗ ι∗ dec∗s C

cop

��

dec∗ dec∗ ι∗C oo
∼

cop

��

dec∗ dec∗

‘cop’

��
dec∗ ι∗ dec∗s δ

∗
s dec∗s C

uop

��

dec∗ dec∗ ι∗δ∗s dec∗s C dec∗ dec∗ δ∗ dec∗ ι∗C oo
∼

uop

��

dec∗ dec∗ δ∗ dec∗

uop

��
dec∗ ι∗ dec∗s C dec∗ dec∗ ι∗C oo

∼
dec∗ dec∗

in which the left vertical composition is the identity and the upper horizontal
and lower horizontal compositions are equal. This treats the first composition.
In the strongly symmetric case, we can omit the dec∗ and get a similar diagram
with isomorphisms instead of weak equivalences.

We also have the following commutative diagram:

ι∗δ∗s (ι, ι)!

cop

��

ι∗ι!δ
∗

3
oo

cop

��

// ι∗Cδ∗

cop

��

δ∗

‘cop’

��

∼
oo

1

rr

ι∗δ∗s dec
∗
s δ
∗
s (ι, ι)!

uop

��

ι∗δ∗s dec
∗
s ι!δ

∗oo // ι∗δ∗s dec
∗
s Cδ

∗

δ∗ dec∗ ι∗ι!δ
∗ // δ∗ dec∗ ι∗Cδ∗ δ∗ dec∗ δ∗

2

mm

uop

��

∼oo

ι∗δ∗s (ι, ι)! ι∗ι!δ
∗

3

oo δ∗

1

oo

in which the left vertical composition is the identity. By Lemma 4.59, and since
we assume that δ∗ maps morphisms which are point-wise in either direction a
weak equivalence to weak equivalences, it suffices to see that

δ∗
‘cop’δ∗ // δ∗ dec∗ δ∗

δ∗uop
// δ∗

is the identity on objects in the image of (ι, ι)∗. Then by Proposition 4.60 1

and 2 are weak equivalences on objects in the image in (ι, ι)∗, noting that δ∗

of such is in the image of ι∗. We are left to show that 3 is a weak equivalence.
However the following is commutative:

δ∗

5
��

4
// ι∗ι!δ∗

3
��

δ∗(ι, ι)∗(ι, ι)! ι∗δ∗s (ι, ι)!
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in which 4 and 5 are weak equivalences on objects in the image of (ι, ι)∗ by
Proposition 4.60.

Lemma 4.69. The following diagram is commutative

dec∗
Ez //

∈W
��

δ∗
Aw // dec∗

dec∗ dec
∗ dec∗

dec∗ dec
∗ ‘cop’ dec∗

// dec∗ dec
∗ δ∗ dec∗ dec∗

dec∗ u
op dec∗ dec∗

// dec∗ dec
∗ dec∗

∈W

OO

in which the indicated morphisms are point-wise weak equivalences and inverse
to each other, and the following diagram is commutative:

δ∗
Aw //

‘cop’δ∗

��

dec∗

Ez

��
δ∗ dec∗ δ∗

δ∗uop
// δ∗

Proof. Follows from the commutativity of the following diagrams where the
unlabeled morphisms are the various units and counits:

dec∗
Ez //

∼
��

δ∗

∼
��

Aw

**
dec∗ dec

∗ dec∗

dec∗ dec
∗ ‘cop’ dec∗ **

dec∗ dec
∗ Ez // dec∗ dec

∗ δ∗
dec∗ u

op

// dec∗

dec∗ dec
∗ δ∗ dec∗ dec∗

OO

dec∗ u
op dec∗ dec∗

// dec∗ dec
∗ dec∗

∼

OO

δ∗Aw

��

‘cop’δ∗

((uu
dec∗ dec

∗ δ∗

dec∗ u
op

yy

‘cop’ dec∗ dec
∗ δ∗

((

δ∗ dec∗ δ∗

vv
dec∗

Ez 33

‘cop’ dec∗

%%

δ∗ dec∗ dec∗ dec
∗ δ∗

δ∗ dec∗ dec∗ u
op

vv ((
δ∗ dec∗ dec∗

))

δ∗ dec∗ δ∗

δ∗uop

vv
δ∗
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Proof of Theorem 4.65. Lemma 4.69 shows that Proposition 4.68 implies The-
orem 4.65.

Theorem 4.70 (Trivial Eilenberg-Zilber). If (C,×) is a Cartesian monodial
(∞-)category then the functor

AW ∶= R(forget) ∶ (C∆
op

,×)∨ → (C∆
op

, ×̃)∨

is an equivalence (i.e. no need to invert weak equivalences).

Proof. Consider the diagram

(∆op ×∆op)∐(∆op ×∆op)
pr1∐pr2

11

dec∐dec

⇓
--

d

��

∆op∐∆op

d

��
∆op ×∆op

dec
// ∆op

in which the square with the upper horizontal morphism commutes. We have

A ×B = δ∗d∗(pr1∐pr2)∗(A,B) = d∗(A,B)

and
dec∗A ⊠B = dec∗ d∗(pr1∐pr2)∗(A,B).

The morphism AW is induced by the composition

d∗ → d∗(dec∐dec)∗(dec∐dec)∗ → d∗(dec∐dec)∗(pr1∐pr2)∗.

This however induces the isomorphisms id ≅ dec∗ pr∗1/2 (Lemma A.3).

Alternative proof using Proposition 2.30. (C,×)∨ → Oop is a cofibration of
cooperads via the diagonal C → C × C. The Day convolution thus sees only the
projections of the pro-functors ∆op ×∆op → ∆op given by dec and tδ. Those
projections are the identities in both cases by Lemma A.3.

The second proof shows that the statement holds more generally, if C → O
is a fibration of operads.

4.9 Coherent transformations

4.71. For F,G ∶ C → D usual functors between 1-categories, we have:

Hom(F,G) = ∫
c
Hom(F (c),G(c)) = lim

↑↓C
Hom(F (c′),G(c)).

We start by extending this formula to a relative setting of (co)fibrations of
(co)operads and then to the enriched setting.
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Definition 4.72. Let p ∶ C → I be a morphism of operads. The operad

(Cop × C)/I .

consists of objects (c′, c, ν) where ν ∶ p(c) → p(c′) is an active morphism. Mor-
phisms (c′, c, ν)→ (e′, e, µ) are morphisms in ↑↓I

p(c′)

ι′

��

ν // p(c)
ι

��
x // y

α

��
p(e′) µ //

α′

OO

p(e)

(39)

together with a lift ι●c → e (over α) and e′ → ι′●c
′ (over α′). (Notice that a

push-forward along inert morphisms exists by the definition of operad. )

One checks that (Cop × C)/I → C is a cofibration and that (Cop × C)/I is an
operad. If I is a category then more simply

(Cop × C)/I = (Cop × C) ×/Iop×I
↑↓I.

In any case there is a functor

ι ∶ ↑↓C → (Cop × C)/I

which is a discrete cofibration of operads. It is classified by a functor of operads

Hom ∶ (Cop × C)/I → (Set,×) (40)

such that we have
Hom(X,Y, τ)× = Homτ(X,Y )

where the RHS is the set of morphisms mapping to τ in I and (−)× is the
obvious functor Set× → Set where Set× is the underlying category (of operators)
of (Set,×), i.e. with Set×[n] = Setn.

Definition 4.73. Let
F ∶ (Cop × C)/I → (D,×)

c′, c, ν ↦ Fν(c′, c)
be a functor of operads. Then the relative end of F is defined as

∫C/I F ∶= lim↑↓C (F ○ ι)
×.

For I = O it is also called the operadic end. Recall that (−)× ∶ D× → D is the
functor on the category of operators given by ×. In the limit expression ↑↓C is
just considered as category of operators.
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Remark 4.74. By Lemma 2.51 there is a localization twop C → ↑↓C. Therefore
it is also the same as just the limit over the dual twisted arrow category of the
category of operators.

Lemma 4.75. We have

∫C/I F ≅ lim(∏c∈C[1] Fidp(c)(c, c)

//
// ∏c′∈C,c∈C[1],ν∶p(c′)→p(c)Hom(Homν(c′, c), Fν(c′, c)))

where ν is an active morphism in I, where one of the arrows is induced by

∏
i

Fidp(ci)
(ci, ci) ×Homν(c, c′)→ Fidp(c)(c, c)× ×Homν(c, c′)

→ Fν(c, c′)

where the ci are the components of c and the isomorphism

∏
i

Fidp(ci)
(ci, ci) ≅ Fidp(c)(c, c)×

follows because F is a functor of operads.

Proposition 4.76. Let F,G ∶ C → D be a functor between operads over an
operad I. Then

Hom/I(F,G) ≅ ∫C/I Homν(F (c′),G(c)).

We also have a relative Yoneda:

Proposition 4.77. Given a functor of operads Fµ(−,−) ∶ (Cop×C)/I → (Set,×)
we have:

1. ∫cHomπ(τ)(Homν(c, e), Fµ(c′, f)) = Fτ(e, f) in which the end is a limit
over

↑c

��

p(c) µ //

��

p(f)

↓c′ p(c′) ν // p(e)

τ

OO

(covariantly in c′ and contravariantly in c)

2. ∫
c
Homν(e, c) × Fµ(c′, f) = Fτ(e, f) in which the coend is a colimit over

↑c p(c) µ // p(f)

↓c′

OO

p(c′)

OO

p(e)

τ

OO

ν
oo
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(contavariantly in c′ and covariantly in c) and Homν(e, c′) × Fµ(c, f) is
shorthand for the collection of sets Homνi(ei, c′i)× × Fµi(ci, fi), where the
fi are the components of f .

4.78. From the Proposition the following formula follows:

∫C/I Fν(c′, c) ≅ ∫((Cop×C)/I)/OHomτ(Homν′(c′, d′), Fν(c, d)). (41)

4.79. Given simplicially enriched functors between simplicially enriched oper-
ads F,G ∶ C → D, we first define the structure of simplicially enriched operad on
(Cop × C)/I defining with the notation of (39)

Hom((c′, c, ν), (e′, e, µ)) ∶= ∏
Hom↑↓I(ν,µ)

Homα(ι●c, e) ×Homα′(e′, ι′●c′).

It is immediate that the functor

Hom ∶ (Cop × C)/I → (Set∆
op

,×)

c, c′, ν ↦ Homν0
(c′0, c0), . . . ,Homνn

(c′n, cn)
becomes simplicially enriched via composition in C. For a simplicially enriched
functor

F ∶ (Cop × C)/I → (Set∆
op

,×) (42)

we define the relative enriched end as

∫C/I F ∶= lim(∏c∈C[1] Fidp(c)(c, c)

//
// ∏c∈C,c′∈C[1],ν∶p(c)→p(c′)Hom(Homν(c, c′), Fν(c, c′))).

We also have for the enriched natural transformations

HomI(F,G) ≅ ∫C/I Homν(F (c′),G(c))

with the relative enriched end.

The set of coherent transformations (Cordier-Porter) CohI(F,G) is a coher-
ent enhancement of this (cf. [19] for the case of simplicially enriched categories).

Definition 4.80. We define a simplicially enriched functor of operads

Ĥom ∶ (Cop × C)/I → (Set∆
op

,×)

specified for d ∈ C[1] by41:

c, d, ν, [n]↦ ∏
c0,...,cn

(HomCact(c, c0)[n]×HomCact(c0, c1)[n]×⋅ ⋅ ⋅×HomCact(cn, d)[n])ν
41The (...)ν means the fiber over ν of the morphism

HomCact(c, c0)[n] ×HomCact(c0, c1)[n] × ⋅ ⋅ ⋅ ×HomCact(cn, d)[n] → HomIact(p(c), p(d))
induced by p and composition.
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Definition 4.81. Let F be as in (42). We define the relative coherent end
as

∮C/I F ∶= ∫((Cop×C)/I)/OHomτ(Ĥomν′(c′, d′), Fν(c, d))

where the RHS is the operadic enriched end.

Definition 4.82. Given simplicially enriched functors between simplicially en-
riched operads F,G ∶ C → D over I, define the simplicial set of coherent trans-
formations over I as

CohI(F,G) ∶= ∮C/I Homν(F (c′),G(c))

using the relative coherent end.

4.83. We will be interested mainly in the case in which the structure on C is
discrete in which case

Ĥomν(c′, c) = N(c′ ×/Cact Cact ×/Cact c)ν

i.e. the fiber of the nerve of the over-/undercategory associated with c′ and c
in Cact over ν, and the coherent end is defined in terms of the usual operadic
end (not enriched). In this case a coherent transformation F ⇒ G is given by
morphisms F (c)→ G(c) for all objects c and for each (active) morphism c→ c′

1-simplices

F (c) //

��
⇒

F (c′)

��
G(c) // G(c′)

connecting the two compositions and then for each composition c → c′ → c′′

a 2-simplex connecting appropriate compositions of the 0-simplices associated
with c, c′ and c′′, and 1-simplices associated with c→ c′, c′ → c′′ and c→ c′′, and
so forth. This is very similar to a lax natural transformation which is indeed the
special case in which the enrichment is in 1-categories (considered as simplicial
sets).

Lemma 4.84. There is an injection

HomI(F,G)→ CohI(F,G)

Proof. The morphism is induced by the obvious simplicially enriched natural
transformation

Ĥomν(−,−)→ Homν(−,−)
given by composition and (41).

There is the following important relation between coherent transformations
and the naive deformations (Definition 4.33):
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Proposition 4.85. Consider simplicially enriched operads C,D, I with discrete
enrichment on I. Let C → I and D → I be cofibrations of simplicially enriched
operads. Consider Y ∶ C♭ → D♭ and two Y0, Y1 ∶ C → D over I that extend Y as
in 4.32.

There is a natural morphism

exp ∶ Hom(∆1,DefY (C,D))Y0,Y1 → CohI(Y0, Y1).

Proof. An element µ ∈∆n ×∆1 → DefY (C,D) is given by morphisms

µc,c′ ∶ HomC(c, c′)→ HomD(∆1 ×∆n × Y (c), Y (c′)) (43)

compatible with their projections to HomI(p(c), p(c′)) and constant equal to
Y over identities, compatible with composition (via the diagonals ∆1 ×∆n →
(∆1 ×∆n)2), and specialising to Y0, resp. Y1 when restricted to {0} and {1}
(constant in ∆n).

It is mapped to the following element exp(µ) ∈ CohI(Y0, Y1)[n] of the (en-
riched) end: It maps the collection

∆m × c→ c0,∆m × c0 → c1, . . . ,∆m × cm → c′ (44)

of morphisms in C to the following morphism

∆n ×∆m × Y0(c) = Y (c)→ Y1(c′) = Y (c′).

Inserting the morphisms (44) into (43) gives rise to a collection

∆1 ×∆n ×∆m × Y (ci)→ Y (ci+1)

Composing gives a morphism

(∆1)m+2 × (∆n)m+2 × (∆m)m+2 × Y (c)→ Y (c′).

This yields a morphism

∆n ×∆m × Y (c)→ Y (c′)

mapping ∆n to (∆n)m+2 diagonally, ∆m to (∆m)m+2 diagonally and to (∆1)m+2
via them+2 morphisms ∆m →∆1 in their natural order, the first being constant
0 and the last constant 1.

We have to show that this is compatible with face maps. We have a com-
mutative diagram for j = 0, . . . ,m (omitting for simplicity the ∆n-factor):

∆m−1 ×G(c)� _

δj

��

// ∆j
1 ×∆1 ×∆m−j

1 ×G(c)� _

δ

��

// ⋯ //

∆m ×G(c) // ∆j
1 ×∆2

1 ×∆
m−j
1 ×G(c) // ⋯ //

∆j
1 ×∆1 ×G(cm−j−1)� _

δ

��
1

// ∆j
1 ×G(cm−j+1) // ⋯ // G(c′)

∆j
1 ×∆2

1 ×G(cm−j−1) // ∆j
1 ×∆1 ×G(cm−j) // ∆j

1 ×G(cm−j+1) // ⋯ // G(c′)
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with the diagonal δ ∶∆1 →∆2
1, setting c−1 = c and cn+1 = c′, in which the square

1 is commutative by definition of DefY (cf. Definition 4.33). It is clear that
the maps fulfill the defining compatibilies of the enriched end.

4.10 Composition of coherent transformations

4.86. First we discuss the composition of coherent transformation — for sim-
plicity — in the case in which the simplicial structure on the source is discrete.
In this case two coherent transformation f ∶ X ⇒ Y and g ∶ Y ⇒ Z are de-
termined by maps that associate to an n-simplex of the nerve of the following
form

µ ∶ i = i0 → ⋅ ⋅ ⋅→ in = i′

elements

f(µ) ∈ Hom(X(i), Y (i′))[n] g(µ) ∈ Hom(Y (i), Z(i′))[n]

and it is not immediately possible to compose them. This is different after
applying the AW components δl ∶ [i] → [n] and δr ∶ [n − i] → [n] which yields
pairs:

δlµ = (i = i0 → ⋯→ ii → i′) δrµ = (i→ ii → ⋯→ in = i′)
so, by the relations in the relative end, thus

f(µ)i = f(µi) ○X(ii → i′) g(µ)j = Y (i→ ii) ○ g(µj)

where µi = i = i0 → ⋯ → ii = ii and µj = ii → ii → ⋯ → in = i′. Now f(µi) and
g(µj) are elements in Hom(X(i), Y (ii))[i], and Hom(Y (ii), Z(i′))[n−i], respec-
tively. In the Abelian case, we can compose with the Eilenberg-Zilber map and
then compose

Hom(X(i), Y (ii))i ⊗Hom(Y (ii), Z(i′))j
→ Hom(X(i), Y (ii))n ⊗Hom(Y (ii), Z(i′))n → Hom(X(i), Y (i′))n.

(Note that in case of the enrichment F AwHom⊗̃(C∆op
,⊗̃)∨(X,Y ) the composi-

tion morphism even factors over Hom(X(i0), Y (ii))i ×Hom(Y (ii), Z(in))j , cf.
Lemma 5.29).

To discuss this a bit more conceptually, and without the assumption that
simplicial structure on the source is discrete, first a Proposition:

Proposition 4.87. The simplicial object Ĥomν(c, d) (cf. Definition 4.80) has
the following property: There is a morphism

ρ ∶ dec∗ Ĥomτ(c, e)→ ∫
d

Ĥomν(c, d′) ⊠ Ĥomµ(d, e)
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(where the coend is the enriched coend) which is an isomorphism, if the structure
is discrete. Here the RHS is an enriched colimit over:

↑d p(d) µ // p(e)

↓d′

OO

p(d′)

OO

p(c)

τ

OO

ν
oo

Proof. The LHS at i, j is a union of

≅ ∐
c0,...,ci,d0,...,dj

Homτ0
(c, c0)n ×Homτ1

(c1, c2)n ×⋯

×Homτi
(ci, d0)n ×Homτi+1

(d1, d2)n ×⋯ ×Homτn
(dn, e)n

over all decompositions of τ , which is

= ∫
d

∐
c0,...,ci,d0,...,dj

Homν0
(c, c0)n ×Homν1

(c1, c2)n ×⋯

×Homνi
(ci, d)n ×Homµ0

(d, d0)n ×Homµ1
(d1, d2)n ×⋯ ×Homµj

(dn, e)n

by relative Yoneda, Proposition 4.77, 2. Applying the AW components δl, δr
(which is obviously an isomorphism in the discrete case) gives:

→ ∫
d

∐
c0,...,ci

Homν0
(c, c0)i ×Homν1

(c1, c2)i ×⋯

×Homνi
(ci, d)i × ∐

d0,...,di

Homµ0
(d, d0)j ×Homµ1

(d1, d2)j ×⋯ ×Homµj
(dn, e)j

Taking the union one arrives at

∫
d

Ĥomν(c, d′) ⊠ Ĥomµ(d, e)

4.88. Now we are in a position to formalize the composition discussed in 4.86:

CohI(F,G) ×CohI(G,H) = ∫
c,d,e,f

Homπ(τ)(Ĥomν′(c′, d′),Homν(F (c),G(d)))×

Homπ(τ ′)(Ĥomµ′(e′, f ′),Homµ(G(e),H(f)))

where the end is a relative enriched end, an enriched limit over:

c

��

d e

��

f p(c) ν //

��

p(d) p(e) µ //

��

p(f)

c′ d′

OO

e′ f ′

OO

p(c′) ν′ // p(d′)

τ

OO

p(e′) µ′ // p(f ′)

τ ′

OO
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This can be extended to an enriched limit over:

c

��

d // e

��

f p(c) ν //

��

p(d) ρ // p(e) µ //

��

p(f)

c′ d′

OO

// e′ f ′

OO

p(c′) ν′ // p(d′)

τ

OO

ρ′ // p(e′) µ′ // p(f ′)

τ ′

OO

And the map to

c

��

f

c′ f ′

OO p(c) //

��

p(f)

p(c′) // p(f ′)

OO

is a fibration.
We arrive at an end over

→ ∫
c,d→e,f

Homπ(τ)(Ĥomν′(c′, d′) × Ĥomµ′(e′, f ′),

Homν(F (c),G(d)) ×Homµ(G(e),H(f)))

where in the products × the factors are assembled using the new maps ρ and
ρ′. Using the composition in the enrichment of D this maps to:

→ ∫
c,f

Homπ(τ)(∫
d

Ĥomν′(c′, d′) × Ĥomµ′(d, f ′),Homµ(F (c),H(f))).

Composing with δ∗ applied to the map

ρ ∶ dec∗ Ĥomν′(c, d′)→ ∫
d

Ĥomν′(c, d′) ⊠ Ĥomµ′(d, e)

of Proposition 4.87 we have a map to

→ ∫
c,f

Homπ(τ)(δ∗ dec
∗ Ĥomν′(c′, f ′),Homµ(F (c),H(f))).

Defining a cosimplicial simplicial set by

Xn,m ∶= ∫
c,f

Homπ(τ)(Ĥomν′(c′, f ′)n,Hom(F (c),H(f))m)

this can be writen as

∫
n
Hom(δ∗ dec∗∆n,Xn,●)

(This is also

= ∫
n
Xdec δn,m

in degree 0. )
Hence to define a composition one must specify a morphism

∫
n
Hom(δ∗ dec∗∆n,Xn,●)→ ∫

n
Hom(∆n,Xn,●). (45)
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1. Case Hom = F AwHom⊗̃C∆op
,⊗̃ with C Abelian (i.e. the usual simplicial

enrichment of complexes):

Here Xn,● is of the form FX ′n,● where X ′n,● is a cosimplicial object in
complexes of Abelian groups, and

∫
n
Hom(δ∗ dec∗∆n, FX

′
n,●) = ∫

n
Hom(δ∗ dec∗Z[∆n],X ′n,●)

and we may just compose with the “EZ-counit” (cf. 4.62 and Defini-
tion 4.63): ‘cop’ ∶ δ∗ dec∗Z[∆n]→ Z[∆n].
This composition can be described differently. In this case, we arrive at
an end over

→ ∫
c,d→e,f

Homπ(τ)(Z[Ĥomν′(c′, d′)] ⊠Z[Ĥomµ′(e′, f ′)],

Hom⊗̃ν (F (c),G(d)) ⊠Hom⊗̃µ(G(e),H(f)))

and can apply dec∗ to arrive at

→ ∫
c,d→e,f

Homπ(τ)(dec∗Z[Ĥomν′(c′, d′)] ⊠Z[Ĥomµ′(e′, f ′)],

Hom⊗̃ν (F (c),G(d)) ⊗̃Hom⊗̃µ(G(e),H(f)))

Now apply the composition in Hom⊗̃C∆op
,⊗̃ directly to arrive at

→ ∫
c,e

Homπ(τ)(∫
d

dec∗Z[Ĥomν′(c′, d)] ⊠Z[Ĥomµ′(d′, e′)],

Hom⊗̃ν (F (c),H(e)))

Then, as dec∗ ≅ tot clearly commutes with colimits in the category of
complexes of Abelian groups, using Proposition 4.87, this maps to

→ ∫
c,e

Homπ(τ)(dec∗ dec
∗Z[Ĥomν′(c′, e′)],Hom⊗̃ν (F (c),H(e)))

and after compositing with the unit at

→ ∫
c,e

Homπ(τ)(Z[Ĥomν′(c′, e′)],Hom⊗̃ν (F (c),H(e)))

It is an exercise to see that this yields the same composition, and also that
it is the abstract description of the construction in 4.86.

2. General case. In [19, Theorem 4.4] you may find a construction of a
map (45), if Xn,● is (point-wise in n) a weak Kan complex (i.e. a quasi-
category). Since the “EZ-counit” always exists (without passing to the
homotopy category) on symmetric objects, i.e. in objects in the image
of ι∗, one could try to proceed as follows: Resolve the canonical cosim-
plicial object ∆n ↪ ι∗∆n,s into something symmetric, e.g. ∆n ↪ ι∗C∆n
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(Lemma 4.57). If this can be done in such a way that there is a lift
(functorial in the cosimplicial direction)

δ∗ dec∗∆n
//

� _

��

Xn,●

δ∗ dec∗ ι∗∆n,s

88

assuming, say, that Xn,● is a (weak) Kan complex, then we can compose
the lifted morphism with the “EZ-counit” also here

∆n
� � // ι∗∆n,s c

//

‘c’

))
ι∗δ∗s dec

∗
s ∆n,s

// δ∗ dec∗ ι∗∆n,s

to get the morphism

∫
n
Hom(δ∗ dec∗∆n,Xn,●)→ ∫

n
Hom(∆n,Xn,●).

I ignore whether this is possible. Notice that point-wise (fixing n) such
a lift exists, if we take ∆n,s ∶= C∆n (Lemma 4.57) and if Xn,● is a Kan
complex, for the morphism δ∗ dec∗∆n → δ∗ dec∗ ι∗∆n,s is clearly injective
and a weak equivalence because δ∗ dec∗ preserves weak equivalences by
Lemma 4.56. It is therefore a trivial cofibration.

4.11 Explicit formulæ

The following gives explicit formulas for dec! and dec∗ in the general case. If C
is Abelian, they can be simplified, cf. Proposition 5.39.

Proposition 4.89. Let C be a (∞-)category.

1. Assume that C is finite cocomplete. Then a left adjoint dec! of dec
∗ exists

and is given point-wise by:

(dec!X)n = ∐
[i]∗[j]=[n]
[i],[j]∈∆op

∅

(i!X)i,j

where (i!X)i,j =Xi,j for [i] /= ∅ and [j] /= ∅ and (i!X)i,∅ = colimXi,− and
the same switched.

2. Assume that C is finite complete. Then a right adjoint dec∗ of dec
∗, which

is often called the Artin-Mazur codiagonal or, when C = Set, the total
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simplicial set, exists, and is point-wise given by:

(dec∗X)[n] =

lim

⎛
⎜⎜⎜⎜⎜
⎝

X[n],[0]

$$

X[n−1],[1]

yy ##

⋯ X[0],[n]

}}
X[n−1],[0] ⋯

⎞
⎟⎟⎟⎟⎟
⎠

where the maps are (id, δ0) ∶X[i],[n−i] →X[i],[n−i−1] and (δi+1, id) ∶X[i+1],[n−i−1] →
X[i],[n−i−1].

Proof. 1. follows from dec∅ being a cofibration with discrete fibers (cf. Lemma 4.11)
and the formula dec! = ι∗ dec∅,!(ι, ι)! (Lemma A.5). For 2. we have to establish
a final functor

Z → [n] ×/∆op (∆op)2

where Z is the zig-zag shaped category depicted in the statement. This can be
done by mapping (i, j), i + j = n to the obvious composition [n] ≅ [i] ∗′ [j] ↞
[i]∗ [j] and (i, j), i+ j = n−1 to the isomorphism [n] ≅ [i]∗ [j]. Morphisms are
mapped to the obvious face maps. To see that it is final, factor

Z → ([n] ×/∆op (∆op)2)′ → [n] ×/∆op (∆op)2

where ([n] ×/∆op (∆op)2)′ is the full subcategory of those morphisms α ∶ [n] ←
[i]∗[j] such that the composition with the faces [i]∗[j]↩ [i] and [i]∗[j]↩ [j]
is a face. Notice that this is a poset. This inclusion has a right adjoint given
by factoring [n] ← [i] ∗ [j] into [n] ↩ [i′] ∗ [j′] ↞ [i] ∗ [j], the epi-mono
factorization, and is thus ∞-final. The posets

α ×/([n]×/∆op(∆op)2)′ Z

are all isomorphic to connected subposets of Z which are obviously contractible.

5 Abelian foundations

5.1 Dold-Kan

Theorem 5.1 (Dold-Kan). For an Abelian category C, there is an equivalence
of categories

Ch≥0(C) ≅ C∆
op

.

One elegant way of formulating this starts with the observation that functors

∆op → C

are the same as additive functors

Z[∆op]→ C
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and, since in C all idempotents split, the same as additive functors

Z[∆op]Kar → C

where Z[∆op]Kar is the Karoubi closure, in which splittings for all idempotents
are formally adjoined to Z[∆op]. Similarly, Ch≥0(C) is the same as the category
of additive functors

CH≥0 → C
where CH≥0 is the additive category consisting of finite coproducts (in fact
biproducts) of objects Di, i ≥ 0 with

Hom(Di,Dj) =
⎧⎪⎪⎨⎪⎪⎩

Z if i ∈ {j, j + 1}
0 else

. (46)

One can therefore state the Dold-Kan theorem as

Theorem 5.2 (Dold-Kan (variant)). There is an equivalence of categories:

Z[∆op]Kar ≅ CH≥0.

Instead of trying to prove this directly, it is, however, easier to realize the
dual categories ∆ and CHop

≥0 inside Ch≥0(Abfg). This also gives explicit functors.

5.3. We first define
Γ ∶ C∆

op

→ Ch≥0(C)
called functor of normalized chains, setting: Γ(C)n ∶= Cnd

n and d ∶= ∑n
i=0(−1)iδi.

It is an easy verification that d2 = 0 and that d descends to a map Cnd
n → Cnd

n−1.
The functoriality in C is clear.

This allows us to define the following cosimplicial object in Ch≥0(Abfg),
applying Γ w.r.t. C = Abfg:

Definition 5.4.
∆○n ∶= Γ(Z[∆n]).

The following follows directly from the definition:

Lemma 5.5. We have explicitly

(∆○n)m = Z[Hominj
∆ ([m], [n])]

whose basis can be identified with subsets S ⊂ {0, . . . , n} of Cardinality m + 1.
The differential is given on basis elements by

d ∶ [S]↦∑
i

(−1)i[S ∖ {xi}]

where S = {x0, . . . , xm} with x0 < ⋅ ⋅ ⋅ < xm.

This not only defines a cosimplicial object but even
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Lemma 5.6. The association (5.4), a priori a functor ∆→ Ch≥0(Abfg), extends
to a functor

∆○ ∶ FinSet→ Ch≥0(Abfg).
Proof. An arbitrary map α ∶ {0, . . . , n}→ {0, . . . , n′} induces

(∆○n)m → (∆○n′)m
mapping (a basis element identified as in Lemma 5.5)

[S]↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[α(S)] if #α(S) =#S and the induced permutation is even,

−[α(S)] if #α(S) =#S and the induced permutation is odd,

0 otherwise.

(The “induced permutation” is the permutation of α(S) bringing the elements
α(x0), . . . , α(xn) into the correct order). One has to check that this respects the
differential. This holds by construction if α is order preserving, i.e. a morphism
of ∆. Furthermore, for the neighboring transposition (i i + 1) the formula

(i i + 1) = − id+disi + di+1si (47)

holds true — which is easily checked on a basis — and morphisms in FinSet
are obviously generated by morphisms in ∆ and neighboring transpositions.
Therefore this respects the differential in any case.

5.7. Similarly, also CHop
≥0 can be realized inside Ch≥0(Abfg), defining

Di ∶= (⋯→ 0→ Z→ Z→ 0→ ⋯→ 0)

where the Z are in degree i and (for i > 0) i − 1. The equality (46) is obvious.
Note that

Hom(Di,C) ≅ Ci (48)

for all i ≥ 0 and C ∈ Ch≥0(Ab).
To prove Dold-Kan using ∆○, the following is crucial:

Key Lemma 5.8. We have42

∆○,ndn ≅Dn.

Proof. It follows from formula (47) that, on the non-codegenerate part ∆○,ndn ,
i.e. the joint kernel of all the degeneracies, Sn acts by the sign character. (∆○n)n
is one dimensional, generated by [{0, . . . , n}] which does transform according to
the sign character. (∆○n)n−1 is generated by [{0, . . . , î, . . . , n}], i = 0, . . . , n. Ap-
plying the transposition (i j) we see that (for an element transforming according
to the sign character) the coefficient of [{0, . . . , î, . . . , n}] must be (−1)i−j times
the coefficient of [{0, . . . , ĵ, . . . , n}]. Hence (∆○,ndn )n−1 is one dimensional as
well, generated by d[{0, . . . , n}]. The basis element [S] for any S ⊂ {0, . . . , n}
with at least two elements i, j missing is fixed by the transposition (i j). Hence
(∆○,ndn )m = 0 for m < n − 1.

42∆○ is a cosimplicial object. The non-degenerate part, and also references to Lemma 4.5,
are meant w.r.t. the simplicial object (∆○)op ∶∆op → Ch≥0(Abfg)op.
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Corollary 5.9. The induced functor

Z[∆○] ∶ Z[∆]→ Ch≥0(Ab)

is fully-faithful.

Proof. Fix n and consider the morphism of simplicial Abelian groups

Z[Hom∆([m], [n])]→ Hom(∆○m,∆○n).

By Lemma 4.5 it suffices to show that it is an isomorphism for the non-degenerate
quotient, i.e.

Z[Hominj
∆ ([m], [n])] ≅ Hom(∆○,ndm ,∆○n).

Since ∆○,ndm ≅Dm by Lemma 5.8, this follows directly from the Definition of ∆○n
(cf. Lemma 5.5).

Lemma 5.8 together with Lemma 4.5 (applied to the simplicial object (∆○)op ∶
∆op → Ch≥0(Abfg)op) gives an isomorphism

gr∆○m ≅ ⊕
∆m↠∆n

Dn

and since the Dn are obviously projective by (48), we have non-canonically

∆○m ≅ ⊕
∆m↠∆n

Dn. (49)

This gives a proof of Dold-Kan in the first variant because this decomposition
exists thus in Z[∆]Kar by Corollary 5.9.

5.10. As a complex C =∆○n has also the canonical filtration:

FmC ∶= (⋯→ Cm+2 → Cm+1 → d(Cm+1)→ 0→ ⋯→ 0.)

Isomorphism (49) shows a posteriori that on ∆○n, the filtration by codegeneracy
degree and the canonical filtration agree.

We now proceed to give a second, more explicit, proof of Dold-Kan in the
following variant

Theorem 5.11 (Dold-Kan (2nd variant)). The functors

C∆op R //
Ch≥0(C)

N
oo

given by
N(C) ∶∆n ↦HOMr(∆○n,C)

and

R(A) ∶= ∫
n

∆○n ⊗A[n]
constitute an adjoint equivalence of categories.
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5.12. Here the following is used. We have an obvious functor in two variables

HOMl ∶ Cop ×Ch≥0(C)→ Ch≥0(Ab)

(induced by the canonical enrichment Cop × C → Ab) which has a (partial) left
adjoint

⊗ ∶ Ch≥0(Abfg) × C → Ch≥0(C)
(induced by the tensoring C ×Abfg → C) which has another right adjoint

HOMr ∶ Ch≥0(Abfg)op ×Ch≥0(C)→ C.

(if C = Abfg, then this is just the usual group of morphisms of complexes).

Proof. The fact that R (realization) is left adjoint to N (nerve) holds in much
greater generality and nothing has to be assumed about the cosimplicial object
∆○ ∶ ∆ → Ch≥0(Ab). The equivalence needs more assumptions. In the more
general setting, usually ∆○ is called dense, if N is fully-faithful.

Here the statement follows immediately from the following three facts:

(i) N is conservative.

(ii) HOMr(∆○n,−) commutes with ⊗43 and colimits.

(iii) Z[∆○] ∶ Z[∆]→ Ch≥0(Abfg) is fully-faithful.

Proof of the facts: (i) means that the functors HOMr(∆○n,−) are jointly conser-
vative. This is certainly the case for the functors HOMr(Dn,−). However, by
(49), there are split epimorphisms ∆○n →Dn. (ii) follows also immediately from
(49) because obviously HOMr(Dn,−) commutes with colimits and ⊗. (iii) is
Corollary 5.9.

To prove the equivalence, it suffices to see that (ii) and (iii) imply that R is
fully-faithful: We have (functorially in n):

HOMr(∆○n,∫
m

∆○m ⊗C[m])

≅∫
m

HOM(∆○n,∆○m)⊗C[m] (by ii)

≅∫
m

Z[Hom∆([n], [m])]⊗C[m] (by iii)

≅∫
m

Hom∆([n], [m]) ×C[m]
≅C[n] (coend Yoneda)

Remark 5.13. The functor R (realization) is nothing else then the functor Γ
introduced earlier. In fact we have proven that

HOM(∆○n,R(C)) = C[n]
43in the sense that HOMr(∆○n,A ⊗ C) ≅ HOM(∆○n,A) ⊗ C via the canonical morphism,

for A ∈ Ch≥0(AB) and C ∈ Ch≥0(C)
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functorially in [n] and Dn = ker(∆○n → ∆○k) joint kernel of all degeneracies
∆n↠∆k. Therefore

R(C)n = Hom(Dn,R(C)) = Cnd
[n]

and the differential, which comes from the morphism Dn → Dn+1, is given by
the alternating sum of the δi.

5.2 The coherent Eilenberg-Zilber Theorem for Abelian
categories

We have seen in Lemma 4.58 that the symmetry operator C (cf. Lemma 4.57)
can, in the Abelian case, be given by an Abelian pro-functor (in two ways).
Likewise, the natural transformations Aw and Ez can be given by morphisms of
Abelian pro-functors where, by abuse of notation, dec denotes Z[dec] ∶ Z[∆op]⊗
Z[∆op]→ Z[∆op] and δ denotes Z[δ] ∶ Z[∆op]→ Z[∆op]⊗Z[∆op]:

Aw ∶ dec
uop
// dec tdec tδ // tδ (50)

Ez ∶ tδ // tδ tdec dec

∼
��

dec

∼
��

tδ tdec tιCop dec = tι tδs
tdecs C

op dec
cop // tιCop dec

(51)

It is immediate that for an Abelian category C, RC(Aw) is the map Aw, and
RC(Ez) is the map Ez, both defined in Definition 4.63. We will prove later
(cf. Proposition 5.42) that the latter are nothing but the classical Alexander-
Whitney and Eilenberg-Zilber maps.

We have EzAw = id already on the level of profunctors and:

Definition/Lemma 5.14. The following map Ξ1 ∈ Hom(δ, δ)[1] (4.37)

δ dec
∼ // dec13,24 δ12,34

dec13,24 ○(id,t(AwEz)) // dec13,24 δ12,34
∼ // δ dec (52)

is called the Shih-operator and constitutes a homotopy between t(AwEz) and
id.

The fact that this yields a homotopy as claimed follows from (the proof of)
Proposition 4.39. It will be reproven in the following Theorem which yields a
coherent version. Later we will derive an explicit formula (Proposition 5.46)

Theorem 5.15. The (appropriate part of the) diagram of operads (34) extends
to a diagram of Ab-enriched operads and oplax pro-functors (cf. 2.43)

Z[(FinSet,∐)]

Z[(∆,∐)]

ιδ

77

Z[(∆,∗)]
ιdec

gg

''

C

forget
oo

126



with C ιdec ≅ id and setting

AW ∶= forgetop EZ ∶= (C ιδ)op

we have:

1. Both morphisms are the identity on objects.

2. Over δ1 ∶ [2] → [1], we reobtain the maps Aw (50) and Ez (51) as the
oplaxness constraint.

3. We have EZAW = id and there is a homotopy (see 4.40 for the Definition
of Def on the level of pro-functors):

Ξ ∈ Def(Z[(∆op,∐)],Z[(∆op,∐)])id,[1]

connecting (EZAW)∨ and id, which yields over δ1 the Shih-operator de-
fined in Definition 5.14. There is also a homotopy

Ξ∨ ∈ Def(Z[(∆,∐)op],Z[(∆,∐)op])id,[1]

connecting EZAW and id. (In both cases the simplicial structure comes
from Proposition 4.29.)

Proof. All operads, being exponential, are given by functors

O =∆op → (AbCatPF,×)

mapping δ1 to δ, tdec and δs = tdecs (on FinSet). The identification for the
pro-functors associated with δ1 in the bottom row are more precisely:

ι(δ) ∶ [n], [m]; [k]↦Hom(∆,∐)([n], [m]; [k])
≅Hom([n], [k]) ×Hom([m], [k]) ≅ Hom(([n], [m]); δ([k]))

tι(dec) ∶ [n], [m]; [k]↦Hom(∆,∗)([n], [m]; [k]) ≅ Hom( [n] ∗ [m]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶dec([n],[m])

; [k])

and the morphism “forget” is induced by the inclusions [n] ↪ [n] ∗ [m] and
[m]↪ [n] ∗ [m] (morphisms in ∆). The morphism (50) is the same map.

The existence of C and the isomorphism Cιdec ≅ id will be shown in Lemma 5.17
below. In the following diagram the left hand side composition is the laxness
constraint from C ιδ and the right hand side composition is the previous map
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(51):
tδ

��uu

1

tδ tιCop

ιδ 2

&&

��

tδ tdec dec

��
tδ tdec tιCop dec

��
tδ tι tdecs decs C

op

��

// tδ tι tdecs C
op dec

��
tι tδs

tdecs decs C
op

��

// tι tδs tdecs C
op dec

��
tι decs C

op // tιCop dec

��
dec

Here diagram 1 commutes because of relation C ιdec = id and diagram 2 by
definition of the constraint in ιδ (notice that tδs = decs). The assertion EZAW =
id is clear because we have ιδ forget = ιdec. The operator Ξ is constructed
applying Proposition 4.45.

First, we have seen in Proposition 4.29 that the “simplicially enriched struc-
ture” on ∆op extends to the exponential operad (∆op,∐) by means of a functor

∆∅ → Hom1−oplax,1−inert−pseudo(Oop, (CatPF,×)∨)

such that p∅ is mapped to tπ (point-wise) and all oplaxness constraints are
actually isomorphisms, to the extent that the condition that (EZAW)∨ (i.e. the
mate of EZAW passing to the right adjoints in the δ-direction) maps to the
canonical element is vacuous. By Proposition 4.45 there exists therefore

Ξ ∈ Def(Z[(∆op,∐)],Z[(∆op,∐)])id,[1]
connecting id and (EZAW)∨. By construction it yields the operator defined
in Definition 5.14 as oplaxness-constraint for δ1 ∶ [2] ↩ [1]. Similarly, the
“simplicially enriched structure” on ∆op extends to the exponential cooperad
(∆,∐)op by means of a functor

∆∅ → Hom1−oplax,1−inert−pseudo(O, (CatPF,×))

such that p∅ is mapped to tπ (point-wise) and the oplaxness constraints for p∅
are isomorphisms. There exists therefore

Ξ∨ ∈ Def(Z[(∆,∐)op],Z[(∆,∐)op])id,[1]
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connecting id and EZAW. (Actually, this is just the mate of Ξ passing to the
right adjoints in the δ direction).

Let (C,⊗) be a tensor Abelian category. Applying Day convolution (cf. also
4.16) to the cooperad (C,⊗)∨, we get:

Corollary 5.16 (Coherent Eilenberg-Zilber for Abelian categories). The mor-
phisms of cooperads44 AW ∶= R(C,⊗)∨(AW) = L(C,⊗)∨(tAW) and EZ ∶= R(C,⊗)∨(EZ) =
L(C,⊗)∨(tEZ)

(C∆op

,⊗)∨
AW

,,
(C∆op

, ⊗̃)∨

EZ

ll

are the identity on objects, and satisfy AWEZ = id and

L(C,⊗)∨(Ξ∨) ∈ Def((C∆
op

,⊗)∨, (C∆
op

,⊗)∨)id,[1]

constitutes a homotopy45 between EZAW and id. Likewise

L(C,⊗)(Ξ) ∈ Def((C∆
op

,⊗), (C∆
op

,⊗))id,[1]

constitutes the same element by means of interpreting the deformations as de-
formations of ⊗.

In the proof of Theorem 5.15 the following was used:

Lemma 5.17. The point-wise application of C yields an oplax pro-functor (cf.
2.43) of Ab-enriched operads

C ∶ Z[(FinSet,∐)]→ Z[(∆,∗)]

and the point-wise application of tC a coCartesian lax pro-functor, satisfying:

C ιdec ≅ id . (53)

Proof. It suffices to construct natural isomorphisms

dec C ≅ C decs

(the constraint for C is then the mate C tdecs → tdec C, whose mate in turn is
the adjoint tdecs

tC ≅ tC tdec) and natural isomorphisms

πC ≅ π.
44Note that AW and EZ, being the identity on objects, have trivial lax mates tAW and tEZ

(with the same constraints) and the equality of L and R has been discussed in (2.43). It does
not involve forming tAw for the transformation Aw ∶ tδ⇒ dec where the operation would not
make sense!

45The simplicially enriched structure to define Def is the discrete one on the source and
the point-wise tensoring on the target (cf. also Proposition 4.29). While this implies thus a
certain coherence, it does not say that EZAW, let along Ξ, is a simplicially enriched natural
transformation w.r.t. the latter enrichment, which it is certainly not.
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Equivalently, we may construct:

LAb((tdec)op)LAb((tC)op) ≅ LAb((tC)op)LAb((tdec)op)
ρ ∶ dec∗s C ≅ Cdec∗

and where dec now denotes ∆op×∆op →∆op and decs denotes FinSet
op ×FinSetop →

FinSetop (we omit the op).

Given a complex X, we get the object CX in AbFinSet
op

as

(CX)[n] = Hom(∆○n,X)

with the natural action of FinSet on ∆○n. We have

(Cdec∗X)[i],[j] = Hom(∆○i ⊠∆○j ,dec∗X) = Hom(dec!∆○i ⊠∆○j ,X)

with the natural action of FinSet×FinSet on ∆○i ⊠∆○j . On the other hand, we
have

(dec∗s CX)[i],[j] = Hom(∆○i+j+1,X)
with the action of FinSet×FinSet on ∆○i+j+1 via decs. There is a canonical
isomorphism

dec!∆
○
i ⊠∆○j ≅∆○i+j+1

and the assertion boils down to its compatibility with the actions of FinSet×FinSet.
Furthermore, we have

π ≅ π ιC ≅ πC
This yields the morphism. It has a mate which can also be described as

π ≅ tC tι π ≅ tC π

It is also an isomorphism due to the finality of ιop. We leave to the reader to
check the compatibilities.

(53) holds point-wise, and the compatibility of oplaxness constraints trans-
lates to the commutativity of

dec∗

∼
��

∼ // ι∗Cdec∗

ρ

��
dec∗ ι∗C ι∗ dec∗s C

which holds by construction.

5.3 The higher Shih operators

Theorem 5.15 states that the value of

L(C,⊗)∨(Ξ∨) ∈ Def((C∆
op

,⊗)∨, (C∆
op

,⊗)∨)id,[1]
at δ1 ∶ [2] → [1] is the Shih operator defined in Definition 5.14. We will also
discuss briefly the “higher information” contained in Ξ∨. The most useful form
is to map the transformation of L(C,⊗)∨(Ξ∨) as follows:
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5.18. Recall (Corollary 5.16) that the two morphisms of cooperads

(C∆op

,⊗)∨
id //

EZ○AW
// (C∆

op

,⊗)∨

are connected by a naive homotopy

L(C,⊗)∨(Ξ∨) ∈ Def((C∆
op

,⊗)∨, (C∆
op

,⊗)∨)id,[1]

(w.r.t. the trivial enrichment on the left and FHom⊗ on the right). This is
mapped via (4.85) to a coherent transformation

H ∶= exp(L(C,⊗)∨(Ξ∨)) ∈ Coh(id,EZ ○AW)[0]

(with the same enrichments). To this coherent transformation we may apply

Ez∗ (Proposition 5.31, 1.) to change the enrichment to FHom⊗̃,⊗ which is a
weak enrichment. The transport works because the trivial enrichment is chosen
on the source.

We ignore units, that is, consider the cooperads as cooperads over O○,op

forgetting the structure involving the counit. The components of this coherent
tranformation are thus determined in dimension [k] by a map which sends an
element

[k + 1] [k + 1]
δi0+1 // [k] // ⋯

δik−1+1// [1] [1]

in N([k + 1] ×/∆○,opact
∆○,opact ×/∆○,opact

[1])[k] — which we identify with the vector

i = (i0, . . . , ik−1) — to a map

(Ez∗H)i ∶∆k+1 ⊗̃X⊗k →X⊗k

which corresponds (via 5.28) to a degree k + 1-map between complexes:

(Ez∗H)ni ∶ (X⊗k)n−k → (X⊗k)n.

5.19. (Higher Shih operators) For a sequence b0 > b1 > ⋯ > bk−1 ⊂ {0, . . . , n−
1}, and i0, . . . , ik−1, with 0 ≤ ij ≤ k− j −1, we would like to iterate the morphism
Hn
(b),(0) ∶= (id[b] ∗EzAw)sb. Define46 inductively:

Hn
b,i ∶(δ∗kX)[n−k] → (δ∗kX)[n]
∶=( 1®

i0 times

, (id[b0] ∗EzAw), 1®
k−i0−1 times

)sb0(− ○ δ∗i0)H
n−1
b′,i′ (54)

where b′ = (b1, . . . , bk−1) and i′ ∶= (i1, . . . , ik−1).
46we have the factorization ∆op → (∆op)k−1 → (∆op)k where the second map doubles the

i0-th entry. This gives a transport

(− ○ δ∗i0) ∶ Hom(δ∗k−1, δ
∗
k−1)→ Hom(δ∗k , δ

∗
k).
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5.20. Each such sequence b = (b0, . . . , bk−1) determines a shuffle σb ∶ [k]→ [n],
τb ∶ [n − k] → [n] such that τb = sb0sb1⋯sbk−1 is degenerate precisely at the
intervals bi+1 and σb is degenerate precisely at the other intervals in {1, . . . , n}.

Proposition 5.21. We have

(Ez∗H)ni =∑
b

sgn(σb)Hn
b,i.

Proof. This follows from the construction of exp (cf. Proposition 4.85) and from
the fact that Ez is the classical Eilenberg-Zilber map defined in terms of shuffles
(Proposition 5.42).

We will derive explicit formulas for the Hn
b,i in Proposition 5.51 and relate

them to the classical Szczarba operators.

5.4 The different simplicial (weak) enrichments on com-
plexes

Let (M,⊗) be a symmetric monoidal category. Recall the definition of operad
enriched in (M,⊗). Each enriched operad C has an underlying usual operad
with Hom-sets being Hom(1,Hom(X,Y )) for Y ∈ C[1] and it induces a functor

Hom ∶ (Cop × C)/O → (M,⊗)

(for the definition of (Cop ×C)/O, see Definition 4.72). An enriched operad such
that the underlying operad comes from a monoidal category is not necessarily
cofibered as enriched category over O. This is the case if and only if it is classified
by a functor of operads

O → (SCat,×)
in which case the monoidal product has the structure of simplicially enriched
functor.

Definition 5.22. We say that an operad C is weakly enriched over (M,⊗),
if there is a functor of operads

Hom ∶ (Cop × C)/O → (M,⊗)

such that the composition with Hom(1,−) gives back the usual operadic Hom
(40).

Equivalently, it may be seen as a collection of Hom(X,Y ) for pairs of objects
with Y ∈ C[1], but where composition is only defined partially with “constant
morphisms” for Z ∈ C[1]:

Hom(1,Hom(X1, Y1)) ×⋯ ×Hom(1,Hom(Xn, Yn)) ×Hom(Y,Z)→ Hom(X,Z)
(55)

Hom(X1, Y1)⊗⋯⊗Hom(Xn, Yn) ×Hom(1,Hom(Y,Z))→ Hom(X,Z)
(56)
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Notice that, for a weak enrichment on a category C, the monoidal struc-
ture on M is irrelevant (except for the unit). However, this is not true for
weak enrichments of operads, in (56) ⊗ is the tensor product w.r.t. which the
weak enrichment is defined. Similarly, there is the notion of weakly enriched
functor.

5.23. For a morphism of operads G ∶ (M,⊗) → (M′,⊗′) (i.e. a lax monoidal
functor) and an operad C (weakly) (M,⊗)-enriched there is a (weak) (M′,⊗′)-
enrichment given by

GHom(X,Y ).
For a functor F ∶ C → C′ of cooperads (weakly) enriched over (M,⊗) there is an
induced functor GF of (M′,⊗′)-enriched (co)operads.

5.24. Everything has a dual counterpart for cooperads. For example a weak
enrichment on a cooperad C is a functor of operads:

Hom ∶ (C × Cop)/O → (M,⊗).

Equivalently, it may be seen as a collection of Hom(X,Y ) for pairs of objects
with X ∈ C[1], but where composition is only defined partially with “constant
morphisms”:

Hom(X,Y ) ×Hom(1,Hom(Y1, Z1)) ×⋯ ×Hom(1,Hom(Yn, Zn))→ Hom(X,Z)
Hom(1,Hom(X,Y )) ×Hom(Y1, Z1)⊗⋯⊗Hom(Yn, Zn)→ Hom(X,Z)

5.25. Let (C,⊗) be an Abelian tensor category. Recall the Day convolutions

(C∆
op

,⊗)∨ =D((∆,∐)op, (C,⊗)∨) (57)

(C∆
op

, ⊗̃)∨ =D((∆,∗)op, (C,⊗)∨) (58)

(i.e. ⊗ ∶= δ∗−⊠− is the point-wise product of simplicial objects, and ⊗̃ ∶= dec∗ −⊠
−, where dec∗ ≅ tot, is the usual tensor product of complexes). We will define

natural (weak) (Ab∆
op

,⊗)-enrichments, as well as (Ab∆
op

, ⊗̃)-enrichments on
these cooperads:

Definition 5.26. Let (C,⊗) be an Abelian tensor category.

For objects X ∈ C∆op

[1] and Y ∈ C∆op

[m] we define the following objects in Ab∆
op

whose n-simplices are given by

Hom⊗(C∆op
,⊗)∨(X,Y )[n] = Hom(∆n ⊗X,Y1 ⊗⋯⊗ Ym) (59)

Hom⊗̃(C∆op
,⊗)∨(X,Y )[n] = Hom(∆n ⊗̃X,Y1 ⊗⋯⊗ Ym) (60)

Hom⊗̃(C∆op
,⊗̃)∨(X,Y )[n] = Hom(∆n ⊗̃X,Y1 ⊗̃ ⋯ ⊗̃ Ym) (61)
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We define a composition (in (Ab∆
op

,⊗) ) given47 for f ∈ Hom∗∗(X;Y1, Y2)[n]
and g1 ∈ Hom∗∗(Y1;Z1)[n] and g2 ∈ Hom∗∗(Y2;Z2)[n] by
(g1, g2) ○ f ∶ ∆n ⊗X →∆n ⊗∆n ⊗∆n ⊗X →∆n ⊗∆n ⊗ Y1 ⊗ Y2

→ ∆n ⊗ Y1 ⊗∆n ⊗ Y2 → Z1 ⊗Z2 (62)

(g1, g2) ○ f ∶ ∆n ⊗̃X → (∆n ⊗∆n) ⊗̃∆n ⊗̃X → (∆n ⊗∆n) ⊗̃ (Y1 ⊗ Y2)
→ (∆n ⊗̃ Y1)⊗ (∆n ⊗̃ Y2)→ Z1 ⊗Z2 (63)

(g1, g2) ○ f ∶ ∆n ⊗̃X →∆n ⊗̃∆n ⊗̃∆n ⊗̃X →∆n ⊗̃∆n ⊗̃ Y1 ⊗̃ Y2
→ ∆n ⊗̃ Y1 ⊗̃∆n ⊗̃ Y2 → Z1 ⊗̃Z2 (64)

where in (63) the morphism

switch ∶ (∆n ⊗∆n) ⊗̃ (Y1 ⊗ Y2)→ (∆n ⊗̃ Y1)⊗ (∆n ⊗̃ Y2)
is defined in Definition 5.33 and the morphisms ∆n → ∆n ⊗∆n (resp. ∆n →
∆n ⊗̃∆n) are the diagonal (resp. AW-diagonal). The maps (62–64) are bilinear
in f , g1, and g2, and thus extend to the tensor product.

There is an operad version of these enrichement as well, defined in the same
way. Notice that for n = 0 we get back the usual Abelian groups Hom in
(C∆op

,⊗)∨ resp. (C∆op

, ⊗̃)∨.
Lemma 5.27. The compositions (62) and (64) are associative and define an

enrichment, denoted Hom⊗(C∆op
,⊗)∨(X,Y ), and48 Hom⊗̃(C∆op

,⊗̃)∨(X,Y )
′, respec-

tively, of the cooperads (C∆op

,⊗)∨, and (C∆op

, ⊗̃)∨, respectively, such that the
enrichments are again monoidal (i.e. turn the tensor-product into a simplicially

enriched functor). The composition in Hom⊗̃(C∆op
,⊗)∨(X,Y ) (63) is not associa-

tive, in general, but defines a weak enrichment.

Proof. Left to the reader. Note that the symmetry of (Ch≥0(Ab),⊗) and
(Ch≥0(Ab), ⊗̃) is used to formulate associativity for n-ary compositions. In
the latter case, it is given explicitly by Lemma C.2.

Remark 5.28. In case of the enrichment Hom⊗̃(C∆op
,⊗̃)∨ , the Hom-objects iden-

tify via Dold-Kan with the usual Hom-complexes identifying an element f ∶
∆n ⊗̃X → Y1 ⊗̃ ⋯ ⊗̃ Yk with its restriction

f̃ ∶ {0, . . . , n} ⊗̃X → Y1 ⊗̃ ⋯ ⊗̃ Yk (65)

which is a degree n morphism of complexes. We have (by definition) a commu-
tative diagram

Hom(∆n ⊗̃X,Y )
d∗l =∑(−1)

i○(δi⊗id)∗ //

��

Hom(∆n−1 ⊗̃X,Y )

��
Hom⊗̃(X,Y )n ∂ // Hom⊗̃(X,Y )n−1

47for simplicity, for 1-ary compositions on the left, the others are defined completely anal-
ogously

48The decoration ′ will become apparent shortly.

134



where ∂ is the differential in the Hom-complex, and also

∂f̃ = d ○ f̃ − (−1)nf̃ ○ d. (66)

which follows from the fact that (65) is a morphism of complexes itself, i.e.
f dl +(−1)nf dr = d f which translates into (66).

Lemma 5.29 (Yoneda product). The composition (64) defined for Hom⊗̃(C∆op
,⊗̃)∨

(resp. Hom⊗̃(C∆op
,⊗̃)) factors through Aw in the sense that

Hom⊗̃(B,C) ⊗̃Hom⊗̃(A,B)
Hom⊗̃ // Hom⊗̃(A,C)

Hom⊗̃(B,C)⊗Hom⊗̃(A,B)

Aw

OO

(Hom⊗̃)′ // Hom⊗̃(A,C)

is commutative, where

1. for cooperads:

Hom⊗̃ ∶ Hom⊗̃(Y1, Z1)⊗̃⋯⊗̃Hom⊗̃(Ym, Zm)⊗̃Hom⊗̃(X,Y )→ Hom⊗̃(X,Z)

is a morphism of complexes defined as follows (for m = 2 for simplicity).
A pure tensor in complex degree n on the left can be given as i + j + k = n
and f ∶ Y1 → Z⊗̃1 of degree i, g ∶ Y2 → Z⊗̃2 of degree j, h ∶ X → Y1 ⊗̃ Y2 of

degree k. Then the composition in Hom⊗̃(X,Z)n is given by

(f ⊗̃ g) ○ h

2. for operads:

Hom⊗̃ ∶ Hom⊗̃(Y ;Z)⊗̃Hom⊗̃(X1, Y1)⊗̃⋯⊗̃Hom⊗̃(Xm, Ym)→ Hom⊗̃(X,Z)

is a morphism of complexes defined as follows (for m = 2 for simplicity).
A pure tensor in complex degree n on the left can be given as i + j + k = n
and h ∶ Y1 ⊗̃ Y2 → Z of degree i, f ∶ X⊗̃1 → Y1 of degree j, g ∶ X⊗̃2 → Y2 of

degree k. Then the composition in Hom⊗̃(X,Z)n is given by

h ○ (f ⊗̃ g)

where in both cases (f ⊗̃g) is defined by (Koszul convention, cf. also 6.13 below):

(f ⊗̃ g)(x ⊗̃ y) ∶= (−1)deg(g)deg(x)f(x) ⊗̃ g(y).

Proof. The reason is that we defined the composition (64) using the Alexander-
Whitney diagonal. Details are left to the reader.
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From the Lemma follows that also

Hom⊗̃(B,C) ⊗̃Hom⊗̃(A,B)

Ez
��

Hom⊗̃ // Hom⊗̃(A,C)

Hom⊗̃(B,C)⊗Hom⊗̃(A,B)
(Hom⊗̃)′ // Hom⊗̃(A,C)

is commutative or, in other words, Hom⊗̃ = Ez∗(Hom⊗̃)′.

5.30. By transport via F,Aw,Ez we thus get thus six enrichments

cooperad
enriched in (Set∆

op

,×) (Ab∆
op

,⊗) (Ab∆
op

, ⊗̃)

(C∆op

,⊗)∨ FHom⊗ Hom⊗ Ez∗Hom⊗

(C∆op

, ⊗̃)∨ F Aw∗Hom⊗̃ Aw∗Hom⊗̃ Hom⊗̃

and three weak enrichments

cooperad
weakly enriched in (Set∆

op

,×) (Ab∆
op

,⊗) (Ab∆
op

, ⊗̃)

(C∆op

,⊗)∨ FHom⊗̃ Hom⊗̃ Ez∗Hom⊗̃

where F ∶ (Ab∆
op

,⊗)→ (Set∆
op

,×) is the forgetful functor, which is lax monoidal:

F (A) × F (B)→ F (A⊗B).

Proposition 5.31. 1. There is a functor of weakly (Ab∆
op

,⊗)-enriched co-
operads, which is the identity on objects and underlying morphism-sets:

Ez∗ ∶ Hom⊗(C∆op
,⊗)∨(X,Y )→ Hom⊗̃(C∆op

,⊗)∨(X,Y ). (67)

2. There is a functor of weakly (Ab∆
op

,⊗)-enriched cooperads, which is the
identity on objects and induces the Aw-morphism on underlying morphism-
sets.

Aw ∶ Hom⊗̃(C∆op
,⊗)∨(X,Y )→ Aw∗Hom⊗̃(C∆op

,⊗̃)∨(X,Y ) (68)

3. Ez∗ applied to the composition is a functor of (Ab∆
op

, ⊗̃)-enriched coop-
erads

Ez∗(Aw) ∶ Ez∗Hom⊗(C∆op
,⊗)∨(X,Y )→ Hom⊗̃(C∆op

,⊗̃)∨(X,Y )

(but the composition Hom⊗(C∆op
,⊗)∨(X,Y ) → Aw∗Hom⊗̃(C∆op

,⊗̃)∨(X,Y ) is

only a weakly (Ab∆
op

,⊗)-enriched functor)
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Proof. 1. Morphism (67) is given by mapping ∆n ⊗ X → Y1 ⊗ ⋯ ⊗ Yn to the
pre-composition

∆n ⊗̃X →∆n ⊗X → Y1 ⊗⋯⊗ Yn
with the Eilenberg-Zilber morphism. The only non-trivial case to see that this
a morphism of weak enrichments is the composition on the left with a 2-ary
morphism in Hom(X;Y,Z), i.e. to show that the following diagram

X ⊗̃∆n

��

Ez // X ⊗∆n

��
(Y ⊗Z) ⊗̃ (∆n ⊗∆n)

Ez //

switch

��

Y ⊗Z ⊗∆n ⊗∆n

σ

��
(Y ⊗̃∆n)⊗ (Z ⊗̃∆n)

��

Ez⊗Ez // Y ⊗∆n ⊗Z ⊗∆n

��
Y ′ ⊗Z ′ Y ′ ⊗Z ′

is commutative. The commutativity of the middle square is Lemma 5.34 below.
2. Morphism (68) is given by mapping ∆n ⊗̃X → Y1 ⊗⋯⊗Yn to the compo-

sition
∆n ⊗̃X → Y1 ⊗⋯⊗ Yn → Y1 ⊗̃ ⋯ ⊗̃ Yn

with the Alexander-Whitney morphism. The only non-trivial case to see that
this a morphism of weak enrichments is to show that the following diagram

X ⊗̃∆n

��

X ⊗̃∆n

��
(Y ⊗Z) ⊗̃ (∆n ⊗∆n)

Aw⊗̃Aw //

switch

��

Y ⊗̃Z ⊗̃∆n ⊗̃∆n

σ̃

��
(Y ⊗̃∆n)⊗ (Z ⊗̃∆n)

��

Aw // Y ⊗̃∆n ⊗̃Z ⊗̃∆n

��
Y ′ ⊗Z ′ Aw // Y ′ ⊗̃Z ′

is commutative. The commutativity of the middle square is Lemma 5.35 below.
3. is left to the reader.
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Lemma 5.32 ([23, Proposition 2.2.1]). The following is commutative:

δ∗δ∗12,34
σ // δ∗δ∗13,24

Aw

''

.

dec∗ δ
∗
12,34

Ez
77

Aw12,34 ''

dec∗ δ
∗
13,24

dec∗ dec12,34,∗
σ̃
// dec∗ dec13,24,∗

Ez13,24

77
(69)

and hence for objects A,B,C,D with an isomorphism

A ⊠B ⊠C ⊠D ≅ (23)∗A ⊠C ⊠B ⊠D

the diagram

A⊗B ⊗C ⊗D σ // A⊗C ⊗B ⊗D
Aw

))
(A⊗B) ⊗̃ (C ⊗D)

Ez

55

Aw⊗̃Aw ))

(A⊗C) ⊗̃ (B ⊗D)

A ⊗̃B ⊗̃C ⊗̃D
σ̃
// A ⊗̃D ⊗̃B ⊗̃C

Ez⊗̃Ez

55

is commutative.

Proof. (69) is in standard form (cf. 2.14), hence it suffices to see that

dec∗ δ∗ dec∗OO

dec∗ ‘cop’

δ∗13,24 dec
∗
12,34 dec

∗
OO

σ̃

dec∗
‘cop13,24’ dec

∗
// δ∗13,24 dec

∗
13,24 dec

∗

and

dec∗ δ∗δ∗12,34

σ

δ∗13,24 dec
∗
12,34 δ

∗
12,34

δ∗13,24u
op
12,34

��
dec∗ δ∗δ∗13,24

uopδ∗13,24

// δ∗13,24

commute. This translates into the following commutative diagrams of functors
FinSet2 → FinSet and ∆2 →∆4, respectively, noticing that dec∗ commutes with
C (Lemma 5.17):

decs δs decs

cdecs

��

decs decs,12,34 δs,13,24

σ̃

��
decs oo

decs c13,24
decs decs,13,24 δs,13,24

δ12,34δ dec

σ

δ12,34 dec12,34 δ13,24OO
u12,34δ13,24

δ13,24δ dec oo
δ13,24u

δ13,24

whose commutativity is checked straightforwardly.
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Definition 5.33. We define the switch map as the following composite

switch ∶ dec∗ δ∗12,34
Ez δ∗12,34// δ∗δ∗12,34

σ
δ∗δ∗13,24

δ∗Aw13,24 // δ∗ dec13,24,∗

and hence for an appropriately symmetric collection of objects:

(A⊗B) ⊗̃ (C ⊗D)
Ez //

A⊗B ⊗C ⊗D
σ //

A⊗C ⊗B ⊗D
Aw⊗̃Aw // (A ⊗̃C)⊗ (B ⊗̃D)

Lemma 5.34. The following is commutative:

dec∗ δ
∗
12,34

Ez δ∗12,34

��

switch // δ∗ dec∗13,24

δ∗ Ez13,24

��
δ∗δ∗12,34 σ δ∗δ∗13,24

and hence for an appropriately symmetric object

(A⊗B) ⊗̃ (C ⊗D)

Ez

��

switch // (A ⊗̃C)⊗ (B ⊗̃D)

Ez⊗Ez

��
A⊗B ⊗C ⊗D σ // A⊗C ⊗B ⊗D

is commutative.

Proof. It suffices to show the equality after precomposition with Aw, i.e. that

δ∗δ∗12,34

EzAw δ∗12,34

��

EzAw δ∗12,34 //
δ∗δ∗12,34

σ
δ∗δ∗13,24

δ∗Aw13,24 //
δ∗ dec∗13,24

δ∗ Ez13,24

��
δ∗δ∗12,34 σ

δ∗δ∗13,24

is commutative. Using Lemma 4.69 this amount to the commutativity of the
outer diagram in

δ∗δ∗12,34
‘cop’ //

‘cop’

��

δ∗ dec∗ δ∗δ∗12,34
uop

// δ∗δ∗12,34 δ∗δ∗13,24

‘cop’13,24

��
δ∗ dec∗ δ∗δ∗12,34

uop

��

δ∗δ∗13,24 dec
∗
13,24 δ

∗
13,24

A
u
op
13,24

33

δ∗δ∗13,24 dec
∗
13,24 δ

∗
13,24

u
op
13,24

��
δ∗δ∗12,34

B

δ∗δ∗13,24

Here all maps denoted by = are the canonical identifications. It suffices to see
that A and B are commutative. Actually these are the same diagram. We have
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to see that
δ12,34δ dec δ ooOO

δ12,34uδ

δ13,24 dec13,24 δ13,24δOO
u13,24δ13,24δ

δ12,34δ oo δ13,24δ

commutes as diagram of functors ∆ → ∆4 (no FinSet symmetry is involved
here). This is checked straightforwardly.

Lemma 5.35. The following is commutative:

dec∗ δ
∗
12,34

dec∗Aw13,24

��

switch // δ∗ dec∗13,24

Awdec∗13,24

��
dec∗ dec12,34,∗

σ̃
// dec∗ dec13,24,∗

and hence for an appropriately symmetric object

(A⊗B) ⊗̃ (C ⊗D)

Aw⊗̃Aw
��

switch // (A ⊗̃C)⊗ (B ⊗̃D)

Aw

��
A ⊗̃B ⊗̃C ⊗̃D

σ̃
// A ⊗̃C ⊗̃B ⊗̃D

is commutative.

Proof. Follows from the following commutative diagram in which the hexagon
is in Lemma 5.32:

δ∗ dec∗13,24
Awdec∗13,24

&&
δ∗δ∗12,34

σ //
δ∗δ∗13,24

Aw δ∗13,24 &&

δ∗Aw13,24
88

. dec∗ dec13,24,∗

dec∗ δ∗12,34

Ezδ∗12,34

88

dec∗Aw12,34

''

switch

**

dec∗ δ∗13,24

dec∗Aw13,24

88

dec∗ dec12,34,∗
σ̃ //

dec∗ dec13,24,∗

dec∗ Ez13,24

77

Definition 5.36. For later applications we will need truncated versions of the
(weak) simplicial enrichments discussed so far: We define truncated (weak)
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(Ab∆
op

,⊗)-enrichments for the cooperads (in which the counits have been dis-
carded):

(C∆
op

,⊗)○,∨ and (C∆
op

, ⊗̃)○,∨

setting:

(Hom⊗,t(C∆op
,⊗)○,∨)k(X;Y1, . . . , Yn) ∶=

⎧⎪⎪⎨⎪⎪⎩

(Hom⊗(C∆op
,⊗)○,∨)k(X;Y1, . . . , Yn) k < n

0 otherwise

(Hom⊗̃,t(C∆op
,⊗)○,∨)k(X;Y1, . . . , Yn) ∶=

⎧⎪⎪⎨⎪⎪⎩

(Hom⊗̃(C∆op
,⊗)○,∨)k(X;Y1, . . . , Yn) k < n

0 otherwise

with composition defined as for the untruncated case and a truncated (Ab∆
op

, ⊗̃)-
enrichment for the cooperad (C∆op

, ⊗̃)○,∨ (in which the counits have been dis-
carded):

(Hom⊗̃,t(C∆op
,⊗̃)○,∨)k(X;Y1, . . . , Yn) ∶=

⎧⎪⎪⎨⎪⎪⎩

(Hom⊗̃(C∆op
,⊗̃)○,∨)k(X;Y1, . . . , Yn) k < n

0 otherwise

with composition defined as for the untruncated case. Note that this works only
because we have discarded the counits (no map in ∆○,op decreases the arity).

Lemma 5.37. 1. Hom⊗,t(C∆op
,⊗)○,∨ defines a (Ab∆

op

,⊗)-enrichment;

2. Hom⊗̃,t(C∆op
,⊗)○,∨ defines a weak (Ab∆

op

,⊗)-enrichment;

3. Hom⊗̃,t(C∆op
,⊗̃)○,∨ defines a (Ab∆

op

, ⊗̃)-enrichment.

Proof. This follows from the fact (cf. Proposition 5.39) that if X and Y are such
that Yi = 0 for i > n and Yi = 0 for i >m then (X ⊗Y )i = 0 and (X ⊗̃Y )i = 0 for
i > n +m.

5.5 Explicit formulæ

Let C be an Abelian category. We identify C∆op

with Ch(C)≥0 via the adjoint
equivalences N and R = Γ (Dold-Kan Theorem 5.11) and consider the functors
δ∗, dec∗, dec∗ and dec! as functors between complexes and double complexes.

5.38. Recall the skeletal filtration (4.2) with

(F kX)[n] = ∑
σ∶[d]↞[n]

σ(X[d])

where the sum is over the degeneracies with k ≥ d. It follows from the dual
assertion (5.10) that, considering X as a complex, this coincides with the trun-
cation:

F kX = {⋯→ 0→Xk →Xk−1 → ⋯→X0}.
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Proposition 5.39. 1. (dec∗X)n ≅ tot(X)n ∶=⊕i+j=nXi,j with the differen-
tial given by:

d = dl + (−1)idr. (70)

2. (dec∗A)i,j ≅ Ai+j+1 ⊕Ai+j forming the double complex:

j j − 1

i Ai+j+1 ⊕Ai+j

dr=
⎛
⎝
0 1
0 0

⎞
⎠
//

dl=
⎛
⎝
d (−1)i
0 d

⎞
⎠

��

Ai+j ⊕Ai+j−1

dl=
⎛
⎝
d (−1)i
0 d

⎞
⎠

��
i − 1 Ai+j ⊕Ai+j−1

dr=
⎛
⎝
0 1
0 0

⎞
⎠

// Ai+j−1 ⊕Ai+j−2

3. Let X be a double complex and denote by X̃ the complex extended to −1,N0

and N0,−1 by taking the cokernel of the last differential. Then

dec!X ≅ t̃ot(X)n ∶= ⊕
i+j=n−1
i,j≥−1

X̃i,j .

4. For the natural two-dimensional filtration F i,jδ∗X ∶= δ∗F i,jX (cf. 5.38)
we have

(gri,j δ∗X)n ≅⊕
σ,τ

Xi,j

where σ ∶ [n]↠ [i], τ ∶ [n]↠ [j] runs through the jointly injective pairs of
surjections. In particular: (F i,jδ∗X)n = (δ∗X)n for i ≥ n and j ≥ n and
(F i,jδ∗X)n = 0 for i + j < n and

(F i,n−iδ∗X)n ≅⊕
σ,τ

Xi,n−i (grn,n δ∗X)n ≅Xn,n.

In this case (i + j = n) the jointly injective pairs of surjections σ ∶ [n] ↠
[i], τ ∶ [n]↠ [j] are called i, j-shuffles. The isomorphisms are determined
by requiring that

(δ∗X)[n] =X[n],[n] oo
σ,τ

����

X[i],[j]

����
(δ∗X)n oo ? _Xi,j

commutes modulo F i,j−1(δ∗X)n + F i−1,j(δ∗X)n (which is zero if i + j =
n), where the vertical morphisms are the projections onto non-degenerate
elements.
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We start by discussing the translation of the functors

dec∗ ∶ C∆
op

→ C∆
op×∆op

δ∗ ∶ C∆
op×∆op

→ C∆
op

via Dold-Kan. We have

(dec∗C)m,n = Hom(Dm,n,dec
∗C) = Hom(dec!Dm,n,C)

(δ∗C)m = Hom(Dm, δ
∗C) = Hom(δ!Dm,C)

Furthermore, by Yoneda and the commuation of Z[−] with colimits:

δ!∆
○
m =∆○m,m

dec!∆
○
m,n =∆○m+n+1

such that

δ!Dm = ker(∆○m,m →∆○m′,m′)
dec!Dm,n = ker(∆○m+n+1 →∆○m′+n′+1)

where the kernel is joint over all degeneracies [n] ↠ [n′], resp. [m] ↠ [m′].
The filtrations on ∆○m,m and ∆○m+n+1 are respected by these morphisms in such
a way to induce filtrations:

F k,lδ!Dm = ker(F k,l∆○m,m → F k,l∆○m′,m′)
F k dec!Dm,n = ker(F k∆○m+n+1 → F k∆○m′+n′+1)

We get

gr δ!Dm = ⊕
{[m]↠[k],[m]↠[l]}

that do not factor over im(δ∗)

Dk,l

grdec!Dm,n = ⊕
{[m+n+1∣↠[k]}

that do not factor over im(dec∗)

Dk

In the first case the sum goes over pairs [m]↠ [k] and [m]↠ [l] that are jointly
injective and in the second case the sum has only two summands corresponding
to id ∶ [m+n+1]→ [m+n+1] and the canonical degeneracy scan ∶ [m+n+1]→
[m + n] identifying the maximum of [m] with the minimum of [n].

Proof of Proposition 5.39. 2. We get an exact sequence

0→Dn+m+1 → dec!Dm,n →Dn+m → 0

and it is convenient to choose the following explicit splittings l, r of the surjective
map induced by

(−1)i dec∗(dl),dec∗(dr) ∶∆○m+n →∆○m+n+1
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Notice that (−1)i dec∗(dl)s ≅ id and dec∗(dr)s ≅ id modulo degeneracies.
Dually for a complex A, we get a diagram:

A[i+j]
scan //

����

A[i+j+1]

(−1)i dec∗ dl,dec
∗ dr

tt

���� %% %%
0 // Ai+j // (dec∗A)i,j

l,r
uu

// Ai+j+1 // 0

The splitting r induces isomorphisms: (dec∗A)i,j ≅ Ai+j ⊕Ai+j+1 with dif-
ferentials identified with

Ai+j+1 ⊕Ai+j

dr=
⎛
⎝
0 1
0 0

⎞
⎠
//

dl=
⎛
⎝
d (−1)i
0 d

⎞
⎠

��

Ai+j ⊕Ai+j−1

dl=
⎛
⎝
d (−1)i
0 d

⎞
⎠

��
Ai+j ⊕Ai+j−1

dr=
⎛
⎝
0 1
0 0

⎞
⎠

// Ai+j−1 ⊕Ai+j−2

The splitting l induces isomorphisms: (dec∗A)i,j ≅ Ai+j ⊕ Ai+j+1 with dif-
ferentials identified with

Ai+j+1 ⊕Ai+j

dr=
⎛
⎝
(−1)i d −1

0 d
⎞
⎠
//

dl=
⎛
⎝
0 (−1)i
0 0

⎞
⎠

��

Ai+j ⊕Ai+j−1

dl=
⎛
⎝
0 (−1)i
0 0

⎞
⎠

��
Ai+j ⊕Ai+j−1

dr=
⎛
⎝
(−1)i d −1

0 d
⎞
⎠

// Ai+j−1 ⊕Ai+j−2

In these notes, when interested in explicit formulas, we usually work with the
splitting r because it induces the more common convention on the differential
on the total complex.

1. Assertion 2. shows that a morphism

Hom(dec∗X,Y )

is given by morphisms

Xi+j+1 ⊕Xi+j
(drαi,j+1,αi,j) // Yi,j
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satisfying
αi−1,jd = dlαi,j + (−1)i−1drαi−1,j+1

which is the same as a morphism of complexes

X → totY.

where totX is equipped with the differential (82).
3. is shown the same way as 1.
4. has been discussed above. Note that, for δ∗, the lowest filtration steps are

given by those pairs σ ∶ [m]↠ [i] and τ ∶ [m]↠ [j] that are jointly injective and
such that i+j = n (if i+j < n, obviously joint injectivity cannot be achieved).

5.40. For surjections σ ∶ [n]↠ [i] and τ ∶ [n]↠ [j] that are jointly injective,
and such that i + j = n, i.e. in the case of i, j-shuffles, σ and τ determine each
other, because we can index degeneracies by non-empty subsets I, J ⊂ {1, . . . , n}
(the intervals contracted by τ , and σ, respectively) and under the two conditions,
σ and τ must correspond to complementary sets. In other words

σ = sσj⋯sσ1 τ = sτi⋯sτ1
for J = {σ1 + 1, . . . , σj + 1}, and I = {τ1 + 1, . . . , τi + 1}, respectively.

In particular, we get for i, j with i + j = n surjections

pi,j ∶ δ!Dn →Di ⊠Dj

induced by sl ∶ [m]↠ [i], sr ∶ [m]↠ [j] the extremal degeneracies correspond-
ing to the subsets {i + 1, . . . , n} and {1, . . . , i}, respectively.

Lemma 5.41. There are splittings

si,j ∶Di ⊠Dj → δ!Dn

(of the maps pi,j) induced by δl,i × δr,j ∶ [i] × [j]→ [n] × [n], the extremal faces.
Every other map

δ!Dn →Di′ ⊠Dj′

given by pairs σ ∶ [m] ↠ [i′] and τ ∶ [m] ↠ [j′] that are jointly injective and
such that l + k =m, composes to zero with si,j.

Proof. δl,i × δr,j composed with a diagonal degeneracy factors through a degen-
eracy of either [i] or [j], hence there is an induced map as indicated. The
composition with any pair of surjective maps [n] × [n] → [k] × [l], jointly in-
jective, corresponding to subsets S and T , is a degeneracy unless S ⊆ {1, . . . , i}
and T ⊆ {i + 1, . . . , n}. If #S +#T = n we must have equality.

Proposition 5.42 (Alexander-Whitney and Eilenberg-Zilber explicit). For a
double complex X, we have commutative diagrams (where Aw and Ez were de-
fined in Definition 4.6349):

49And the operator C used to define Ez is understood to be the canonical one given by
Lemma 4.57 for Abelian categories.
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1.

(δ∗X)[n] =X[n],[n]

��

∑i+j=n(δi,l,δj,r) // ⊕i+j=nX[i],[j]

��
(δ∗X)n Aw // (dec∗X)n =⊕i+j=nXi,j

On the smallest filtration step and on the factor Xi,j corresponding to a
shuffle σ, τ the map Aw is zero unless σ = sl and τ = sr.

2.

⊕i+j=nX[i],[j]

��

∑σ,τ sgn(σ,τ)(σ,τ)
// (δ∗X)[n] =X[n],[n]

��
(dec∗X)n =⊕i+j=nXi,j

Ez // (δ∗X)n

where the sum runs over all shuffles σ ∶ [n] ↠ [i], τ ∶ [n] ↠ [j] (i.e.
jointly injective with i+j = n). The morphism Ez has image in the smallest
filtration step and on the factor Xi,j corresponding to the shuffle σ, τ , the
map is thus given by sgn(σ, τ).

Proof. 1. It suffices to see that the following commutes50:

δ!(Dn) oo
∑i(δl,i,δr,j)
ii

Aw

⊕i+j=nDi ⊠Dj

scan∼
��

dec∗(Dn)

First, observe that the morphisms δl,i and δr,j really induce a morphism

Di ⊠Dj → δ!(Dn)

because for every diagonal degeneracy [n] × [n] ↠ [n′] × [n′] there are degen-
eracies [i]↠ [i′] and [j]↠ [j′] such that we have a factorization

[i] × [j]
(δi,l,δj,r) //

����

[n] × [n]

����
[i′] × [j′] // [n′] × [n′]

50where scan is on each summand the adjoint of the restriction of the homonymous map
(canonical degeneracy) scan ∶ dec! ∆○i ⊠∆○j =∆○i+j+1 →∆○n.
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We are left to show that for all i the outer shape commutes in the diagram

δ!∆
○
n

vv

(δl,i,δr,j)

ff

counit

oo x
δ! dec!(∆○i ⊠∆○j)

scan

��

oo
uop
!

∆○i ⊠∆○j
scan

��
δ! dec! dec

∗(∆○n) oo uop
!

dec∗(∆○n)

commutes, where the map x is δ! of the canonical degeneracy, seen as a morphism
dec!∆

○
i ⊠∆○j =∆○i+j+1 →∆○n. Here every other shape clearly commutes. For the

upper triangle notice that this is the image under Z[−] of the following diagram
of bisimplicial set maps

∆n ⊠∆n

tt

δl,i⊠δr,j

oo
scan⊠scan

∆i+j+1 ⊠∆i+j+1 oo
uop=δl,i⊠δr,j

∆i ⊠∆j .

2. It suffices to see that the following commutes:

δ!(Dn)
∑σ,τ sgn(σ,τ)⋅(σ,τ)

//

Ez
**

⊕i+j=nDi ⊠Dj

scan∼
��

dec∗(Dn)

First, observe that the morphism σ, τ ∶∆○n ⊠∆○n →∆○i ⊠∆○j (i + j = n) really
induces a map

δ!(Dn)→Di ⊠Dj

because for every degeneracy [i] × [j] ↠ [i′] × [j′] (for i + j = n, and where
either i′ < i or j′ < j) there is a degeneracy [n] ↠ [n′] such that we have a
factorization

[n] × [n] //

����

[i] × [j]

����
[n′] × [n′] // [i′] × [j′]

First observe that
δ!(Dn) ⊂ Fn−1∆○n ⊠∆○n

because every pair of degeneracies [n] ↠ [i] and [n] ↠ [j] with i + j ≤ n − 1
must factor through a diagonal degeneracy.
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Since the filtration by codegeneracy is the same as the canonical complex
filtration (cf. 5.10), it suffices to show therefore that

∆○n ⊠∆○n
∑σ,τ sgn(σ,τ)⋅(σ,τ)

//

Ez ))

⊕i+j=n∆
○
i ⊠∆○j
scan

��
dec∗(∆○n)

commutes in double complex degree ≥ n51. Since (∆○n)i+j+1 = 0 for i + j = n we
actually have

(dec∗∆○n)i,j ≅ (∆○n)i+j (71)

for i + j = n and 0 for i + j > n, and thus we are left to show commutativity in
complex degree i, j with i + j = n.

The map (71) may be described as c ○ dr (see the proof of Proposition 5.39,
2.) where c is the morphism fitting into

(dec∗∆○n)[i],[j−1] // // (dec∗∆○n)i,j−1
c

��
(∆○n)[i+j] // // (∆○n)i+j

Thus we have to see that the composition

c ○EZ ○ dr ∶ (δ!∆○n)i,j → (δ!∆○n)i,j−1 → (dec∗∆○n)i,j−1 → (∆○n)i+j . (72)

is equal to the composition

c ○ scan ○ dr ○(∑
σ,τ

sgn(σ, τ) ⋅ (σ, τ)) ∶ (73)

(δ!∆○n)i,j → (∆○i )i × (∆○j)j → (∆○i )i × (∆○j)j−1 → (dec∗∆○n)i,j−1 → (∆○n)i+j .

The composition of the last two morphisms in (72) is by definition (cf.
Lemma 5.6):

Z [ subsets of {0, . . . , n}
of cardinality i + 1 and j] → Z [ subsets of {0, . . . , n}

of cardinality i + j + 1]

[S]⊗ [T ] ↦
⎧⎪⎪⎨⎪⎪⎩

±[S ∪ T ] if S ∩ T = ∅
0 otherwise

where the sign is determined by the parity of the permutation bringing S ∗ T
into the order of S ∪ T . Given subsets I, J ⊂ {0, . . . , n} of cardinality i + 1 and
j + 1 with I ∩ J = {x}, c ○ EZ ○ dr maps [I] ⊗ [J] thus to [{0, . . . , n}] with
sign (−1)k−1sgn(κ), where κ is the permutation that brings I∐(J ∖ {x}) into

51Contrary to the situation with the Alexander-Whitney map it is not commutative in
general!
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the correct order, and x is the k-th element of J . It maps subsets with larger
intersection to zero.

The composition of the last three morphisms in (73) maps the generator
[{0, . . . , i}] ⊗ [{0, . . . , j}] to the generator [{0, . . . , n}]. By Lemma 5.43 below,
the first morphism maps a pair I, J either to zero, or, if I ∩ J = {x} , there is
exactly one shuffle that maps it to [{0, . . . , i}]⊗ [{0, . . . , j}] with the same sign
(−1)k−1sgn(κ) and all others map it to zero.

Lemma 5.43. Let I, J ⊂ {0, . . . , n} be two subsets of Cardinality i+ 1 and j + 1
with i + j = n.

1. If I ∩ J = {x} there is exactly one i, j-shuffle σ, τ such that σ([I]) =
[{0, . . . , i}] and τ([J]) = [{0, . . . , j}]. (All other shuffles satisfy either
σ([I]) = 0 or τ([J]) = 0.) Then

sgn(σ, τ) = (−1)k−1sgn(κ),

where κ is the permutation that brings I∐(J ∖{x}) into the correct order,
and x is the k-th element of J .

2. If {x, y} ⊂ I ∩ J then

∑
σ,τ

σ([I])=[{0,...,i}]
τ([J])=[{0,...,j}]

sgn(σ, τ) = 0.

Proof. (i) In this case, the subsets are covering. If x /= 0, we have x − 1 ∈ I and
x− 1 /∈ J or vice versa. Thus σ must not contract x− 1 < x and hence τ must do
so (or vice versa). By induction to the left, σ and τ are determined for i ≤ x. If
x /= n, we have x + 1 ∈ I and x + 1 /∈ J or vice versa. Thus σ must not contract
x < x + 1 and hence τ must do so (or vice versa). By induction to the right,
σ and τ are determined for i ≥ x. The equality of the sign expressions follows
from the definition of the sign of a shuffle52.

(ii) In this case, there is an element z ∈ {0, . . . , n} ∖ (I ∪ J). The shuffles
correspond to complementary subsets I ′, J ′ ⊂ {1, . . . , n} of cardinality i and j
(the contracting intervals of τ and σ respectively). The shuffles satisfying the
property from the sum induce jointly injective surjections σ′ = σδz ∶ [n − 1]↠ [i]
and τ ′ = τδz ∶ [n − 1] ↠ [j]. As such they correspond to subsets I ′′, J ′′ ⊂
{1, . . . , n − 1} of cardinality i − 1 and j − 1 with I ′′ ∩ J ′′ = ∅.

The interval q of ∆n−1 which is neither in I ′′ nor J ′′ thus must correspond
to a new interval that is not mapped to an interval by δz (in particular, z /= 0

52The shuffle corresponds to complementary subsets I′ (contracting intervals for τ) and J ′

(contracting intervals for σ) of {1, . . . , n} and the sign is determined by the permutation κ′

that brings I′ ∪ J ′ into the correct order. The procedure just described determines order-
preserving isomorphisms I′ ≅ I ∖ {x} and J ′ ≅ J ∖ {x} in such a way that the transposed
permutation brings I ∖ {x} ∪ J ∖ {x} into the correct order. If x was the l-th element of I
and k-th element of J , it has to move from position l to l + k − 1, hence an additional sign of
(−1)k−1.
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and z /= n) because all others are contracted by one of the compositions. To
each of these pairs I ′′, J ′′ thus correspond precisely two pairs I ′ and J ′ where
the two intervals that δz(q) is composed of, are distributed evenly into I ′ and
J ′. The corresponding shuffles have opposite sign.

5.44. Recall the Shih-operator Ξ1 from 5.14 (cf. also Corollary 5.16). Applying
LC , it induces

LC(Ξ) ∶ dec∗ δ∗ ∼ +3 (δ, δ)∗ dec∗13,24
(id,EzAw) +3 (δ, δ)∗ dec∗13,24

∼ +3 dec∗ δ∗

Its adjoint L(Ξ1)′ ∶ ∆1 ⊗ δ∗ ≅ dec! dec
∗ δ∗ ⇒ δ∗ (cf. Corollary 4.27) yields via

composition with Ez ∶∆1 ⊗̃ δ∗ →∆1 ⊗ δ∗ a morphism

Ez∗L(Ξ1)′ ∶∆1 ⊗̃ δ∗ ⇒ δ∗

which gives a homotopy in the usual sense between EzAw and id. (Notice the
two very different instances of Ez here!)

5.45. Define Qn ∈ Z[Hom([n], [n])]⊗Z[Hom([n], [n])] by the formula

Qn ∶= ∑
p+q=n
σ,τ

sgn(σ, τ)(σδn0,p ⊗ τδnp,n)

where σ, τ run through the p, q-shuffles. By the formula in Proposition 5.42 we
have that (EzAw)n ≡ Qn modulo degeneracies, i.e. for X ∈ C∆op×∆op

(δ∗X)[n] =X[n],[n]

����

Qn

// (δ∗X)[n] =X[n],[n]

����
(δ∗X)n

EzAw // (δ∗X)n

commutes. Define Hn
b ∶= (id[b] ∗EzAw)scan. We have

Hn
b si =

⎧⎪⎪⎨⎪⎪⎩

siH
n−1
b−1 i < b

si+1H
n−1
b i ≥ b

hence Hn
b maps degenerate elements to degenerate elements.

Defining Hn
i ∈ Z[Hom([n], [n − 1])]⊗Z[Hom([n], [n − 1])] by the formula

Hn
b ∶= (id[b] ∗Qn−b−1)scan = ∑

p+q=n−b−1
σ,τ

(id[b] ∗σδn−b−10,p )scan ⊗ (id[b] ∗ τδn−b−1p,n−b−1)scan

we have the commutative diagram for X ∈ C∆op×∆op

:

(δ∗X)[n−1] =X[n−1],[n−1]

����

Hn
b // (δ∗X)[n] =X[n],[n]

����
(δ∗X)n−1

Hn
b // (δ∗X)n
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Note, however, that the lower map does not constitute a morphism of complexes!

Proposition 5.46 (Shih’s formula). The following commutes for X ∈ C∆op×∆op

:

(δ∗X)[n−1] =X[n−1],[n−1]

����

∑i(−1)bHn
b // (δ∗X)[n] =X[n],[n]

����
{0,1} ⊗̃ (δ∗X)n−1

Ez∗LC(Ξ1)′ // (δ∗X)n

5.47. Before discussing the proof, recall the explicit description of homotopies
obtained via dec∗ from 4.28. A homotopy in the classical sense is extracted by
the element

{0,1} ⊗̃X →∆○1 ⊗̃X →∆○1 ⊗X
where the second morphism is the EZ morphism. In degree n the corresponding
map {0,1} ⊗̃X → Y is given, with the notation of 4.28, by (sum over (1, n− 1)-
shuffles)

{0,1}⊗ xn−1 ↦ α(xn−1) ∶=
n−1
∑
i=0
(−1)iG[n],i(sixn−1) =

n−1
∑
i=0
(−1)iF[i],[n−i−1](sixn−1)

where xn−1 ∈X[n−1] denotes a representing element.

Proof of Proposition 5.46. By Proposition 5.42 and the Definition 5.14, we have
for r + s + 1 = n

LC(Ξ)[r],[s] ∶ (dec∗ δ∗X)[r],[s] =X[r]∗[s],[r]∗[s] → X[r]∗[s],[r]∗[s] = (dec∗ δ∗X)
xn ↦ ∑

p+q=s
σ,τ

sgn(σ, τ)(σdl, τdr)xn

where σ, τ, δl, δr are intended w.r.t. the [s]-variable and the σ, τ run through all
p, q-shuffles.

In view of the discussion in 5.47 this translates to53

{0,1}⊗ xn−1 ↦
n−1
∑
b=0
(−1)bLC(Ξ1)[b],[n−b−1](sbxn−1)

=
n−1
∑
b=0
(−1)b ∑

p+q=n−b−1
σ,τ

sgn(σ, τ)((id[b] ∗σδn−b−10,p )sb, (id[b] ∗ τδn−b−1p,n−b−1)sb)xn−1

5.48. The formula for Qn can be given in a different form: The summands
of Qn run over p, q-shuffles with p + q = n. Those are determined by subsets

53The formula for LC(Ξ1) is modulo degenerate elements. However, sb = scan translates
simplicial degeneracies into degeneracies as element (in degree (b, n−b−1)) in the bisimplicial
object dec∗X.
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Z ⊂ {1, . . . , n} giving the intervals where σ is degenerate and thus τ is not.
Equivalently, they are given by sequences y = (z0, . . . , zn−1) ∈ {0,1}n and we
have

σ = sz00 ∗′ ⋯∗′ s
zn−1
0

where s00 = id[1] and s10 ∶ [1]↠ [0] is the usual degeneracy. From this we get

sgn(σ) = (−1)∑i<j zj(zi+1)

which may be derived from the formula

sgn(σ0 ∗′ ⋯∗′ σn−1) =∏
i

sgn(σi)∏
i<j
(−1)∣σj ∣⋅∣σi∣ (74)

where σi ∶ [ni] → [∣σi∣] are degeneracies and σ is the complementary shuffle.
We also have for b = (b0, . . . , bk−1) ⊂ {0, . . . , n − 1}, with b0 > b1 > ⋯ > bk−1 the
formula

sgn(σb) = (−1)∑
k−1
i=0 bi−(k−1−i) sgn(τb) = (−1)∑

k−1
i=0 n−k−i−bi (75)

where σb, τb is the associated shuffle (5.20).

Lemma 5.49. Let n be a positive integer. Consider the set of y = (y0, . . . , yn−1)
with yi ∈ {0,1}. We have

Qn =∑
y

(−1)∑i<j yj(yi+1)(B0
y ⊗B1

y) (76)

with B0
y ∶ [n+1]→ [m] for some m, and B1

y ∶ [n+1]→ [n+1] recursively defined

by: B0
() = B1

() = id[0] and

Bj
y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sn−1B
j
y′ j < y0

Bj
y′ ∗ id[0] j = y0

sn−1B
j
y′δ0 j > y0

(77)

Each summand is degenerate on the left at i, if yi = 0 and degenerate on the
right at i, if yi = 1. Implicitly in the formula (76) the B0

y are composed with the

inclusion [m]↪ [n + 1].

Proof. An instructive exercise.

5.50. We would like an explicit formula also for the higher Shih operators 5.19,
however, defining Hn

b,i in the same way as in (54) would not be correct because
the equality of Hn

b with Hn
b holds only up to degenerate elements. However we

can define (for any m):

Hn
b ∶ Z[Hom([n−1], [m])]⊗Z[Hom([n − 1], [m])]→ Z[Hom([n], [m])]⊗Z[Hom([n], [m])]

152



by writing generators as τ ⊗κ = si1⋯sik ⋅ (τ ′ ⊗κ′) with (τ ′ ⊗κ′) non-degenerate
and setting:

Hn
b (τ ⊗ κ) ∶= si′1⋯si′k ⋅H

n−k′
b′ ⋅ (τ ′ ⊗ κ′)

where the i and b have been transformed by the rule:

Hn
b si ∶=

⎧⎪⎪⎨⎪⎪⎩

siHn−1
b−1 i < b,

si+1Hn−1
b i ≥ b.

Defining then Hn
b,i by the same recursive formula as (54)

Hn
b,i ∶(δ∗kX)[n−k] → (δ∗kX)[n]
∶=(sb0 , . . . , sb0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i0 times

,Hn
b0 , sb0 , . . . , sb0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k−i0−1 times

)(− ○ δ∗i0)H
n−1
b′,i′ .

with b′ = (b1, . . . , bk−1) and i′ = (i1, . . . , ik−1), we arrive at:

Proposition 5.51. The following diagram is commutative

(δ∗kX)[n−k] =X[n−k],[n−k]

����

Hn
b,i // (δ∗kX)[n] =X[n],[n]

����
(δ∗kX)n−k

Hn
b,i // (δ∗kX)n

Notice that, again, the lower map is not a morphism of complexes!

5.52. There is a relation between the higher Shih operators Hn
b,i and the

Szczarba operators defined in [53] (cf. also [33]) as we will now explain. The
conceptual relation will be clarified by the discussion in Section 6.10. Cf. also
[24] for a different discussion of this relation.

5.53. We say that an element in Hom([n], [m])k+1, considered as generating
summand of Z[Hom([n], [m])]⊗(k+1) is i-degenerate at j, if it is of the form

(τ0, . . . , siτj , . . . , τk).

Define an idempotent

Pi ∶ Z[Hom([n], [m])]→ Z[Hom([n], [m])]

defined on a basis by

τ ↦
⎧⎪⎪⎨⎪⎪⎩

0 if τ is i-degenerate,

τ otherwise.

Define also

P ∶ Z[Hom([n], [m])]⊗(k+1) → Z[Hom([n], [m])]⊗(k+1)
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by

P =
k

∏
i=0

1⊗i ⊗Pn−k−1+i ⊗ 1⊗k−i

i.e. it throws away all summands that are n − k − 1 + i degenerate at i for
i = 0, . . . , k.
Definition 5.54. Define an active morphism Szji ∶ [k] → [j] (i.e. Sz

j
i (0) = 0

and Szji (k) = j) by Sz0() ∶= id[0], and the recursion

Szji ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Szji′ ∗ id[0])sj j < i0 + 1
(Szj−1i′ ∗ id[0]) j = i0 + 1
(Szj−1i′ ∗ id[0])sj−1δi0+1 j > i0 + 1

(78)

in which i′ = (i1, . . . , ik−1).
One can also write the recursion in a slightly different, equivalent form:

Szji ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sk−1 Sz
j
i′ j < i0 + 1

Szj−1i′ ∗ id[0] j = i0 + 1
sk−1 Sz

j−1
i′ δi0+1 j > i0 + 1

(79)

Remark 5.55. This definition is similar to the one given by Szczarba in [53]
used by Hess and Tonks in [33, Definition 5]. In fact

Szji (x) =
tDk+1

k−j,i

where tx for a map x ∶ [k]→ [j] is the conjugation with the reversal of simplices
and D is the operator defined in [loc. cit.].

5.56. A sequence

[1] [1]
δik−1+1// ⋯ // [k]

δi0+1 // [k + 1] [k + 1]

of active faces, or written as vector i = (i0, . . . , ik−1) can be interpreted as a
connected leveled binary tree with k vertices of degree 3: For example

2 ● − ⊗ −

1 ● (− ⊗ −)⊗ −

0 ● (− ⊗ −)⊗ (− ⊗ −)
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corresponds to the vector (2,0,0). For a vector b = (b0, . . . , bk−1) with k̃ > b0 >
b1 > ⋯ > bk−1 ≥ 0, we say that i = (i0, . . . , ik−1) is a b-reduction of ĩ if for
i ∉ {b0, . . . , bk−1} the vertex in row i has no left children and deleting those
vertices (with their corresponding left leaf and their row), we obtain the tree
associated with i. The remaining leaves form a subsequence c0 < c1 < ⋅ ⋅ ⋅ < ck
of {0, . . . , k̃}. For example the displayed tree has the (2)-reduction (0), (1,2)-
reduction (0,0), (0,2)-reduction (1,0), and (0,1,2)-reduction (2,0,0), but does
not have a (0,1)-reduction.

The ĩ such that i = (i0, . . . , ik−1) is a b-reduction are in bijection with vectors
(y0, . . . , yk̃−k−1) with 0 ≤ y0, . . . , yk̃−2−b0 ≤ k, . . . , 0 ≤ yk̃−k−bk−1 , . . . , yk̃−k−1 ≤ 0

Example:
k̃ − 1 0 ≤ y0 ≤ k
k̃ − 2 0 ≤ y1 ≤ k
k̃ − 3 b0 0 ≤ i0 ≤ k − 1
k̃ − 4 0 ≤ y2 ≤ k − 1
k̃ − 5 b1 0 ≤ i1 ≤ k − 2
k̃ − 6 0 ≤ y3 ≤ k − 2
k̃ − 7 0 ≤ y4 ≤ k − 2
k̃ − 8 b2
⋮ ⋮
1 bk−1 0 ≤ ik−1 ≤ 0
0 0 ≤ yk̃−k−1 ≤ 0

The ii and yi together determine ĩ. In each row the yi determines the position
where a node (with no left children) is added (starting from i = 0). With a
leveled tree given by i = (i0, . . . , ik−1) we associate the sign

sgn(i) ∶= (−1)∑j ij (80)

and we define i∨ = (k − 1 − i0, k − 2 − i1, . . . , ik−1).

Proposition 5.57. We have for arbitrary n, setting k̃ ∶= n − k − 1:

PHn
b,i ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑ ĩ such that

i is a b-reduction of ĩ

ε(Szc0
ĩ
∗′q0)⊗⋯⊗ (Szckĩ ∗

′qk) b0 < k̃

0 otherwise

modulo degenerates, where qj = sk+1j,j+1. In particular the expession is zero unless

k̃ ≥ k (i.e. n ≥ 2k + 1).
Here the ĩ are vectors of length k̃ and c0 < ⋅ ⋅ ⋅ < ck are determined by ĩ as in

5.56, and

ε = (−1)(k̃+1)k sgn(i∨) sgn(̃i∨) sgn(σb).

The Szj
i
∗′qj have values in [cj]∗′ [1] = [cj +1] and are considered as [n−k]-

valued via the inclusion [cj + 1] ⊂ [n − k].
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The proof is a bit involved and has been shifted to appendix B. Unless the
reader is interested in the combinatorics of the formula, it is not very enlight-
ening.

For the special case n = 2k + 1 (least non-zero case) we get a simpler form:

Corollary 5.58. We have for n = 2k + 1:

PHn
b,i ≡
⎧⎪⎪⎨⎪⎪⎩

(Sz0i ∗′q0)⊗⋯⊗ (Szki ∗′qk) b = (k − 1, k − 2, . . . ,0)
0 otherwise

modulo degenerates, where qj = sk+1j,j+1 with the same conventions as in Proposi-
tion 5.57.

Notice that in that case k̃ = k, ĩ = i, and ε = sgn(σb) = 1.
5.59. The formula in Proposition 5.57 has the following important property.
Defining

Kn
b,i ∶= (−1)(k̃+1)k sgn(i∨) sgn(σb) ∑

ĩ

i is a b-reduction of ĩ

sgn(̃i∨)(Szc0
ĩ
⊗⋯⊗ Szck

ĩ
)

(with the same inclusion [cj] ⊆ [k̃], such that this is in Z[Hom([k̃], [k̃])k+1]),
i.e. the essential part of PHn

b,i and define

Kn
k ∶=∑

i,b

sgn(i∨) sgn(σb)Kn
b,i

where the sum is over all (correct) vectors of length n−k−1 and k, respectively.
We can then write

Kn
k = ∑

ĩ
c0<⋯<ck

sgn(̃i∨)(Szc0
ĩ
⊗⋯⊗ Szck

ĩ
) (81)

where the sum runs over all ĩ of length n−k−1 and {c0, . . . , ck} ⊂ {0, . . . , n−k−1}
over subsets of indices of leaves running first through nodes at their left child.
Notice that these determine uniquely a b consisting of the corresponding row
indices and a reduction i.

Proposition 5.60. For each integer k ≥ 0 the following holds true54

(1 + ε)⊗(k+1)K2k+1
k ≡∑

n

Kn+k+1
n

modulo degenerates and constants or equivalently

∑
n

(1 − ε)⊗(n+1)Kn+k+1
n ≡ K2k+1

k

modulo degenerates and constants. Here ε ∶ Z[Hom([k], [k])] → Z is the aug-
mentation and the calculation takes place in ⊕∞n=0Z[Hom([k], [k])]⊗n.

54notice that the summands are zero for n > k, and that ∑i sgn(i) is 1 for k ≤ 1 and 0
otherwise. However, constants are degenerate for k ≥ 1 anyway.
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Proof. Follows from (81) and the following Lemma 5.61.

Lemma 5.61. Let i = (i0, . . . , ik−1) be a vector which we see as a leveled tree
as in (5.56).

1. Szji is non-degenerate at e if and only if the path from the j-th leaf towards
the root passes through a right child at e.

2. The expression
Szc0i ⊗⋯⊗ Szcmi

for {c0, . . . , cm} ⊂ {0, . . . , k} is non-degenerate if and only if there is a
b = (b0, . . . , bk−m−1) such that i has a b-reduction with associated {cj},
or in other words, if for each j /∈ {c0, . . . , cm} the path from the j-node
towards the root passes first through a left child (b consists then of the
corresponding row indices).

Proof. 1. follows immediately from the recursive formula and 2. follows from
1.

6 Basic examples of classical bar and cobar

6.1 Classical (co)bar for Set

6.1. Consider (Set,×), the category of sets equipped with the product. We will
investigate the (very simple) classical bar construction bar(Set,×)→O and cobar
construction cobar(Set,×)→O (Definition 3.5). This also determines — in principle
— the bar and cobar constructions bar(Set∆op

,×)→O and cobar(Set∆op
,×)→O of

simplicial sets because the product, and thus the bar and cobar functors, are
computed point-wise. Since the point (unit of ×) is final, by Corollary 4.14, ρ∗

is an equivalence:

ρ∗ ∶ ((Set,×)∨)(∆,∗)op ≅ ((Set,×)∨)
↓↑O.

Furthermore, we have

((Set,×)∨)(∆,∗)op ≅ Coalg(Set∆
op

,×)

by the trivial Eilenberg-Zilber Theorem 4.70, and finally

Coalg(Set∆
op

,×) ≅ Set∆
op

because × is the product.

Lemma 6.2. We have an isomorphism (making the identifications in 6.1)

N ≅ (ρ∗)−1 ○ bar

of functors
Mon→ Set∆

op

where N is the nerve.
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Proof. Clear from the definitions.

Lemma 6.3. For A ∈ Set∆
op

a simplicial set, the monoid cobarρ∗A (making
the identifications in 6.1) is generated by A[1] modulo the relations

a0 = 1 for a0 ∈ A[0]
δ1(a2) = δ2(a2) ⋅ δ0(a2) for a2 ∈ A[2]

In particular, if A is path-connected, then this is the fundamental monoid of the
simplicial set.

Proof. Recall the discussion 3.19. The coequalizer (27) with its induced algebra
structure is obviously the monoid described in the statement. Notice that the
“comultiplication”

A[2] → A[1] ×A[1]
is given by (δ2, δ0) in this case (trivial Eilenberg-Zilber Theorem 4.70).

Let G ∶ Mon → Grp the functor “group completion” and F ∶ Set → Grp the
free group functor.

Lemma 6.4. For a simplicial set A such that the map A → A[−1] is simply
connected (where A[−1] = colimA) and choosing a splitting A[−1] → A[0], we
have an isomorphism55:

G cobarρ∗A = F (A[0])/F (A[−1])

induced by

ϕ ∶ A[1] → F (A[0])/F (A[−1])
x↦ (δ0x) ⋅ (δ1x)−1.

Proof. Both sides commute with coproducts and thus it suffices to see the
simply-connected case. By Lemma 6.3 the group G cobarρ∗A is generated by
A[1] modulo the relations

a0 = 1 for a0 ∈ A[0]
δ1(a2) = δ0(a2) ⋅ δ2(a2) for a2 ∈ A[2]

The morphism ϕ obviously respects these relations. We have to see that it is
bijective.

If ϕ(x) = 1 then x is a product of products x±11 . . . x±1n with the property that
δ1(x±11 ) = δ0(x±1n ) and δ0(x±1i ) = δ1(x±1i+1) where we understood δi(x−1) = δ1−i(x).
The x±11 , . . . , x±1n thus constitute closed paths which means that x±11 ⋯x±1n ≡ 1
modulo the relations by assumption (simple connectivity).

For x ∈X[0] there is a path x±11 . . . x±1n from an element in the image of X[−1]
to x. It follows then that x±11 . . . x±1n is mapped to x under the map ϕ.

55where the quotient has to be interpreted in the only possible way as the quotient modulo
the smallest normal subgroup containing F (A[−1]) or, what is the same here, imposing the
relations [x] ∼ 1 for all x ∈ A[−1] or, in other words, taking F (A[0] ∖A[−1]).
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6.5. By Lemma 4.47, for A = dec∗(X)[k],●, we have A[−1] = X[k], and the
map A → A[−1] is simply connected. However, in this case, there are extra
degeneracies: scan = sk ∶ A[−1] → A[0] (which we take as splitting), sk ∶ A[0] →
A[1], sk ∶ A[1] → A[2], and we can make this thus more explicit: Since for
x ∈ A[1],

δk+3
±
δA2

(scanx) = scan( δk+2
±
δA1

x), δk+2
±
δA1

(scanx) = scan( δk+1
±
δA0

x), and δk+1
±
δA0

(scanx) = x,

we have the relations

x = scan(δ0x)scan(δ1x)−1 x−1 = scan(δ0x)scan(δ1x)−1

in G cobarρ∗A. Hence we see directly that x±11 . . . x±1n = 1 in G cobarρ∗A (for
x1, . . . , xn as in the proof). Hence ϕ is injective. Furthermore, for x ∈ A[0], we
have ϕ(scanx) = x ⋅ (scan(δ0x))−1 where the second factor is in F (A[−1]). Hence
ϕ is surjective. Furthermore

F (A[0])/F (A[−1])→ G(∐
n

An
[1]/⋯)

[x]↦ scanx

is an inverse of ϕ.

6.2 Classical (co)bar for Set∆
op

6.6. We get an adjunction

Set∆
op cobar ○ρ∗○dec∗ //

Mon∆
op

dec∗ ○(ρ∗)−1○bar
oo

where now cobar = cobar(Set∆op
,×)→O and bar = bar(Set∆op

,×)→O are computed
point-wise because × has this property. We will investigate this adjunction
explicitly in this section.

Definition 6.7. The functor

MKan ∶= cobar ○ρ∗ ○ dec∗ ∶ Set∆
op

→Mon∆
op

is called the geometric cobar construction.

The functor is closely related to Kan’s loop group functor hence the notation.
Let F ∶ Set→ Grp the free group functor which we denote by the same letter on
diagrams.

Definition 6.8. 1. Let X ∈ Set∆
op

be simplicial set. Define a simplicial
group called Kan’s loop group by

GKan(X)[k] ∶= F (X[k+1])/F (X[k])
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with the simplicial structure given by

δ′i(x) =
⎧⎪⎪⎨⎪⎪⎩

(δkx)(δk+1x)−1 i = k;
δix i < k.

2. Let X ∈ Mon∆
op

be simplicial monoid. Define a simplicial set called the
classifying space by

(WX)[n] ∶=X[n−1] ×X[n−2] ×⋯ ×X[0]

where the simiplicial structure is given by

δi(xn−1, . . . , x0) =
⎧⎪⎪⎨⎪⎪⎩

(xn−2, . . . , x0) i = 0,
δi(xn−1), . . . , δ1(xn−i−1), xn−i−1 ⋅ δ0(xn−i), xn−i−2, . . . , x0) 1 ≤ i < n,

si(xn−1, . . . , x0) =
⎧⎪⎪⎨⎪⎪⎩

(1, xn−1, . . . , x0) i = 0,
(si−1(xn−1), . . . , s0(xn−i),1, xn−i−1, . . . , x0) 1 ≤ i < n.

Let G ∶ Mon → Grp be the point-wise group completion functor which we
denote by the same letter on diagrams.

Proposition 6.9. We have for cobar = cobar(Set∆op
,×)→O an isomorphism

GKan ≅ G ○ cobar ○ρ∗ ○ dec∗

of functors
Set∆

op

→ Grp∆
op

See also [52, Proposition 5.3].

Proof. This follows from Lemma 6.4 (cf. also 6.5). The simplicial structure can
be (for i = 0, . . . , k) read off from:

G∐(dec∗X)n[k],[1]
δi

��

F (X[k+1])/F (X[k])
skoo

��
G∐(dec∗X)n[k−1],[1]

δk ⋅δ−1k+1

// F (X[k])/F (X[k−1])

Proposition 6.10 (Duskin [21]). We have for bar = bar(Set∆op
,×)→O an iso-

morphism

W ≅ dec∗ ○(ρ∗)−1 ○ bar

of functors
Mon∆

op

→ Set∆
op

.
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Proof. Let X be a simplicial monoid. We have by Lemma 6.2 applied point-
wise that Y = (ρ∗)−1 ○ bar(X) is the bisimplicial set Y[n],[m] = N(X[n])[m]. By
Proposition 4.89

(dec∗ Y )[n] ≅ lim

⎛
⎜⎜⎜⎜⎜
⎝

Y[n],[0]

$$

Y[n−1],[1]

yy ""

⋯ Y[0],[n]

}}
Y[n−1],[0] ⋯

⎞
⎟⎟⎟⎟⎟
⎠

and there are maps

αi ∶ (W (X))[n] → Y[n−i],[i]

(gn−1, . . . , g0) ↦ (δi−10 (gn−1), δi−20 (gn−2), . . . , δ0(gn−i+1), gn−i)

which yield bijections (WX)[n] ≅ (dec∗ Y )[n] compatible with the simplicial
structure.

Corollary 6.11. There is are adjunctions

Grp∆
op � � //

Mon∆
op

G
oo

W //
Set∆

op

MKan

oo

GKan

ii

with W right adjoint.

Proof. The right hand side is the adjunction 6.6 and the left hand side the group
completion adjunction.

Remark 6.12. From the non-Abelian Eilenberg-Zilber Theorem 4.65 follows
that for a simplicial monoid X there is a weak equivalence

WX ≅ δ∗NX.

6.3 A∞-algebras and coalgebras

Let (C,⊗) be an Abelian tensor category. The classical bar and cobar con-
structions for (C,⊗) are intimately related to the notions of A∞-algebra and
-coalgebra. Hence we will pause the discussion of (co)bar to briefly discuss the
latter. For an extensive introduction we refer to [36].

Embed C∆op

as Ch(C)≥0 (via Dold-Kan) into Ch(C), the category of un-
bounded complexes which we see here as Z-graded objects X in C with a differ-
ential, i.e. a morphism

d ∶X →X

of degree -1 that satisfies d2 = 0. We define, in the usual way, shift operators

s, s−1 ∶ Ch(C)→ Ch(C)
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with (sX)i ∶=Xi−1. Furthermore there are the adjunctions

Ch≤0(C)
� � //

Ch(C)
τ≤0
oo

with τ≤0 (truncation) right adjoint and

Ch≥0(C)
� � //

Ch(C)
τ≥0
oo

with τ≥0 (truncation) left adjoint. The inclusions also have the other adjoints
which will not be used in the sequel.

We let ⊗̃ be the tensor product tot− ⊠ − on Ch(C), i.e. the usual tensor
product of complexes. Motivated by Proposition 5.39, explicitly normalize A⊗̃B
as the following complex

⊕
i+j=n

Ai ⊗Bj

with differential
d = dl + (−1)idr. (82)

This will hardly ever be an infinite sum in our applications. Other-wise one
should of course be more careful about whether to choose the product or co-
product (or a mixture) and assume that C has those.

6.13. We will always use the Koszul sign rule (cf. also the Yoneda product
Lemma 5.29, and how this is related to the realization of complexes as objects
in CFinSetop). For homogenous morphisms f ∶ A → C, g ∶ B → D we let f ⊗
g ∶ A ⊗ B → C ⊗ D be the morphism, defined on graded pieces as x ⊗ y ↦
(−1)deg(x)deg(g)f(x) ⊗ g(y) and similarly for higher tensors. For example the
differential (82) on A ⊗̃B is expessed as 1⊗ d+d⊗1.

6.14. An algebra object in Ch(C), i.e. an object in (Ch(C), ⊗̃)O can be seen
as an algebra object in graded objects such that

A⊗A

d⊗1+1⊗d
��

m // A

d

��
A⊗A m

// A

commutes (with Koszul sign rule). Similarly for coalgebra objects. Expressed
with elements this reads:

d(a ⋅ b) = (da) ⋅ b + (−1)degaa ⋅ (db).

6.15. For X a graded object, we let

T∐(X) T∏(X)

be the tensor (co)algebras. To avoid any problems during the abstract discussion
for now with infinite direct sums or products, in particular, with their existence
and commutation with ⊗, we consider ‘T∐’(X) ∈ Ind−C and ‘T∏’(X) ∈ Pro−C.
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‘T∏’(X) is considered as algebra with

(x1 ⊗⋯⊗ xi) ⊠ (xi+1 ⊗⋯⊗ xn)↦ x1 ⊗⋯⊗ xn
‘T∐’(X) is considered as coalgebra with the “deconcatenation” coproduct.

x1 ⊗⋯⊗ xn ↦
n

∑
i=0
(x1 ⊗⋯⊗ xi) ⊠ (xi+1 ⊗⋯⊗ xn)

Actually, these constructions are precisely dual to each other.
Denote by ‘T∏,+’(X) the positive part (i.e. without the unit object 1).

Lemma 6.16. 1. Any homomorphism d1 ∶ X → ‘T∏’(X) of degree -1 can
be extended uniquely to a morphism d ∶ ‘T∏’(X) → ‘T∏’(X) of degree -1
satisfying the graded Leibniz rule (called a derivation).

2. Any α1 ∶X → ‘T∏,+’(X) of degree 0 can be extended uniquely to an algebra
homomorphism

α ∶ ‘T∏’(X)→ ‘T∏’(X).
Proof. 1. The components

dn ∶X⊗n → ‘T∏’(X)

of the extension are given by

x1 ⊗⋯⊗ xn ↦
n

∑
i=1
(1⊗i ⊗ d⊗1⊗n−i−1)(x1 ⊗⋯⊗ xn)

with the Koszul sign convention (6.13). To see that this is well-defined, observe
that the components X⊗n →X⊗m are zero for n≫m.

2. The components
αn ∶X⊗n → ‘T∏’(X)

of the extension are given by

x1 ⊗⋯⊗ xn ↦ α(x1)⊗⋯⊗ α(xn).

To see that this is well-defined, observe that the components X⊗n → X⊗m are
zero for n >m.

There is a corresponding dual version for the coalgebra ‘T∐’(X).
If C is complete56, we have a lax monoidal functor

lim ∶ Pro−C → C

and thus ‘T∏’(X) gives rise to an algebra T∏ ∶= (lim ‘T∏’)(X). Similarly, if C
is cocomplete, we have an oplax monoidal functor

colim ∶ Ind−C → C

and thus ‘T∐’(X) gives rise to a coalgebra T∐ ∶= (colim ‘T∐’)(X).
56That C has countable products is enough (and sometimes even no restriction because we

work with graded objects) for what we are doing. We leave it to the reader to make the
necessary precisions.
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Definition 6.17. Let (C,⊗) be an Abelian tensor category.

1. A graded object X in C together with a differential d on the graded coalgebra
‘T∐’(sX) is called an A∞-algebra.

2. Let X,Y be A∞-algebras. A morphism of A∞-algebras X → Y is a
morphism of (non-counital) dg-coalgebras ‘T∐,+’(sX)→ ‘T∐,+’(sY ).

3. A graded object X in C together with a differential57 d on the graded algebra
‘T∏’(s−1X) is called an A∞-coalgebra.

4. Let X,Y be A∞-coalgebras. A morphism of A∞-coalgebras X → Y is
a morphism of dg-algebras ‘T∏,+’(s−1X)→ ‘T∏,+’(s−1Y ).

There are notions of (co)units for A∞-(co)algebras which will not be consid-
ered here.

6.18. Translating via Lemma 6.16, 1., an A∞-algebra is thus determined by a
collection di ∶ sX⊗i → sX of degree -1 satisfying

∑
n=r+s+t

dr+1+t(1⊗r ⊗ ds⊗1⊗t) = 0.

It is convenient to define maps mi ∶ X⊗i → X of degree i − 2 by means of the
commutative diagram (with Koszul sign rule 6.13)

(sX)⊗i di // sX

X⊗i

s⊗i

OO

mi // X

s

OO

where s is the canonical map of degree 158. Equivalently, an A∞-algebra is thus
given by a family mi, satisfying the Stasheff identities:

∑
n=r+s+t

(−1)r+stmr+1+t(1⊗r ⊗ms ⊗ 1⊗t) = 0

and components αi ∶X⊗i →X give a morphism of A∞-algebras, if and only if

∑
n=r+s+t

(−1)r+stαr+1+t(1⊗r ⊗ms ⊗ 1⊗t) = ∑
1≤r≤n

n=i1+⋯+ir

(−1)smr(αi1 ⊗⋯⊗ αir)

with s = ∑r
j=1(r − j)(ij − 1).

Lemma 6.19. There are functors

A∞ ∶ Alg○(Ch(A), ⊗̃)→ AlgA∞(Ch(A), ⊗̃)
A∞ ∶ Coalg○(Ch(A), ⊗̃)→ CoalgA∞(Ch(A), ⊗̃)

57i.e. a derivation, satisfying d2 = 0
58Explicitly mi(x1, . . . , xn) = (−1)∑(n−i)deg(xi)s−1 di(sx1, . . . , sxn)
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giving as the identity on the underlying graded object and setting for a (co)algebra
(X,m)

m1 ∶= −d m2 ∶=m mj ∶= 0 (j ≥ 2)
They are faithful, the image on morphisms are precisely those morphisms α ∶
sX → T∐(sY ) (resp. α ∶ T∏(s−1X) → s−1Y ) that factor through sX → sY
(resp. s−1X → s−1Y ). Fixing a graded object X, the image is given precisely by
those structures on X that satisfy mj = 0 for j ≥ 2.

Proof. The (co)associativity of m is equivalent to the equation (d2)2 = 0 and
the equation d1d2 = −d2d1 is equivalent to the compatibility of m with the
differential.

6.4 The Eilenberg-MacLane bar and Adams cobar con-
struction

6.20. This section discusses the classical Adams cobar [3] and Eilenberg-
MacLane bar constructions [22]. These are not anymore dual to each other, i.e.
the Eilenberg-MacLane bar construction applied to Cop does not give the Adams
cobar construction! We assume that ⊗ commutes with (countable) coproducts.
Let X be a dg-coalgebra (not necessarily with counit). Then there is a sub-dg-
algebra T⊕(s−1X) ⊂ T∏(s−1X) whose underlying graded is the free algebra on
s−1X and the differential is the restriction, giving a functor

T⊕(s−1−) ∶ Coalg○(Ch(A), ⊗̃)→ Alg(Ch(A), ⊗̃).

Note that one can get back T∏(s−1X) as a completion of T⊕(s−1X).
However, observe that the functor does not extend to A∞-coalgebras and

their morphisms — their data, in contrast to the ones coming from usual dg-
coalgebras, do not restrict to T⊕(s−1X)!

Let X ∈ Ch≥0(C) with α ∶ X → 1 be an augmented dg-algebra. Denote
X ∶= ker(α) and let Y ∈ Ch≥0(C) with β ∶ 1 → Y be an coaugmented dg-
coalgebra. Denote Y = coker(β). X and Y are again dg-(co)algebras (without
(co)unit).

Definition 6.21. Assume that (countable) coproducts exist in C.

1. The coaugmented dg-coalgebra59

barEM ∶= T∐(sX)

with the differential from Lemma 6.19 is called the Eilenberg-MacLane
bar construction of the augmented algebra X. It comes equipped with a
natural coaugmentation given by 1→ T∐(s−1X).

59T∐ = colim ‘T∐’ always exists as graded object because it involves only finite coproducts
in each degree.
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2. Asumme that ⊗ commutes with countable coproducts. The augmented dg-
algebra

cobarAdams ∶= T⊕(s−1Y )
with the restriction of the differential from Lemma 6.19 (cf. 6.20) is called
the Adams cobar construction of the coaugmented coalgebra Y . It
comes equipped with a natural augmentation given by the projection T⊕(s−1Y )→
1. If Y is connected, then it is again an object in Ch≥0(C).

For coalgebras, we have the functor “connected cover”:

P ∶ Coalg(Ch(C), ⊗̃)→ Coalgconn(Ch(C)≥0, ⊗̃)

which is left adjoint to the inclusion, where connected means Xi ≅ 0 for i < 0,
and that the counit induces an isomorphism X0 → 1. It is defined by

P (X)i =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xi i > 0
1 i = 0
0 i < 0

with obvious comultiplication, counit, and differential.
Note that connected coalgebras are canonically coaugmented. We will only

consider the Adams cobar construction on such connected objects where s−1X
is just τ≥0(s−1X).

6.5 Classical (co)bar for Abelian categories

Let (C,⊗) be an Abelian tensor category. We will investigate the classical bar
construction bar(C,⊗)→O and cobar construction cobar(C,⊗)→O (cf. 3.5).

Lemma 6.22. Let (C,⊗) be an Abelian tensor category and A ∈ C an algebra
with augmentation α ∶ A→ 1. Denote A ∶= kerα. Then we have an isomorphism
of dg-coalgebras

T∐(sA)
� � // (ρ∗)−1 bar(A)

a−α(a)⋅1
oo

where bar = bar(C/1,⊗)→O is the classical bar construction (Definition 3.5) in the

category of augmented objects in C and where T∐(sA) (with A considered as a

complex concentrated in degree 0) is equipped with the differential m ∶ A⊗2 → A
extended to T∐(sA) by means of (the dual of) Lemma 6.16.

Proof. The composition

(C/1,⊗)O
bar=π̃∗1 // ((C/1,⊗)∨)

↓↑O ((C/1,⊗)∨)(∆,∗)op = Coalg(C∆op

/1 , ⊗̃)ρ∗

∼
oo

can be described as follows. The functor bar maps A to object B with

B[i] = A⊗i
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with A⊗0 = 1 understood, with transition morphisms in ∆op
act given by the cor-

responding algebra structure maps, with comultiplication

B[i]∗′[j] → B[i] ⊗B[j]
being the obvious isomorphism, and with the counit being the isomorphism
B[0] → 1. If 1 is final, as it is in the category of augmented objects, then by
Corollary 4.14 this extends to an object

(ρ∗)−1B ∈ ((C,⊗)∨)(∆,∗)op = Coalg(C∆
op

, ⊗̃),

i.e. to a dg-coalgebra. Inert morphisms go to the corresponding

A⊗i → A⊗j

given by applying the augmentation to the appropriate slots and the comultipli-
cation factors through the canonical degeneracy (this follows from Lemma 4.13):

B[i]∗′[j] → B[i]∗[j] → B[i] ⊗B[j]

yielding the structure of dg-coalgebra on ρ∗B. Let A be the kernel of the
augmentation (considered as graded object in degree 0). Then we have an
isomorphisms of dg-coalgebras

T∐(sA)
� � // (ρ∗)−1 bar(A)

a−α(a)⋅1
oo

for one composition is clearly the identity, whereas all tensors of the form a1 ⊗
⋯⊗ (α(ai) ⋅ 1)⊗⋯⊗ an are degenerate. The identification of the differential is
left to the reader.

Lemma 6.23. Let (C,⊗) be an Abelian tensor category with countable colimits
such that ⊗ commutes with them. Let A ∈ Coalg(Ch≥0(C), ⊗̃) be a dg-coalgebra.
Then for the classical cobar construction (Definition 3.5) cobar = cobar(C,⊗)→O:

cobarρ∗A ≅ T⊕(A1)/I

where I is the ideal generated by A2 under m1,1+d, where m1,1 ∶ A2 → A1⊗A1 is
the 1,1-component of the comultiplication. The induced algebra structure is given
by (the quotient of) the product structure in T⊕(A1). If A ∈ ((C/1,⊗)∨)(∆,∗)op

is an augmented coalgebra then the same formula is true and the augmentation
of the result coincides with the projection T⊕(A1)/I → 1.

Note that the indices refer to the indices under Dold-Kan, i.e. A1 = A[1]/A[0]
and A2 = A[2]/Adeg

[2] .

Proof. By 3.19, we have

cobarρ∗A ≅
coker(⊕A[1] ⊗⋯⊗A[2] ⊗⋯⊗A[1] ⊕⊕A[1] ⊗⋯⊗A[0] ⊗⋯⊗A[1] →

∞
⊕
n=0

A⊗n[1] = T
⊕(A[1]))
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with the morphism

id−ε ∶⊕A[1] ⊗⋯⊗A[0] ⊗⋯⊗A[1] → T⊕(A[1])
with A[0] ⊂ A[1] via the (only) degeneracy understood and ε ∶ A[1] → 1 is the
counit. We have an exact sequence (using that ⊗ commutes with quotients)

⊕A[1] ⊗⋯⊗A[0] ⊗⋯⊗A[1] // T⊕(A[1]) // T (A1) // 0.

We have the automorphism

Ω ∶ T⊕(A[1])→ T⊕(A[1])
given on A[1] by a↦ a − ε(a). This yields an exact sequence

⊕A[1] ⊗⋯⊗A[0] ⊗⋯⊗A[1]
id−ε // T (A[1])

Ω−1 // T⊕(A1) // 0

and the ideal Ω(J) coincides with the image of X. The morphism

⊕A[1] ⊗⋯⊗A[2] ⊗⋯⊗A[1] → T⊕(A[1])
is induced by the map A[2] → T⊕(A[1]) given by µ′1,1 − δ1, where µ′1,1 is the
composition A[2] → A[3] → A[1] ⊗ A[1] (composition of canonical degeneracy
and structure map of the coalgebra, cf. the discussion in 3.18).

We claim that the following is commutative

A[2]
µ′1,1−δ1//

����

T (A[1])

Ω−1

����
A2

m1,1+d // T (A1)

The upper composition is given by, writing µ(a) = ∑ai ⊗ bi where a ∈ A[2]
and ai, bi ∈ A[1]:

a↦ µ(a) +∑ ε(ai)bi +∑ ε(bi)ai +∑ ε(ai)ε(bj) − δ1(a) − ε(δ1(a)).
We have∑ ε(ai)bi = δ0(a) and∑aiε(bi) = δ2(a) and∑ ε(ai)ε(bj) = ε(a) because
of the coalgebra structure. Obviously ε(δ1(a)) = ε(a). Hence we are left with

a↦ µ(a) + d(a)
where d is the alternating face map. In T (A1) indeed degenerate elements are
mapped to 0 and, because of the commutative diagram

A[2]
µ′1,1 //

����

A[1] ⊗A[1]

����
A2 m1,1

// A1 ⊗A1

where m1,1 in the bottom line is the 1,1-component of the multiplication in A
considered as coalgebra w.r.t. ⊗̃, the induced map on A2 is given bym1,1+d.
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Theorem 6.24. Let (C,⊗) be an Abelian tensor category with countable colimits
such that ⊗ commutes with them.

There is an isomorphism

cobar ○ρ∗ ≅H0 ○ cobarAdams ○P

of functors60

Coalg(Ch≥0(C), ⊗̃)→ Alg(C/1,⊗)
where cobar = cobar(C,⊗)→O is the classical cobar construction (Definition 3.5),
and where P is the functor “connected cover” with its canonical coaugmentation.

Proof. For A ∈ Coalg(Ch≥0, ⊗̃) a dg-coalgebra, we have

(H0 ○ cobarAdams ○P )(A) ≅ T⊕(A1)/I,

where I is the ideal generated by im(d+m1,1). Therefore this follows from
Lemma 6.23.

By definition, cobarAdams(PA) = T⊕(s−1PA), and s−1(PA) is the same
as the truncation τ≥0(s−1A) = s−1(τ≥1A). Furthermore τ≥1 is oplax monoidal,
neglecting the unit, i.e. a functor of cooperads

τ≥1 ∶ ((Ch(C), ⊗̃)○,∨)→ ((Ch≥1(C), ⊗̃)○,∨)

hence induces a functor

τ≥1 ∶ Coalg○(Ch(C), ⊗̃)→ Coalg○(Ch(C), ⊗̃).

For a morphism A → B of dg-coalgebras, we obtain a commutative diagram of
dg-algebras

‘T∏’(s−1A)

��

// ‘T∏’(s−1B)

��
‘T∏’(s−1PA) // ‘T∏’(s−1PB)

More generally, any morphism of dg-algebras ‘T∏’(s−1A) → ‘T∏’(s−1B),
i.e. in particular an A∞-morphism of (A∞-)coalgebras A→ B, induces a unique
morphism ‘T∏’(s−1PA)→ ‘T∏’(s−1PA), such that the analogous diagram com-
mutes, but does not necessarily induce a morphism T⊕(s−1PA)→ T⊕(s−1PA).

We define thus

Definition 6.25. Assume that countable products exist in C. Let A be a dg-
coalgebra with coaugmention 1→ A.

ĉobar
Adams(A) ∶= T∏(sA)

60the RHS is the category of augmented algebras in (Ch≥0(C), ⊗̃) which is the same as
algebra objects in augmented objects.
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equipped with its natural algebra structure and with the differential from Lemma 6.19.

ĉobar(A) ∶= coker(
∏A[1]⊗⋯⊗A[2]⊗⋯⊗A[1]

⊕
∏A[1]⊗⋯⊗A[0]⊗⋯⊗A[1]

→
∞
∏
n=0

A⊗n[1]) .

We have then still

Proposition 6.26.

ĉobarρ∗A ≅ T∏(A1)/Î ≅H0 ○ ĉobar
Adams ○ P

where Î is the closure of the ideal I of Lemma 6.23 and this is functorial in
morphisms of A∞-coalgebras.

6.6 Classical (co)bar for complexes in Abelian categories

6.27. Let (C,⊗) be an Abelian tensor category. Apply the last section to
(Ch≥0(C), ⊗̃). Composing with the adjunction C.4 we get an adjunction

Alg(Ch≥0(C)/1, ⊗̃)
cobar ○ρ∗○dec∗⊗̃ //

Coalg(Ch≥0(C), ⊗̃)
dec⊗̃,∗ ○(ρ∗)−1○bar
oo

where bar and cobar are understood w.r.t. the cofibration (Ch≥0(C), ⊗̃) → O.
Here dec∗⊗̃ is the decalage dec∗ turned into a lax monoidal functor (=functor of
cooperads) as described in Section C.4.

The adjoint functors will be identified in this section in terms of the Eilenberg-
MacLane bar and Adams cobar construction.

Theorem 6.28. There is an isomorphism

barEM ≅ dec⊗̃,∗ ○(ρ∗)−1 ○ bar

of functors61

Alg(Ch≥0(C)/1, ⊗̃)→ Coalgconn(Ch≥0(C), ⊗̃)
where bar = bar(Ch≥0(C)/1,⊗̃)→O is the classical bar construction (Definition 3.5)62,
and where dec∗ = tot is the total complex functor considered as a monoidal
functor as in C.4. Both sides are connected and hence canonically coaugmented
coalgebras.

61the LHS is the category of augmented algebras in (Ch≥0(C), ⊗̃) which is the same as
algebra objects in augmented objects.

62“bar” commutes with the forgetful functor forgetting the augmentation (in the obvious
sense), hence we didn’t mention the augmentation in the index of “bar”, but it is important
to keep the augmentation along to be a able to interpret the result via (ρ∗)−1 as a double
complex. (Without the augmentation it is only a diagram of shape ∆op ×∆op

act).
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Proof. Let A ∈ C∆op

be an algebra w.r.t. ⊗̃, i.e. a dg-algebra, with augmentation
A→ 1. By Lemma 6.22 applied to (C∆op

, ⊗̃) there is an isomorphism

(ρ∗)−1 bar(A) = T∐(C∆op
,⊗̃)(srA)

of double complexes (with rows A⊗̃⋯⊗̃A), where sr is the shift w.r.t. the second
(column) index. We have to see that there is an isomorphism of dg-algebras:

dec∗ T
∐
(C∆op

,⊗̃)(srA) ≅ T
∐
(C,⊗)(sA)

where T∐(C,⊗) considers sA as a graded object and is equipped with the differential

d1 +d2
from Lemma 6.19 and where dec∗ is considered a monoidal functor as described
in C.4. Both sides are in a natural way direct sums of Ai1 ⊗⋯⊗Aim in degree
n = m +∑k ik. However, because of the sign in the coalgebra structure on the
left hand side (cf. C.4), the identity would not be compatible with the coalgebra
structures, but we have an epimorphism of graded objects

p ∶ dec∗ T∐(C∆op
,⊗̃)(slA)→ sA

by the obvious projection. Like in (the dual of) Lemma 6.16 it extends to an
isomorphism

p′ ∶ dec∗ T∐(C∆op
,⊗̃)(slA)→ T∐(sA)

of graded coalgebras, introducing the sign (−1)∑k(m−k)deg im−k on the summand
Ai1 ⊗⋯⊗Aim . Finally observe that, for An in complex bidegree (n,1) resp. in
degree n + 1, the following commutes:

An

(−1)nmi1,i2

��

An

d2,i1−1,i2−1

��
Ai1 ⊗Ai2 (−1)i2

// Ai1 ⊗Ai2

where the (−1)nmi1,i2 is the second summand of the differential on the total
complex.

6.29. Let B ∈ Coalg(Ch≥0(C), ⊗̃). Apply Lemma 6.23 to the double complex
A ∶= dec∗B considered as object in Coalg(D∆op

, ⊗̃) with D = Ch≥0(C). We have
by Proposition 5.39, 2.:

A1 = s−2B ⊕ s−1B A2 = s−3B ⊕ s−2B

(not a direct sum as complexes!), where s−1 is considered as endomorphism of
Ch≥0(C) (i.e. really τ≥0s−1) and the differential (between the columns) is

s−3B ⊕ s−2B

⎛
⎜
⎝
0 1
0 0

⎞
⎟
⎠
// s−2B ⊕ s−1B
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and the 1,1-component of the comultiplication is

s−3B ⊕ s−2B // (s−2B ⊕ s−1B)⊗ (s−2B ⊕ s−1B)

whose components are by Lemma C.3, 3. given by:

m1,1 ∶ Bi+j+3 ⊕Bi+j+2 → (Bi+2 ⊗Bj+2)⊕ (Bi+2 ⊗Bj+1)⊕ (Bi+1 ⊗Bj+2)⊕ (Bi+1 ⊗Bj+1)
(bn+3, bn+2)↦ (0, βi+2,j+1(bn+3), (−1)j+1βi+1,j+2(bn+3), (−1)jβi+1,j+1(bn+2)).

Theorem 6.30. Let (C,⊗) be an Abelian tensor category with countable colimits
such that ⊗ commutes with them. There is an isomorphism

cobarAdams ○P ≅ cobar ○ρ∗ ○ dec∗⊗̃

of functors63

Coalg(Ch≥0(C), ⊗̃)→ Alg(Ch≥0(C)/1, ⊗̃)
where cobar = cobar(C∆op

,⊗̃)→O is the classical cobar construction (Definition 3.5),

and where dec∗⊗̃ is dec∗ considered as a lax monoidal functor (= functor of co-
operads) as in Section C.4.

Proof. This follows from Proposition 6.31 below.

Proposition 6.31. Let C be an Abelian tensor category with countable colimits
such that ⊗ commutes with them. In the situation of Lemma 6.23 for C∆op

with
tensor product ⊗̃ = dec∗ − ⊠ − (i.e. under Dold-Kan the usual tensor product on
complexes) there is an isomorphism of dg-algebras

ϕ ∶ T⊕((dec∗B)1)/I → T⊕(s−1B)
bn+2, bn+1 ↦ (−1)ns−1(bn+1) + d2 s−1(bn+2)

where I is the ideal from Lemma 6.23 and where T⊕(s−1B) is equipped with the
restriction of the differential d = d1 +d2 induced by the coalgebra structure on
B as described in Lemma 6.19 and where s−1 is the endomorphism of Ch(C≥0)
(i.e. really τ≥0s

−1).

Proof. Recall that d1 = −d and d2 ∶ s−1B → s−1B ⊗̃ s−1B is the comultiplication
twisted with sign: d2,i+1,j+1 = (−1)iβi,j (both extended to T (s−1B) using the
graded Leibniz rule). We first check that ϕ is compatible with the differential
and maps I to zero. We omit the s−1 for better readability.

I is generated by elements of the form

(bn+2,0) + ∑
i+j=n

(0, βi+2,j+1(bn+3), (−1)j+1βi+1,j+2(bn+3), (−1)jβi+1,j+1(bn+2))

63the RHS is the category of augmented algebras in (Ch≥0(C), ⊗̃) which is the same as
algebra objects in augmented objects.
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which are mapped by ϕ to

∑
i+j=n

((−1)i+1βi+1,j+1(bn+2) + (−1)n+jβi+1,j+1(bn+2))

+ ∑
k+l+m+2=n

(−1)m (((−1)k+1βk+1,l+1 ⊗ 1)βk+l+2,m+1(bn+3)

+ (−1)k((−1)l+11⊗ βl+1,m+1)(−1)l+m+1βk+1,l+m+2(bn+3)) = 0.

We have to check the commutativity of

Bn+2 ⊕Bn+1
ϕ //

⎛
⎜
⎝
d (−1)n

d

⎞
⎟
⎠ ��

T⊕(s−1B)n+2

d1 +d2

��
Bn+1 ⊕Bn

ϕ // T⊕(s−1B)n+1

The upper composition maps a pair (bn+2, bn+1) to

−d(−1)nbn+1 − dd2 bn+2 + d2(−1)nbn+1 + (d2)2bn+2.

The lower composition maps it to

(−1)n−1 d bn+1 + d2(d bn+2 + (−1)nbn+1).

This is the same using (d2)2 = 0 and dd2 = −d2 d. Defining

ψ ∶ T⊕(s−1B) → T⊕((dec∗B)1)/I
bn+1 ↦ (0, (−1)nbn+1)

we have ϕψ = id and

(ψϕ − id)(bn+2, bn+1) = (−bn+2,0) + ψ d2 bn+2

= (−bn+2,0) + (−1)n ∑
i+j=n

(0,0,0, (−1)i+1βi+1,j+1(bn+2))

with the same decomposition in tensor-degree two as above. This is obviously
in I.

Corollary 6.32. Let (C,⊗) be an Abelian tensor category with countable col-
imits such that ⊗ commutes with them. Then there is an adjunction

Alg(Ch≥0(C)/1, ⊗̃)
barEM

//
Coalgconn(Ch≥0(C), ⊗̃).

cobarAdams

oo

Proof. This is the adjunction 6.27.
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6.7 Comparison of classical and derived (co)bar

As we have seen, the bar constructions W and barEM are given by our abstract
“classical bar construction” for I = S = O followed by the (totalization) functor
dec∗. By definition64 the derived bar construction is given by this “classical
bar construction” followed by a relative left Kan extension which (in the aug-
mented case) can be computed as colimit over ∆op. Thus, simply put, W and
barEM give Lurie’s bar construction because dec∗ computes the (derived) col-
imit over ∆op (this is true essentially because of the Eilenberg-Zilber theorem,
cf. Section 4.6). This section is devoted to an elaboration of this explanation.

Denote S = Set∆
op

[W−1] ≅ Gpd∞ (localizations always as ∞-categories).

Proposition 6.33. We have a commutative diagram

Mon∆
op //

(ρ∗)−1○bar(Set∆
op

,×)→O
��

Alg(S,×)

(ρ∗)−1○bar(S,×)→O
��

Set∆
op×∆op //

dec∗
��

S∆
op

colim∆op

��
Set∆

op // S

Proof. The commutation of the upper diagram is clear, and the lower follows
from the isomorphism dec∗ ≅ δ∗ up to coherent weak equivalences (non-Abelian
Eilenberg-Zilber Theorem 4.65) and the fact that δ∗ computes the colimit in
the localization (i.e. the homotopy colimit) by Proposition 4.51.

Corollary 6.34. We have

Bar ≅ dec∗ ○(ρ∗)−1 ○ bar ≅W

as functors
Mon∆

op

→ S

where Bar = Bar(S,×)→O is Lurie’s Bar construction (Definition 3.7).

Proof. We have seen in 3.14 that

Bar = colim
∆op

○(ρ∗)−1 ○ bar

(both bar constructions w.r.t. the cofibration (S,×)→ O). Therefore this follows
from Proposition 6.33.

6.35. Let (C,⊗) be an Abelian tensor category. Denote by W the quasi-
isomorphisms in Ch+(C) (bounded below complexes). Assume that ⊗̃ has a left

derived functor ⊗̃L
which is again associative. Denote D+(C) ∶= Ch+(C)[W−1]

64Lurie defines them differently, but we have seen in Corollary 3.6 that the definitions agree
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the localization as ∞-category. We assume the very mild conditions of [18,
7.9.1] ensuring that localization and taking functor categories commute (i.e.
homotopy colimits become ∞-categorical colimits). Those conditions are for
example satisfied, if (Ch+(C),W) enhances to a model category structure. This
is true under very mild assumptions on C.

Assume that there is a full subcategory Ch+(C)split ⊂ Ch+(C) (closed under
biproducts, ⊗, and containing 1) such that the restriction of the inclusion gives
rise to a monoidal functor

(Ch+(C)split, ⊗̃)→ (D+(C), ⊗̃L). (83)

It thus induces a functor of cooperads

(Ch+(C)split, ⊗̃)∨ → (D+(C), ⊗̃L)∨

and finally a functor

Coalg(Ch+(C)split, ⊗̃)→ Coalg(D+(C), ⊗̃L).

Proposition 6.36. We have a commutative diagram

Alg(Ch+(C)split/1 , ⊗̃) //

(ρ∗)−1○bar(Ch+(C),⊗̃)→O
��

Alg(D+(C)/1, ⊗̃
L)

(ρ∗)−1○bar(D+(C),⊗̃L)→O
��

Coalg((Ch+(C)split/1 )
∆op

, ⊗̃) //

dec⊗̃,∗

��

Coalg(D+(C)∆
op

/1 ,dec∗ − ⊠̃L −)

colim∆op

��
Coalg(Ch+(C)split/1 , ⊗̃) // Coalg(D+(C)/1, ⊗̃

L)

Recall from the proof of Theorem 3.12 that the functor denoted colim∆op

is in fact a relative left Kan extension along the functor (∆,∗)op → Oop of
cooperads, which exists, and is computed fiber-wise (i.e. here commutes with
forgetting the coalgebra structure) because this is an exponential fibration of
cooperads that is ∞-coCartesian.

Proof. The upper diagram commutes because the restriction of the localization
(83) is monoidal by assumption.

Consider the diagram

Coalg(Ch+(C)split/1 , ⊗̃) //

dec?⊗̃
��

π∗

��

Coalg(Ch≥0(C)[W−1], ⊗̃L)

π∗

��
Coalg((Ch+(C)split/1 )

∆op

, ⊗̃) // Coalg(D+(C)∆
op

,dec∗ − ⊠̃L −)
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in which the square involving the π∗ is clearly commutative. Furthermore, also
dec?⊗̃ is a functor of cooperads (Lemma C.10) and there is a natural transfor-
mation

π∗ ⇒ dec?⊗̃

which is point-wise a quasi-isomorphism (Lemma C.9). Therefore there is also
a commutative square involving dec?⊗̃. Now consider the mate (passing to the
left adjoints vertically):

Coalg((Ch+(C)split/1 )
∆op

, ⊗̃) //

dec⊗̃,∗

��
⇙

Coalg(D+(C)∆
op

,dec∗ − ⊠̃L −)

colim∆op

��
Coalg(Ch+(C)split/1 , ⊗̃) // Coalg(D+(C), ⊗̃L)

We have to show that the natural transformation is an isomorphism. However,
this can be shown forgetting the coalgebra structure, i.e. we have to show that

(Ch+(C)split/1 )
∆op //

dec∗

��
⇙

D+(C)∆
op

colim∆op

��
Ch+(C)split/1

// D+(C)

commutes. However this is the restriction of

(Ch+(C)/1)∆
op //

dec∗

��
⇙

D+(C)∆
op

colim∆op

��
Ch+(C)/1 // D+(C)

where the RHS is a localization of the LHS (the first line at the object-wise quasi-
isomorphisms, see [18, Proposition 7.9.1]) and in the adjunction dec∗,dec

? both
functors preserve (object-wise) quasi-isomorphisms. Therefore it descends to an
adjunction between the localizations and (the descended) dec? is isomorphic to
π∗ — thus also the descended dec∗ is isomorphic to colim∆op .

Corollary 6.37. We have

Bar ≅ dec∗ ○(ρ∗)−1 ○ bar ≅ barEM

as functors

Alg(Ch+(Csplit)/1, ⊗̃)→ Coalg(D+(C), ⊗̃L)
where Bar = Bar(D+(C)/1,⊗̃L)→O is Lurie’s Bar construction (Definition 3.7).
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Proof. We have seen in 3.14 that

Bar = colim
∆op

○(ρ∗)−1 ○ bar

(both bar constructions w.r.t. the cofibration (D+(C/1, ⊗̃
L) → O). Therefore

this follows from Proposition 6.36. The isomorphism with barEM is a slight
generalization of Theorem 6.28 to bounded below complexes.

6.8 An intermediate cobar construction

Let (C,⊗) be an Abelian tensor category with countable colimits such that ⊗
commutes with them. We may also compute the classical cobar construction
w.r.t. the cofibration of operads (C∆op

,⊗) → O (not ⊗̃ !). (C∆op

,⊗) is again an
Abelian tensor category and thus Lemma 6.23 applies giving

cobar ○ρ∗ ○ dec∗⊗A = T⊕(C∆op
,⊗)((dec

∗A)1)/I,

where dec⊗ = AW2 dec
∗ is the lax monoidal extension of dec∗

(C∆
op

,⊗)∨ → (C∆
op×∆op

, ⊗̃)∨

discussed in C.3, where ⊗̃ ∶= dec∗ −⊠−, and ⊠ is ⊗ applied point-wise in the first
variable. We will not calculate this further in any explicit manner, because ⊗
is complicated in terms of complexes. It will turn up as an intermediate step
in comparing the Adams cobar construction and the geometric cobar construc-
tion in section 6.10. Actually, it compares very easily to the geometric cobar
construction:

Lemma 6.38. The following commutes

Set∆
op

cobar ○ρ∗○dec∗
��

Z[−] // Coalg(Ab∆
op

,⊗)

cobar⊗ ○ρ∗○dec∗⊗
��

Mon∆
op

Z[−]
//// Alg(Ab∆

op

/Z ,⊗)

where on the left the cobar construction w.r.t. (Set∆
op

,×)→ O and on the right

the cobar construction w.r.t. (Ab∆
op

/Z ,⊗)→ O is used.
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Proof. The diagram in question is the outer rectangle in:

Set∆
op

dec∗

��

Z[−] // Coalg(Ab∆
op

,⊗)

dec∗

��
Coalg(Set∆

op×∆op

,×)

AW2 ∼
��

Z[−] // Coalg(Ab∆
op×∆op

,⊗)

AW2

��
Coalg(Set∆

op×∆op

, ×̃)

cobar ○ρ∗
��

Z[−] // Coalg(Ab∆
op×∆op

, ⊗̃)

cobar⊗ ○ρ∗
��

Mon∆
op

Z[−]
//// Alg(Ab∆

op

/Z ,⊗)

The left morphism AW2 is an isomorphism because of the trivial Eilenberg-
Zilber Theorem 4.70. In the third horizontal morphism a coalgebra with struc-
ture map dec∗X →X⊠X is mapped to dec∗Z[X] with structure map dec∗Z[X] =
Z[dec∗X] → Z[X ⊠ X] = Z[X] ⊠ Z[X]. The commutativity of the two up-
per squares is clear and the commutativity of the lower square stems from the
commutativity of Z[−] with colimits (being a left adjoint) and its monoidality

(Set∆
op

,×)→ (Ab∆
op

,⊗).

Remark 6.39. The Lemma may be expressed by saying that there is an iso-
morphism:

Z[−] ○MKan ≅ (cobar⊗ ○ρ∗ ○ dec∗⊗) ○Z[−]

i.e. the complex of normalized singular chains of the geometric cobar construc-
tion of X is the algebraic cobar construction of the complex of normalized sin-
gular chains of X. With the caveat that this is the algebraic cobar construction
w.r.t. ⊗ and not w.r.t. ⊗̃ (which would be the Adams cobar construction). Nev-
ertheless, the latter two can be compared, which is — perhaps surprisingly —
fairly intricate. We will do this in section 6.10.

6.9 Coherent vs. A∞-transformations

Proposition 6.40. Consider the cooperad65 (C∆op

, ⊗̃)○,∨ with its simplicial en-

richment F Aw∗Hom⊗̃ (cf. Lemma 5.29). Then for any pair of (non-counital)
dg-coalgebras X,Y we have a natural morphism

Coh(X,Y )0 → HomA∞(X,Y )

which restricted to Hom(X,Y ) is the usual embedding of coalgebra morphisms
into A∞-coalgebra morphisms (Lemma 6.19). The functor is compatible with

65Recall that (−)○ means that we neglect the counits.
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the composition defined in Section 4.10 on the left hand side and composition
of morphisms of A∞-coalgebras on the right.

Remark 6.41. There is an algebra-version of the above as well, which will not
be needed. We leave the details to the reader. In fact, the whole construction
works for unbounded complexes and so the other argument is dual.

Proof. Let µ ∈ Coh(F,G)0 be a coherent transformation. We have to define
morphisms

αn ∶ s−1F → (s−1G)⊗̃n n ≥ 1
of degree 0 satisfying dα = αd (for the extension of α ∶= ‘∏ ’αn to ‘T∏’(s−1X)→
‘T∏’(s−1Y )), or more elementarily:

∑
i+j=k
(αi ⊗ αj)d2 +αk+1 d1 = d2 αk + d1 αk+1. (84)

Consider the set of factorizations of pk+1 ∶ [1] → [k + 1] in ∆○act = O○,opact of the
form

[1] [1]
δik−1+1// ⋯ // [k]

δi0+1 // [k + 1] [k + 1]

in ∆○,opact , i.e. a sequence of injections with endpoints fixed, where all injections
are non-identities, and thus necessarily of the form δi. We have 0 ≤ in < k − n.
As in (5.56) we see them either as sequences i = (i0, . . . , ik−1) or as a leveled
tree. In total, there are k! such factorizations which constitute non-degenerate
k-simplices of Npk+1([1] ×/∆○act ∆

○
act ×/∆○act [k + 1])k.

Each µ(i) defines an element in Hom⊗̃k (F,G⊗̃k+1) which we consider as a

degree k morphism F → G⊗̃(k+1). We can thus define a degree 0 morphism:

αk+1 ∶ s−1F → (s−1G)⊗̃k+1

s−1x ↦ (s−1)⊗̃(k+1)∑
i

sgn(i)µ(i)(x)

where is sum is over all i = (i0, . . . , ik−1) with 0 ≤ ij < k − j and where we used
the Koszul sign convention (6.13) and where

sgn(i) ∶= (−1)∑
k−1
j=0 ij .

α1 is just the degree 0 map F → G evaluation at [1]→ [1]→ [1].
We a left to show (84). Define for each m = 1, . . . , k − 1 an involution σm on

these factorizations given by

(δi, δj)↦
⎧⎪⎪⎨⎪⎪⎩

(δj−1, δi) i < j
(δj , δi+1) i ≥ j

at positions m,m + 1. Each involution σm changes the sign:

sgn(σm(i)) = −sgn(i). (85)
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Since the maps µk ∶ Npk+1([1]×/∆○act∆
○
act×/∆○act [k+1])k → Hom⊗̃k (F,G⊗̃(k+1))

are simplicial, we have66:

(−1)k(dαk+1 − αk+1 d) =
k

∑
j=0
(s−1)⊗̃(k+1)∑

i

(−1)j sgn(i)µ(δji)s

=∑
i

(s−1)⊗̃(k+1) sgn(i)µ(δ0i)s +∑
i

(s−1)⊗̃(k+1)(−1)k sgn(i)µ(δki)s

because µ(δmi) = µ(δmσmi) for m = 1, . . . , k − 1 and the sign property (85).
δ0i is equal to

[1] δ1 // [2] // ⋯ // [k]
δi0+1 // [k + 1] [k + 1].

Write this as δ0i = (i1, i2) ○ δ1 where i1 and i2 are compositions of δi’s and
id’s. We have that i1 = σ(i′1) and i2 = τ(i′2) for uniquely determined shuffle
σ ∶ [k − 1] ↠ [a], τ ∶ [k − 1] ↠ [b] for a + b = k − 1 and where i′1 and i′2 are
of the form previously considered, i.e. non-degenerate with extremal identities.
Because of the relations in the coherent end, we have that

µ(i1)⊗ µ(i2) ∈ Hom⊗̃(F,G⊗̃a+1)[k] ⊗Hom⊗̃(F,G⊗̃b+1)[k]

map to µ(i) under the composition

Hom[k](F,G⊗a+1)⊗Hom[k](F,G⊗b+1)
Aw // (Hom(F,G⊗̃a+1) ⊗̃Hom(F,G⊗̃b+1))[k]

// Hom[k](F,G⊗̃k+1)

where the last map is the composition with the comultiplication F → F ⊗̃2. By
Lemma 5.29 thus to the morphism

F → G⊗̃k+1

of degree k, given by
(µ(i′1) ⊗̃ µ(i′2))F (m)

with Koszul sign convention, if σ = sl and τ = sr and other-wise to something
degenerate. For these we have sgn(i′1) sgn(i′2) = (−1)(a+1)b sgn(i) in such a way

66using d(s−1)⊗k+1 = (−1)k(s−1)⊗k+1 d.
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that

∑
i

(s−1)⊗̃(k+1) sgn(i)µ(δ0i)

= ∑
a+b=k−1

(s−1)⊗̃(k+1)(−1)(a+1)b sgn(i1) sgn(i2)(µ(i′1)⊗ µ(i′2))F (m)

= − ∑
a+b=k−1

(−1)(a+1)b sgn(i1) sgn(i2)⋅

((s−1)⊗̃(a+1) ⊗̃ (s−1)⊗̃(b+1))(µ(i′1) ⊗̃ µ(i′2))(s ⊗̃ s)(s−1 ⊗̃ s−1)F (m)
= − ∑

a+b=k−1
(−1)(a+1)b(−1)a(b+1)(−1)(αa ⊗̃ αb)F̃ (m)

= ∑
a+b=k−1

(−1)k−1(αa ⊗̃ αb)F̃ (m)

δki is equal to

[1] [1]
δik−1+1// [2] // ⋯ // [k]

δi0+1// [k + 1].

Thus δki = δi0+1 ○ i and therefore

(1⊗̃i0 ⊗̃G(m) ⊗̃ 1⊗̃k−i0−1)µ(i′) = µ(δ0i)

where i′ = (i1, . . . , ik−1). and therefore

∑
i

(−1)k sgn(i)(s−1)⊗̃(k+1)µ(δki) =∑
i

(s−1)⊗̃(k+1)(−1)k sgn(i)(1⊗̃i0⊗̃G(m)⊗̃1⊗̃k−i0−1)µ(i′)

=∑
i

(−1)k sgn(i)(−1)i0(1⊗̃i0 ⊗̃ (s−1 ⊗ s−1)G(m)s ⊗̃ 1⊗̃k−i0−1)(s−1)⊗̃kµ(i′)

=∑
i′
(−1)k sgn(i′)G̃(m)(s−1)⊗̃kµ(i′)

= (−1)kG̃(m)αk

where G̃(m) now has been extended — as derivation — to s−1G.
Putting everything together, we arrive at

(−1)k(dG αk+1 − αk+1 dF ) = (−1)kG̃(m)αk − (−1)k ∑
i+j=k
(αi ⊗ αj)F̃ (m)

i.e.

∑
i+j=k
(αi ⊗ αj)F̃ (m) − αk+1 dF = G̃(m)αk − dG αk+1

so indeed (αk) is a morphism of A∞-coalgebras, observing that (on F say)

d1 = −d and d2 = F̃ (m).
The proof that this association is compatible with composition is omitted

for the moment.
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6.10 Functoriality (Szczarba and Hess-Tonks morphisms)

6.42. In this section, we relate the following two objects for a simplicial set
X ∈ Set∆

op

:

EZ∨ ○Z[MKan(X)] ≅EZ∨ ○Z[cobar ○ρ∗ ○ dec∗X],
cobarAdams ○P ○AW ○Z[X] ≅ cobar⊗̃ ○ρ∗ ○ dec∗⊗̃ ○AW ○Z[X].

which, in more traditional language, would be called CMKan(X) and ΩC(X)
— the translation of the (co)algebra structures via AW and EZ understood.

6.43. Recall from the Abelian Eilenberg-Zilber Theorem 5.16 that we have
functors (with mate) of (co)operads:

AW ∶ (Ab∆
op

,⊗)∨ → (Ab∆
op

, ⊗̃)∨ AW∨ ∶ (Ab∆
op

, ⊗̃)→ (Ab∆
op

,⊗)

and

EZ ∶ (Ab∆
op

, ⊗̃)∨ → (Ab∆
op

,⊗)∨ EZ∨ ∶ (Ab∆
op

,⊗)→ (Ab∆
op

, ⊗̃)

6.44. We have seen in Lemma 6.38 that (quite obviously because Z[−] is
cocontinuous and monoidal):

cobar⊗ ○ρ∗ ○ dec∗⊗ ○Z[X] ≅ Z[cobar ○ρ∗ ○ dec∗X].

Thus, it remains to compare the following two dg-algebras

EZ∨ ○ cobar⊗ ○ρ∗ ○ dec∗⊗ ○Z[X],
cobar⊗̃ ○ρ∗ ○ dec∗⊗̃ ○AW ○Z[X].

Definition 6.45. 1. The following composition of morphisms of dg-algebras
is called the Szczarba morphism ϕ:

cobar⊗̃ ○ρ∗ ○ dec∗⊗̃ ○AW ○Z[X]

EZ−functoriality (Proposition 3.28)

��
EZ∨ ○ cobar⊗ ○ρ∗ ○EZ1 ○ dec∗⊗̃ ○AW ○Z[X]

∼ Lemma C.11

��
EZ∨ ○ cobar⊗ ○ρ∗ ○ dec∗⊗ ○EZ ○AW ○Z[X]

Sh(Z[X]) The Shih-operator in disguise, see 6.47

��
EZ∨ ○ cobar⊗ ○ρ∗ ○ dec∗⊗ ○Z[X]

where we wrote dec∗⊗ ∶= AW2 ○ dec∗.
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2. The following composition of morphisms of dg-algebras is called the Hess-
Tonks morphism ψ:

EZ∨ ○ cobar⊗ ○ρ∗ ○ dec∗⊗ ○Z[X]

AW−functoriality (Proposition 3.28)

��
cobar⊗̃ ○ρ∗ ○AW1 ○ dec∗⊗ ○Z[X]

Sh(Z[X])−1 The Shih-operator in disguise, see 6.47

��
ĉobar⊗̃ ○ ρ∗ ○AW1 ○ dec∗⊗ ○EZ ○AW ○Z[X]

∼ Lemma C.11

��
ĉobar⊗̃ ○ ρ∗ ○ dec∗⊗̃ ○AW ○Z[X]

Here ĉobar⊗̃ is a natural completion of cobar defined in Definition 6.25.

We will see later in Corollary 6.49 that, the first morphism is the same as
the one given by Szczarba in [53] (up to different indexing convention, see 5.55).
That there is a relation between the Shih and Szczarba constructions has been
observed before, cf. [24]. It is not completely clear (to me), however, how the
construction of the deformation in [24] relates to the construction in 6.47 below.

It seems likely that the second morphism, optimistically called Hess-Tonks
morphism, gives the morphism defined in [33, 2.1] (at least up to the same
reindexing) but this remains to be checked in detail.

Remark 6.46. Notice that, in 2., there is no direct map of the form

cobar⊗̃ ○ρ∗ ○AW1 ○ dec∗⊗ ○Z[X]

☇
��

cobar⊗̃ ○ρ∗ ○ dec∗⊗̃ ○AW ○Z[X]

because the analogous diagram to the one in Lemma C.11 with the Alexander-
Whitney morphisms does not commute!

6.47. The transport of the Shih operator:
It remains to see how the deformation Ξ∨ (cf. Theorem 5.15, 3.) gives rise

to the dashed morphisms in Definition 6.45.
Recall from 5.18 the construction of the higher Shih operators which con-

stitute a coherent transformation Ez∗H = Ez∗ exp(L(C,⊗)∨(Ξ∨)) ∈ Coh0(id,EZ ○
AW) where on the source the discrete enrichment and on the destination the

weak enrichment FHom⊗̃(Ab∆op
,⊗)∨ (5.30) is chosen.

For a dg-coalgebra C ∈ Coalg(Ab∆
op

,⊗), it yields a coherent transformation
Ez∗H(C) ∈ Coh0(C,EZ ○ AW ○ C) for the discrete enrichment on Oop and for

the weak enrichment FHom⊗̃(Ab∆op
,⊗)∨ on the target.
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Forgetting the counit, we get a coherent transformation

Ez∗H(C) ∈ Coh0(C,EZ ○AW ○C)

for the truncated weak enrichment FHom⊗̃,t(Ab∆op
,⊗)○,∨ (cf. Definition 5.36) on the

target. Reason: We have obviously Z[N([1] ×/∆○act ∆
○
act ×/∆○act [k + 1])]n = 0 for

n > k because every element of degree > k in this nerve must be degenerate.
Proposition C.7 states that τ dec∗⊗ is a weakly enriched functor

(C∆
op

,⊗)○,∨ → (C∆
op×∆op

, ⊗̃)○,∨

for the weak (Ab∆
op

,⊗)-enrichment Hom⊗̃,t(Ab∆op
,⊗)○,∨ on the left and the (Ab∆

op

,⊗)-
enrichment Aw∗Hom⊗̃,t(Ab∆op×∆op

,⊗̃)○,∨ (second variable) on the right.

The coherent transformation Ez∗H(C) yields thus a coherent transformation

τ dec∗⊗Ez
∗H(C) ∈ Coh0(τ dec

∗
⊗C, τ dec

∗
⊗EZ ○AW ○C).

Applying Proposition 6.40 produces a morphism of A∞-coalgebras, by defi-
nition a morphism of dg-algebras:

Sh(C) ∶ ‘T∏’(sτ dec∗⊗C)→ ‘T∏’(sτ dec∗⊗EZ ○AW ○C).

Note that because the first component Sh(C)1 is the identity, this morphism of
A∞-coalgebras is invertible.

Theorem 6.48. The morphism Sh(C) constructed above is bounded (that is, it
maps cobar to cobar (without completion)) and we have a commutative diagram:

H0(T⊕(sτ dec∗⊗ ○EZ ○AW ○ Z[X])

Sh(Z[X])

��

∼ // ⊕∞k=0(τ≥1 dec∗ Z[X])⊗k
1
/I′ sτ≥1Z[X]

scan
oo

Sz(Z[X])

��
H0(T⊕(sτ dec∗⊗ ○Z[X]))

∼ // ⊕∞k=0(τ≥1 dec∗ Z[X])⊗k
1
/I ⊕∞k=0(τ≥1 dec∗ Z[X])⊗k[1]/Ĩ1+ε

∼oo

where the map Sz on the right has components

Szk ∶X[k] →
∞
⊕
k=0
(τ≥1 dec∗Z[X])⊗k[1]

given by

Szk(s−1x) =
⎧⎪⎪⎨⎪⎪⎩

−1 + x k = 1
∑i sgn(i∨)scan(Sz0i ∗′ id∆1)(s−1x)⊗⋯⊗ (Szki ∗′ id∆1)(s−1x) k > 1

for the Szczarba-operators Szji defined in Definition 5.54.

Corollary 6.49. The Szczarba morphism in Definition 6.45 is up a different
indexing (cf. 5.55) the morphism given by Szczarba in [53], see also [33, Theo-
rem 7].
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Proof of Theorem 6.48. The components

(Ez∗H)i ∈ Homk(Z[X],Z[Xk+1])

of Ez∗H, i.e. the higher Shih operators, are by Proposition 5.21 given by

(Ez∗H)ni =∑
b

sgn(σb)Hn
b,i.

and by Proposition 5.51 and Proposition 5.57 we have that (the projection of)
sgn(σb)Hn

b,i is given by

sgn(σb)PHn
b,i ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑ ĩ such that

i is a b-reduction of ĩ

ε(Szc0
ĩ
∗′q0)⊗⋯⊗ (Szckĩ ∗

′qk) b0 < k̃

0 otherwise

modulo degenerates, where qj = sk+1j,j+1 and

ε = (−1)(k̃+1)k sgn(i∨) sgn(̃i∨).

Thus µ(i) is represented by maps

Z[X]n−k → (Z[X]⊗k+1)n
x↦∑

b

∑
ĩ such that

i is a b-reduction of ĩ

ε(Szc0
ĩ
∗′q0)⊗⋯⊗ (Szckĩ ∗

′qk)

modulo degenerates and the kernel of P, where the b run over sequences (b0, . . . , bk)
with k̃ > b0 > ⋅ ⋅ ⋅ > bk ≥ 0 only.

Under the functor τ dec∗⊗ of weakly enriched operads of Proposition C.7 this
is mapped to a morphism:

Homk(τ≤1 dec
∗Z[X], (τ≤1 dec∗Z[X])⊗̃k+1).

Contemplating the construction in C.6 we can first map it to

Homk(τ≤1 dec
∗Z[X], (τ≤1 dec∗Z[X])⊗k+1) (86)

by the morphism in Proposition C.5 and then apply the AW2 morphism. The
image in (86) is thus represented by morphisms (we will only need the case in
which the first component is zero)

Z[X]i+j+1 ⊕Z[X]i+j → (Z[X]⊗k+1)i+j+k+1 ⊕ (Z[X]⊗k+1)i+j+k
(0, x)↦ (0, (−1)ik∑

b

∑
ĩ such that

i is a b-reduction of ĩ

ε(Szc0
ĩ
∗′q0)⊗⋯⊗ (Szckĩ ∗

′qk))
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where now k̃ = i + j − 1. We compose this with the bottom line map in the
commutative diagram (cf. Proposition 5.42):

(Z[X]⊗k+1)[i+j+k]

��

scan // (Z[X]⊗k+1)[i+j+k+1]
δ(0),...,δ(k)//

��

⊕j0+⋯+jk=j+k(dec
∗ Z[X])[i+j0+1] ⊗⋯⊗ (dec

∗ Z[X])[i+jk+1]

��
(Z[X]⊗k+1)i+j+k

� � // (dec∗ Z[X]⊗k+1)i,j+k
AW2 // ⊕j0+⋯+jk=j+k((dec

∗ Z[X])●,j0 ⊗⋯⊗ (dec
∗ Z[X])●,jk )i

with
δ(e) = id[i] ∗δj+k∑f<e jf ,∑f≤e jf

where, however, only summands with j0, . . . , jk ≥ 1 occur because of the trun-
cation. Now set j = 1 (hence i = k̃) because this is the column appearing in the
cobar construction. In this case, there is only one summand and we have

δ(e)scan =
⎧⎪⎪⎨⎪⎪⎩

(id[k̃] ∗δk+10,1 )scan e = 0,
id[k̃] ∗δk+1e−1,e e > 1.

This shows that elements in the kernel of P are mapped to degenerate (in the
second index of dec∗) elements. Furthermore

(id[k̃] ∗δ
k+1
e,e+1) ○ scan ○ (Szc0ĩ ∗

′qe)

= (id[k̃] ∗δ
k+1
e,e+1) ○ (Szc0ĩ ∗s

k+1
e,e+1) ○ scan

= (Szc0
ĩ
∗ id[1]) ○ scan = scan ○ (Szc0ĩ ∗

′ id[1]).

The composition is equal to

Z[X]k̃+1 → Z[X][k̃+2] ⊗⋯⊗Z[X][k̃+2]
x↦ (−1)k̃k∑

b

∑
ĩ such that

i is a b-reduction of ĩ

εscan(Szc0ĩ ∗
′ id[1])⊗⋯⊗ (Szckĩ ∗

′ id[1])

modulo degenerates.
Under the morphism in Proposition 6.40 this yields a morphism of A∞-

coalgebras with components (in degree 1 and k̃)

αk+1 = (s−1)k+1(−1)k∑
i,b

∑
ĩ such that

i is a b-reduction of ĩ

(−1)
(k−1)k

2 sgn(̃i∨)scan(Szc0ĩ ∗
′ id[1])⊗⋯⊗(Szckĩ ∗

′ id[1]))

(Notice that sgn(i∨) = (−1)
(k−1)k

2 sgn(i)). The (s−1)k+1 contributes (Koszul

convention) a sign of (−1)
k(k+1)

2 , so

αk+1 =∑
i,b

∑
ĩ such that

i is a b-reduction of ĩ

sgn(̃i∨)scan((Szc0ĩ ∗
′ id[1])(s−1x)⊗⋯⊗(Szckĩ ∗

′ id[1])(s−1x)).
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If we take x ∈Xk̃+1 we have:

(1 − ε)
∞
∑
n=0

αn+1(x) =
⎧⎪⎪⎨⎪⎪⎩

−1 + x k̃ = 1
∑i sgn(i∨)(Sz0i (s−1x)⊗⋯⊗ Szki (s−1x)) k̃ > 1

by Proposition 5.60. The −1 is the constant term for k=1. For higher k the
constant term is degenerate and thus can be omitted.

Proposition 6.50. We have ψϕ = id and there is a chain homotopy ψϕ⇒ id.

Proof. Omitted for the moment.

A Exactness of some diagrams

Lemma A.1. The following natural morphism is an isomorphism of 1-profunctors
(and also ∞-profunctors):

tπ ≅ ti∅.

Proof. The diagram
∆op

π

��

∆op

i

��
⋅ ∅

//

⇗

∆op
∅

is ∞-exact, because ∅ is final in ∆op
∅ .

Lemma A.2. The following natural morphism is an isomorphism of 1-profunctors
(and also ∞-profunctors):

tpr1
ti ≅ t(i, i)p1.

Proof. We have to see that the diagram

∆op ×∆op (i,π) // ∆op
∅ × ⋅

p1=(id,∅)
��

∆op ×∆op (i,i) //

⇗

∆op
∅ ×∆op

∅

is ∞-exact, which is the product of the one of Lemma A.1 with a trivially exact
one.

Lemma A.3. The following natural morphism is an isomorphism of 1-profunctors
(and also ∞-profunctors):

dec tpri ≅ id .
In particular, we also have dec tπ∆op×∆op ≅ tπ∆op , in other words, dec is ∞-
cofinal.
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Proof. We have to show that the diagram

∆op ×∆op dec //

pri
��

∆op

∆op

⇓

∆op

is ∞-exact. Since pri is a cofibration, it suffices to see that

∆op decn //

π

��

∆op

⋅
[n] //

⇓

∆op

is exact (where decn ∶= ([n], id) ○dec) for all n. Using criterion (Lemma 2.8, 4.)
it boils down to show that the following category is contractible: Its objects are
morphisms

[a]← [b] ∗ [n]
such that the composition [a]← [n] is fixed, and morphisms are the morphisms
[b]← [b′] making

[a] oodd [b] ∗ [n]
OO

[b′] ∗ [n]

commute. Now write [a] = [a′] ∗′ [a′′] (where ∗′ identifies the endpoints) such
that a′′ is minimal with a factorization of the given morphism:

[a] = [a′] ∗′ [a′′]← [a′′]← [n].

A morphism [a] ← [b] ∗ [n] is then completely determined by a morphism
[a′]← [b] to the extent that the category in question is isomorphic to

[a′] ×/∆op ∆op

which is contractible, having an initial object.

Lemma A.4. δ is ∞-cofinal, i.e. we have that the natural morphism

δ tπ ≅ tπ.

is an isomorphism of ∞-profunctors.

Proof. We have to show that the diagram

∆op π //

δ
��

⋅

∆op ×∆op π //

⇓

⋅
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is ∞-exact.
Using criterion (Lemma 2.8, 4.) it boils down to show that the following

category is contractible:

[n], [m] ×/∆op×∆op,δ ∆
op

This category is cofibered over ∆op with fibers being the set Hom∆(−, [n]×[m]).
But the latter simplicial set is the nerve of the category [n]× [m] which is obvi-
ously contractible, having an initial object (or here equivalently a final object).
Moreover, for any category there is a natural transformation ∫∆op N(I) → I
which is a weak equivalence (i.e. the nerve applied to it is a weak equiva-
lence).

Lemma A.5. The following natural morphism is an isomorphism of 1-profunctors
(and also ∞-profunctors):

dec t(i, i) ≅ ti dec∅ .

Proof. Look at the compositions:

∆op ×∆op ∆op ×∆op dec //

(i,i)
��

=

∆op

i

��
∆op ×∆op

(i,i)
// ∆op
∅ ×∆op

∅ dec∅
// ∆op
∅

and

∆op ×∆op

ipri
��

∆op ×∆op dec //

(i,i)
��

=

∆op

i

��
∆op
∅ pi

// ∆op
∅ ×∆op

∅ dec∅
// ∆op
∅

We have to show that the common right square is∞-exact. Since (i, i)∗, p∗1, and
p∗2, are jointly conservative, it suffices to see that the left and composite squares
are ∞-exact in both cases. This is either because i and (i, i) are fully-faithful,
or a consequence of Lemmas A.2–A.3.

Lemma A.6. ι ∶∆op → FinSetop is 1-cofinal, i.e.

∆op //

��

FinSetop

��⋅ ⋅

is 1-exact.
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Proof. To show that the categories

∆ ×/FinSet [n]

are connected. Let [m] → [n] and [k] → [n] be morphisms in FinSet. They
give rise to a morphism

[m] ∗ [k]→ [n]
in FinSet (∗ is the coproduct in FinSet). We get a commutative diagram

[m]

$$

� � // [m] ∗ [k]

��

oo ? _[k]

zz
[n]

where the inclusions are morphisms in ∆. The category, being non-empty, is
thus connected.

B Leveled trees, Shih, and Szczarba

This section is devoted to the proof of Proposition 5.57. Actually a slight
generalization, Proposition B.5 will be stated and proven, in which the e and σ
are needed to make the induction work.

B.1. We need the following generalization of (5.53). Let k, e,m be non-negative
integers. For σ ∶ [k + e]↠ [k], we define the operator

Pσ ∶ Z[Hom([n], [m])]⊗(k+1) → Z[Hom([n], [m])]⊗(k+1)

by

Pσ =
k+e
∏
i=0

1⊗σ(i) ⊗Pn−k−e−1+i ⊗ 1⊗k−σ(i)

i.e. it throws away all summands that are n− k − e− 1+ i degenerate at σ(i) for
i = 0, . . . , k + e.

We also let δ ∶= Hom(σ, [1]) ∶ [k + 1] ↪ [k + e + 1] the dual active face map,
here with

δ(j + 1) = δ(j) +#σ−1(j).
For σ = id, e = 0 we also write P ∶= Pσ. We denote the jumps

αj ∶= δ(j + 1) − δ(j) =#σ−1(j).

We have
σ = sα0 ∗′ id[1] ∗′sα1 ∗′ ⋯∗′ id[1] ∗′sαk ,

where αi is the number of preimages, denoting sαi ∶ [αi − 1]↠ [0].
By formula (74) for the signum, we have thus

sgn(σ) =∏
i

(−1)(k−i)(αi−1).
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B.2. In a situation as in 5.56, given a vector b = (b0, . . . , bk−1) with k̃ > b0 > ⋅ ⋅ ⋅ >
bk−1 ≥ 0 — which is also seen as a shuffle σb ∶ [n]→ [k], τb ∶ [n]→ [n−k] (notice
the n instead of k̃) where τb is degenerate precisely at the intervals bi +1 — and

ĩ of length k̃ ≥ k, such that i is a b-reduction of ĩ, then given σ ∶ [k + e] → [k],
we get a unique extension σ̃ ∶ [k̃ + e]→ [k̃] satisfying

#(σ̃)−1(i) =
⎧⎪⎪⎨⎪⎪⎩

#σ−1(j) i = cj for some j

1 otherwise

Denoting
βj ∶= cj − cj−1 − 1

(setting c−1 = −1), we have

σ̃ = id[β0] ∗′sα0 ∗′ id[β1+1] ∗′sα1 ∗′ ⋯∗′ id[βk+1] ∗
′sαk

and get by formula (74) for the signum

sgn(σ̃) =∏
i<j
(−1)(βj+1)(αi−1)

which specializes to the formula before, if all βj = 0. In particular,

sgn(σ) sgn(σ̃) =∏
i<j
(−1)βj(αi−1). (87)

Definition B.3. For a vector (i.e. leveled tree) i = (i0, . . . , ik) and face δ ∶
[k + 1]→ [m] (arbitrary m ≥ k + 1) define

Szji,δ = Sz
j
i δ∣[j].

Directly from (79) follows:

Lemma B.4.

Szji,δ =
⎧⎪⎪⎨⎪⎪⎩

Szji′,δ′ ∗δ
αi0
−1

0 j = i0 + 1
si0 Sz

j′

i′,δ′ otherwise
(88)

with δ′ = δi0+1δ and j′ = si0(j) and αi0 = δ(i0 + 1) − δ(i0).

The following gives Proposition 5.57 in the special case e = 0 and σ = id.

Proposition B.5. With the notation from B.1, we have for arbitrary n, setting
k̃ ∶= n − k − 1 − e:

PσHn
b,i ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑ ĩ such that

i is a b-reduction of ĩ

ε(Szc0
ĩ,δ̃
∗′qσ,0)⊗⋯⊗ (Szckĩ,δ̃ ∗

′qσ,k) b0 < k̃

0 otherwise

modulo degenerates, where qσ,j = sk+1+eδ(j),δ(j+1). In particular the expession is zero

unless k̃ ≥ k (i.e. n ≥ 2k + e + 1).
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Here the ĩ are vectors of length k̃ and c0, . . . , ck are determined by ĩ as in
5.56 and

ε = (−1)(k̃+1)k sgn(i∨) sgn(̃i∨) sgn(σ) sgn(σ̃) sgn(σb)
The Szj

i,δ
∗′qσj have values in [δ̃(cj)] ∗′ [#σ−1(j)] = [δ̃(cj + 1)] and are

considered as [n − k]-valued via the inclusion [δ̃(cj + 1)] ⊂ [n − k]. δ̃ is the

(active) morphism [k̃ + 1]↪ [k̃ + e + 1] dual to σ̃ (B.1).

Before giving the proof, we need a couple of Lemmas:

Lemma B.6. Let τ ∈ Hom([n− 1], [m]). Then Hn
b (τ) is a sum of terms of the

form τ ′ ⊗ τ ′′ that are
• for i < b, i-degenerate at the left and right if τ is degenerate at i and not
i-degenerate neither on the left nor right, otherwise.

• for i = b, i-degenerate at the left (at least)

• for i > b either i-degenerate at the right or at the left (not both) if τ is
not-i − 1-degenerate and fully i-degenerate, if τ is i − 1-degenerate.

Furthermore, for i ≥ b each term is at least i-degenerate at the right for i = b or
such that τ is not i − 1-degenerate.

The proof is left to the reader. We can also say that Hn
b (τ) is a sum of terms

of the form sbτ
′⊗siτ ′′ for i ≥ b and such that either i = b (thus fully degenerate)

or τ is not i − 1-degenerate.
Lemma B.7. Let τ0 ⊗⋯⊗ τk be a summand of Hn

b,i. Then for i > b0 at most
one τj is not i-degenerate.

Proof. Induction over Lemma B.6 (because of i > b0 > ⋅ ⋅ ⋅ > bk−1, in each step,
the third case is relevant).

Lemma B.8. If PσHn
b,i /≡ 0 modulo degenerates then b0 < n − k − e − 1.

Proof. We have
Hn

b,i(τ) = (s⊗i0b0
⊗Hn

b0 ⊗ s
⊗k−1−i0
b0

)Hn−1
b′,i′ .

Let τ0 ⊗⋯⊗ τk−1 be a term of Hn−1
b′,i′ . The operator Hn

b0
(τi0) is (modulo degen-

erates) a sum over terms of the form sb0τ
′ ⊗ siτ ′′ for i > b0 such that τi0 is not

i−1-degenerate (Lemma B.6, and the comment after) and thus Hn
b,i(τ) is a sum

over terms of the form

x ∶= sb0τ0 ⊗⋯⊗ (sb0τ ′
±
at i0

⊗ siτ
′′

±
at i0+1

)⊗⋯⊗ sb0τk−1

However, since i−1 > b1, τ0⊗⋯⊗τk−1 is (either degenerate or) i−1-degenerate
at all except one slot (Lemma B.7). Thus all τj for j /= i0 are i − 1-degenerate
and thus x is i-degenerate except at i0 and i0 + 1. If we assume Pσx /≡ 0, we
must have σ(i) = i0 or σ(i) = i0+1, and also σ(b0) = i0+1 because x is obviously
b0-degenerate at all other slots. Hence σ(i) = i0 + 1 (because i > b0) and hence
Pσx ≡ 0 anyway.
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Recall from Lemma 5.49 the definition of the operators Bj
z .

Lemma B.9.

Let n,α0, α1 be positive integers.

Pα0,α1Hn =∑
z

(−1)∑i<j zj(zi+1)+α0∑ zi(B0
z ∗′ sα0+α1

α0,α0+α1
⊗B1

zδ
α0

0 ∗′ s
α0+α1

0,α0
)

in which z = (z0, . . . , zn−α0−α1−1) runs over all vectors with zi ∈ {0,1}. Implicitly,
in the formula the B0

z ∗′ sα0+α1
α0,α0+α1

is composed with the inclusion [m + α1] ↪
[n + 1].

Proof. Follows from Lemma 5.49 identifying the z-summand above with the

(0, . . . ,0
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
α0 times

,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
α1 times

, z0, . . . , zn−α0−α1−1) − summand.

Lemma B.10. Given i = (i0, . . . , ik−1), k̃ ≥ k, and b = (b0, . . . , bk−1) with k̃ >
b0 > ⋅ ⋅ ⋅ > bk−1 ≥ 0, and denoting i′ = (i1, . . . , ik−1) and b′ = (b1, . . . , bk−1), we
have a bijection

{
ĩ′

i′ is a b′-reduction of ĩ′

z∈{0,1}x
} ≅ { ĩ

i is a b-reduction of ĩ
}

where ĩ has length k̃ (resp. ĩ′ has length k̃ − 1), and x is the cardinality of

{j0, . . . , jx−1} = {0 ≤ j < k̃ − b0 − 1 s.t. y′j = i0} (89)

(cf. 5.56 for the definition of the y′j). Then we have

Sz
c′i0
ĩ′,δ̃′
= Szc

′
i0

ĩ′,δ̃′
∣[b0] ∗′ s (90)

where Sz
c′i0
ĩ′,δ̃′
∣∆b0
∶ [b0]→ [c′i0 − x] for a degeneracy s ∶ [k̃ − b0 − 1]→ [x].

Given σ and σ′ = σsi0 as in B.1 with dual faces δ and δ′ = δi0+1δ. Recall
their extensions δ̃ ∶ [k̃ + 1] → [n + 1] and δ̃′ ∶ [k̃] → [n] defined in B.2. Then we
have:

Sz
cj

ĩ,δ̃
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sb0 Sz
c′i0
ĩ′,δ̃′
∣[b0] ∗′ (sB0

z) j = i0,

Sz
c′i0
ĩ′,δ̃′
∣[b0] ∗ (sB1

zδ
αi0
−1

0 ) j = i0 + 1,

sb0 Sz
c′si0 (j)

ĩ′,δ̃′
otherwise.

(91)

Furthermore, we have

sgn(i∨) sgn(̃i∨) sgn(σ) sgn(σ̃)

= (−1)b0−k̃+1+∑i<j zj(zi+1)+∑i αi0
zi sgn((i′)∨) sgn((ĩ′)∨) sgn(σ′) sgn(σ̃′). (92)
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Proof. The bijection is given, identifying the extensions ĩ′, and ĩ, respectively,
with collections (y′0, . . . , y′k̃−k−1), and (y0, . . . , yk̃−k−1), respectively, as in 5.56,
by

yj ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y′j j ≥ k̃ − b0 − 1,
y′j j < k̃ − b0 − 1 and y′j < i0,
y′j + zi j < k̃ − b0 − 1 and y′j = i0, i.e. j = ji for some i; cf. (89) ,

y′j + 1 j < k̃ − b0 − 1 and y′j > i0.

.

The representation (90) follows directly from the recursive property of Sz
and the construction of δ̃′. We show (91) and (92) by induction on the length
k̃ of ĩ, starting from b0 + 1.

The induction base is k̃ = b0+1, whence c′i0 = ci0 = ci0+1−1, ĩ = (ci0 , ĩ
′
0, . . . , ĩ

′
k̃−1),

δ̃′ = δci+1δ̃, z = (), s = id[0], and (88) yields:

Sz
cj

ĩ,δ̃
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Sz
c′i0
ĩ′,δ̃′
∗δαi0

−1
0 j = i0 + 1,

sb0 Sz
c′si0 (j)

ĩ′,δ̃′
otherwise.

These yield (91). For the sign, notice that we have α′j = αδi0+1(j) for j /= i0 and
α′i0 = αi0 +αi0+1 and β′j = βδi0+1(j) for j /= i0 + 1 and βi0+1 = 0. We have to show:

ci0 + i0
!≡ k̃ − k +∑

i<j
(αi − 1)βj +∑

i<j
(α′i − 1)β′j modulo 2

!≡ k̃ − k − ∑
i0<j

βj + αi0βi0+1 modulo 2

However, we have ci0 = i0 +∑i≤i0 βi and ∑ bi = k̃ − k, so the statement holds.

We will now turn to the case k̃ > b0 +1 and and assume that the Lemma has
been proven for length k̃ − 1.

Denote ĩ = (̃i0, ĩ′′0 , . . . , ĩ′′k̃−2), ĩ
′ = (̃i′0, ĩ′

′′
0 , . . . , ĩ

′′′
k̃−3), with relevant derived

quantities c′′j and c′′′j , y = (y0, y′′0 , . . . , y′′k̃−k−2), y
′ = (y′0, y′′′0 , . . . , y′′′k̃−k−2), etc.

Define
δ′′ ∶= δδδ(y0)+1 δ′′′ ∶= δ′δ′δ′(y′0)+1.

Thus the corresponding αy0 increases by 1 while βy0 decreases by 1 and we have:

δ̃′′ ∶= δcy0 δ̃ δ̃′′′ ∶= δ′c′y0 δ̃
′.

By construction, we have cy0 = ĩ0 + 1, y′0 = si0(y0) and c′y′0 = ĩ
′
0 + 1 and one of

the three cases:

I y0 ∉ {i0, i0 + 1}, z = z′′, α′′i0 = αi0 ;

II y0 = i0, z = (0, z′′0 , . . . , z′′x−2), α′′i0 = αi0 + 1;
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III y0 = i0 + 1, z = (1, z′′0 , . . . , z′′x−2), α′′i0 = αi0 .

We distinguish also the two cases:

A j /= y0;

B j = y0.

We proceed to insert the recursive property of the Sz (88), respecively of the
B (77), in all 6 cases:

IA) cj /= ĩ0 + 1, cj′ /= ĩ′0 + 1

sk̃−1 Sz
c′′j

ĩ
′′
,δ̃′′

!=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sb0 Sz
c′′′i0
ĩ′
′′
,δ̃′′′
∣[b0] ∗′ (sk̃−2−b0s

′′B0
z′′) j = i0,

Sz
c′′′i0
ĩ′
′′
,δ̃′′′
∣[b0] ∗ (sk̃−2−b0s

′′B1
z′′δ

αi0
−1

0 ) j = i0 + 1,

sb0sk̃−2 Sz
c′′′si0 (j)

ĩ′
′′
,δ̃′′′

otherwise.

IB) cj = ĩ0 + 1, cj′ = ĩ′0 + 1

(Szc
′′
j

ĩ
′′
,δ̃′′
∗ id[0])

!=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

— does not occur in this case — j = i0,
— does not occur in this case — j = i0 + 1,

sb0(Sz
c′′′si0 (j)

ĩ′
′′
,δ̃′′′
∗ id[0]) otherwise.

IIA) cj /= ĩ0 + 1, c′j = ĩ′0 + 1 if j = i0 + 1 and cj′ /= ĩ′0 + 1 otherwise.

sk̃−1 Sz
c′′j

ĩ
′′
,δ̃′′

!=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

— does not occur in this case — j = i0,
Sz

c′′′i0
ĩ′,δ̃′
∣[b0] ∗ ((s′′ ∗ id[0])sx−1B1

z′′δ0δ
αi0
−1

0 ) j = i0 + 1,

sb0sk̃−2 Sz
c′′′si0 (j)

ĩ′
′′
,δ̃′′′

otherwise.

IIB) cj = ĩ0 + 1, c′j = ĩ′0 + 1

(Szc
′′
j

ĩ
′′
,δ̃′′
∗ id[0])

!=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sb0 Sz
c′′′i0
ĩ′
′′
,δ̃′′′
∣[b0] ∗′ ((s′′ ∗ id[0])(B0

z′′ ∗ id[0])) j = i0,
— does not occur in this case — j = i0 + 1,
— does not occur in this case — otherwise.

IIIA) cj /= ĩ0 + 1, c′j = ĩ′0 + 1 if j = i0 and c′j /= ĩ′0 + 1 otherwise.

sk̃−1 Sz
c′′j

ĩ
′′
,δ̃′′

!=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sb0 Sz
c′′′i0
ĩ′
′′
,δ̃′′′
∣[b0] ∗′ ((s′′ ∗ id[0])sx−1B0

z′′) j = i0,
— does not occur in this case — j = i0 + 1,

sb0sk̃−2 Sz
c′′′si0 (j)

ĩ′
′′
,δ̃′′′

otherwise.

195



IIIB) cj = ĩ0 + 1, cj′ = ĩ′0 + 1

(Szc
′′
j

ĩ
′′
,δ̃′′
∗ id[0])

!=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

— does not occur in this case — j = i0,
Sz

c′′′i0
ĩ′,δ̃′
∣[b0] ∗ ((s′′ ∗ id[0])(B1

z′′ ∗ id[0])δ
αi0
−1

0 ) j = i0 + 1,
— does not occur in this case — otherwise.

Note that e.g. sk̃−2−b0s
′′ = (s′′ ∗ id[0])sx−1. In each case the induction hy-

pothesis thus gives equality. For the sign equation (92), note that passing from
δ to δ′′ and δ′ to δ′′′, the quantity αy0 (resp. α′y′0

) increases by 1 and βy0 (resp.

β′y′0
) decreases by 1, hence

sgn(̃i∨) = (−1)k̃−cy0+1 sgn((̃i′′)∨),

sgn((ĩ′)∨) = (−1)k̃−1−c
′
y′
0
+1

sgn((ĩ′
′′
)∨),

sgn(σ) sgn(σ̃) = sgn(σ′′) sgn(σ̃′′)(−1)∑y0<j βj+∑i<y0(αi−1),

sgn(σ′) sgn(σ̃′) = sgn(σ′′′) sgn(σ̃′′′)(−1)∑y′
0
<j β

′
j+∑i<y′

0
(α′i−1).

Inserting cy0 = y0 +∑j≤y0
βj and c′y′0

= y′0 +∑j≤y′0 β
′
j we see that the LHS of (92)

picks up a sign of
(−1)y0−1−k+∑i<y0(αi−1),

and the RHS of (92) picks up a sign (taking into account that k̃ decreases by 1)
of

(−1)y
′
0−1−k+∑i<y′

0
(α′i−1).

In case I and II their product is obviously 1. In case III their product is (−1)αi0 .
In turn, in case II, the expression (−1)∑i<j zj(zi+1)+∑i αi0

zi does not change (no-
tice that αi0 also increases by 1). In case III the expression (−1)∑i<j zj(zi+1)+∑i αi0

zi

changes by a (−1)αi0 .

Proof of Proposition 5.58. In order to be non-degenerate, we must have b0 < k̃
by Lemma B.8. By Lemma B.6 we can write

PσHn
b,i = Pσ(s⊗i0b0

⊗Hn
b0 ⊗ s

⊗k−1−i0
b0

)Pσ′Hn−1
b′,i′

where σ′ = σsi0 and thus δ′ = δi0+1δ. We will show the statement for k = 0,
i = (), where the LHS is id[n] by definition. Then ĩ = (0,1, . . . , k̃ − 1) and thus

sgn(i∨) = 1, sgn(̃i∨) = 1,

σ ∶ [e]→ [0] is the contraction, and σ̃ ∶ [k̃ + e]→ [k̃] is id[k] ∗′σ, hence, sgn(σ) =
sgn(σ̃) = 1. Furthermore

Szc0
ĩ,δ̃
= id[k̃] se+1δ(0),δ(1) = id[e+1] .
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By induction on k, we may assume that the statement is true for k − 1, n −
1, e + 1, i′ = (i1, . . . , ik−1), with k̃′ = k̃ − 1. hence

Pσ′Hn−1
b′,i′ ≡ ∑

ĩ′

i′ is a b′-reduction of ĩ′

ε(Szc
′
0

ĩ′,δ̃′
∗′sk+1+eδ′(0),δ′(1))⊗⋯⊗ (Sz

c′k−1
ĩ′,δ̃′
∗′sk+1+eδ′(k−1),δ′(k))

therefore

PσHn
b,i ≡∑

ĩ′

ε′(sb0 Sz
c′0
ĩ′,δ̃′
∗′sk+1+eδ(0),δ(1))⊗⋯⊗

(P k̃+δ(i0)
αi0

,αi0+1
Hn

b0(Sz
c′i0
ĩ′,δ̃′
∗′sk+1+eδ(i0),δ(i0+2)))

⊗⋯⊗ (sb0 Sz
c′k−1
ĩ′,δ̃′
∗′sk+1+eδ(k),δ(k+1)).

where

Pc
a,b =

a−1
∏
i=0
(Pc+i ⊗ 1)

b−1
∏
i=0
(1⊗Pc+a+i)

(and recall αj = δ(j + 1) − δ(j)).
We will show

(P k̃+δ(i0)
αi0

,αi0+1
Hn

b0(Sz
c′i0
ĩ′,δ̃′
∗′sk+e+1δ(i0),δ(i0+2)))

=∑
z

εz(Sz
ci0
ĩ,δ̃
∗′sk+e+1δ(i0),δ(i0+1))⊗ (Sz

ci0+1

ĩ,δ̃
∗′sk+e+1δ(i0+1),δ(i0+2)) (93)

with
εz = (−1)∑i<j zj(zi+1)+∑i αi0

zi

where, in each summand, the extension ĩ is determined by ĩ′ and z as in
Lemma B.10. Equation (93) together with (92) and case 3. of (91) in Lemma B.10
achieve the induction step and produce a global sign of

k−1
∏
i=0
(−1)bi−k̃−i+1.

On the other hand by (75)

sgn(σb) =
k−1
∏
i=0
(−1)bi−(k−i−1)

where σb ∶ [n]↠ [n − k]. This yields a product of (−1)(k̃+k)k = (−1)(k̃+1)k.
It remains to show equation (93). By Lemma B.10, we can write Sz

c′i0
ĩ′,δ̃′
=
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Sz
c′i0
ĩ′,δ̃′
∣[b0] ∗′ s for a suitable degeneracy s ∶ [k̃ − b0 − 1]↠ [x]. Then

P k̃+δ(i0)
αi0

,αi0+1
Hn

b0(Sz
c′i0
ĩ′,δ̃′
∗′sk+1+eδ(i0),δ(i0+2))

= (id[b0] ∗P k̃−b0−1+δ(i0)
αi0

,αi0+1
Hn−b0−1)sb0(Sz

c′i0
ĩ′
∣[b0] ∗′ s ∗′ sk+1+eδ(i0),δ(i0+2))

= (id[b0] ∗P k̃−b0−1+δ(i0)
αi0

,αi0+1
Hn−b0−1)(Szc

′
i0

ĩ′,δ̃′
∣[b0] ∗ s ∗′ sk+1+eδ(i0),δ(i0+2))sδ̃′(c′i0)−x

= (id[b0] ∗s ∗′ sk+1+eδ(i0),δ(i0+2))(Sz
c′i0
ĩ′,δ̃′
∣[b0] ∗Px

αi0
,αi0+1

Hx+αi0
+αi0+1)sδ̃′(c′i0)−x

= ∑
z

(−1)∑i<j zi(zj+1)+a∑ zi

⋅ (Szc
′
i0

ĩ′,δ̃′
∣[b0] ∗′ sB0

z ∗′ sk+1+eδ(i0),δ(i0+2)s
αi0
+αi0+1

αi0
,αi0

+αi0+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sk+1+e
δ(i0),δ(i0+1)

)

⊗ (Szc
′
i0

ĩ′,δ̃′
∣[b0] ∗ sB1

zδ
αi0
−1

0 ∗′ sk+1+eδ(i0),δ(i0+2)s
αi0
+αi0+1

0,αi0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sk+1+e
δ(i0+1),δ(i0+2)

)

using Lemma 5.49, 2. Thus equation (93) follows from cases 1. and 2. of (91) in
Lemma B.10.

C Decalage

This appendix contains a rather technical discussion of the compatibility of dec∗

(total decalage), in the Abelian case, with ⊗, ⊗̃, and some (weak) simplicial
enrichments used throughout the text. It should be consulted only if needed.

Recall the explicit formulæ for dec∗ and dec∗ in the Abelian case (Proposi-
tion 5.39).

C.1 Symmetry

C.1. Let σ ∶∆op ×∆op be the morphism switching the factors. On the level of
double complexes σ∗ has the effect of switching the indices. Let X be a double
complex with isomorphism

α ∶ σ∗X ≅X
We do not have an isomorphism decσ ≅ dec but certainly an isomorphism of
Ab-enriched pro-functors

σ̃ ∶ dec σ ≅ C dec σ ι ≅ C dec ι ≅ dec .

Lemma C.2. Let X be a symmetric double complex. The composition of dec∗ α
with the mate of the morphism L(σ̃)

dec∗X ≅ dec∗ σ∗X ≅ dec∗X
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is given under the identification r (i.e. the identification described by Proposi-
tion 5.39) as the morphism

⊕
i+j=n

Ai,j → ⊕
i+j=n

Ai,j

ai,j ↦ (−1)ijα(ai,j)
Proof. It suffies to show that

Di ⊠Dj

scan

��

(−1)ij // σ∗(Dj ⊠Di)

scan

��
dec∗(Dn)

L(σ̃) // dec∗ σ∗(Dn)

commutes. Like in the proof of Proposition 5.42, 2. it suffices to see that in
degree n, we have

(−1)ijcdr scan = cL(σ̃)dr scan.
Since dr scan = id, the right hand side maps [{0, . . . , i}]⊗[{0, . . . , j}] to [{0, . . . , i+
j + 1}] and then applies the isomorphism [i] ∗ [j] ≅ [j] ∗ [i] in FinSet switching
the factors. The left hand side morphism maps it to (−1)ij[{0, . . . , i + j + 1}],
which is the same (cf. Lemma 5.6 for a description of the action).

Lemma C.3. 1. The mate

dec∗ dec∗ → dec12,3,∗ dec
∗
1,23

induced by (L applied to) the obvious isomorphism dec dec12,3 ≅ dec dec1,23
is given by morphisms

αn,m ∶ ∏
i+j′=n+m+1

Ai,j′ ⊕ ∏
i+j′=n+m

Ai,j′ → ∏
i+j=n

(Ai,j+m+1 ⊕Ai,j+m)

product of the identities

Ai,j+m+1 ⊕Ai,j+m → Ai,j+m+1 ⊕Ai,j+m

over i + j = n.

2. The mate
dec∗ dec∗ → dec2,13,∗ dec

∗
1,23

induced by (L applied to) the obvious isomorphism C dec dec2,13 ι ≅ C dec dec1,23 ι
is given by morphisms

αn,m ∶ ∏
i+j′=n+m+1

Ai,j′ ⊕ ∏
i+j′=n+m

Ai,j′ → ∏
i+j=m

(Ai,n+j+1 ⊕Ai,n+j)

product of
Ai,j+n+1 ⊕Ai,j+n → Ai,n+j+1 ⊕Ai,n+j

( (−1)
i(n+1) 0

(−1)(i+1)ndl (−1)in
)

over i + j =m.
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3. The mate
dec∗ dec∗ → dec13,24,∗ dec

∗
12,34

induced by (L applied to) the obvious isomorphism C dec dec13,24 ι ≅ C dec dec12,34 ι
is given by morphisms

αn,m ∶ ∏
i′+j′=n+m+1

Ai′,j′ ⊕ ∏
i′+j′=n+m

Ai′,j′

→ ∏
i+j=n

∏
k+l=m

(Ai+k+1,j+l+1 ⊕Ai+k+1,j+l ⊕Ai+k,j+l+1 ⊕Ai+k,j+l)

product of

(Ai+k+1,j+l ⊕Ai+k,j+l+1)⊕Ai+k,j+l → Ai+k+1,j+l+1⊕Ai+k+1,j+l⊕Ai+k,j+l+1⊕Ai+k,j+l

⎛
⎜⎜⎜
⎝

0 0 0

(−1)j(k+1) 0 0

0 (−1)(j+1)k 0
0 0 (−1)jk

⎞
⎟⎟⎟
⎠

(with the left two factors from the first product) over i + j = n, k + l =m

Proof. The morphisms are in each case induced by a collection for n +m = x

αn,m ∶ ∏
i+j′=n+m

Ai,j′ → ∏
i+j=n

(Ai,j+m+1 ⊕Ai,j+m)

maps Ai,j′ to the factor Ai,j+m on the right with j′ ∶= j +m.

αn,m ∶ ∏
i+j′=n+m

Ai,j′ → ∏
i+j=m

(Ai,n+j+1 ⊕Ai,n+j)

maps Ai,j′ to the factor Ai,j+n on the right with j′ ∶= j + n with sign (−1)in.

αn,m ∶ ∏
i′+j′=n+m

Ai′,j′ → ∏
i+j=n,k+l=m

(Ai+k+1,j+l+1 ⊕Ai+k,j+l+1 ⊕Ai+k+1,j+l ⊕Ai+k,j+l)

maps Ai′,j′ to the factor Ai+k,j+l on the right with i′ = i + k and j′ ∶= j + l with
sign (−1)jk.

In each case, we get on

∏
i′+j′=n+m+1

Ai′,j′ ⊕ ∏
i′+j′=n+m

Ai′,j′

the map
(dmαn,m+1, αn,m)

where dm is the differential in the m-direction (cf. proof of Proposition 5.39, 1.).
In case 1 the map is

(0 1
0 0

)( 0 0
id 0

) + (0 0
0 id

) = (id 0
0 id

)
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In case 2 the map is

(dl 0
0 dl

)( 0 0

(−1)(i+1)n 0
) + (−1)i (0 1

0 0
)( 0 0
(−1)in 0

) + (0 0
0 (−1)in)

= ( (−1)
i(n+1) 0

(−1)(i+1)ndl (−1)in
)

In case 3 the map is

⎛
⎜
⎝

1
1
⎞
⎟
⎠

⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

(−1)j(k+1) 0 0

⎞
⎟
⎠
+ (−1)k

⎛
⎜
⎝

1

1

⎞
⎟
⎠

⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

0 (−1)jk 0

⎞
⎟
⎠
+
⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

0 0 (−1)jk

⎞
⎟
⎠

=
⎛
⎜⎜⎜
⎝

0 0 0

(−1)j(k+1) 0 0

0 (−1)(j+1)k 0
0 0 (−1)jk

⎞
⎟⎟⎟
⎠

C.2 ̃dec
∗
is simplicially enriched

C.4. The functor dec∗ ∶ Ch≥0(C) → Ch≥0(Ch≥0(C)) extends naturally to an
unbounded functor (given by the same formula as in Proposition 5.39, 2.)

d̃ec
∗ ∶ Ch(C)→ Ch(Ch(C))

and is left adjoint to tot∏. For this functor, we have (by inspecting Lemma C.3,
2.) a canonical isomorphism

d̃ec
∗(A ⊗̃B) ≅ A ⊗̃ d̃ec

∗
B

where A ∈ Chb(C) or A ∈ Chb(Ab). On the right hand side the tensor is w.r.t.
the second variable. In particular

d̃ec
∗ ∶ Ch(C)→ Ch(Ch(C))

is simplicially enriched (w.r.t. the simplicial enrichment Hom⊗̃) and so is the
restriction67:

d̃ec
∗
≥0 ∶ Ch≥0(C)→ Ch(Ch≥0(C)).

Proposition C.5. On Hom-complexes the enrichment of d̃ec
∗
is explicitly given

by:

Hom⊗̃(X,Y )q → Hom⊗̃(d̃ec∗X, d̃ec∗Y )q

f ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝

f

(−1)i+1∂f f

⎞
⎠

q even

⎛
⎝
(−1)i+1f
∂f (−1)if

⎞
⎠

q odd

67but not the restriction Ch≥0(C)→ Ch≥0(Ch≥0(C))!
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where ∂ is the differential in the Hom-complex.

Proof. In Lemma C.3, 2., working with unbounded complexes (in one direction)
we have the morphism

dec∗ dec∗ → dec2,13,∗ dec
∗
1,23

which is explicitly given by

αn,m ∶ ∏
i+j′=n+m+1

Ai,j′ ⊕ ∏
i+j′=n+m

Ai,j′ → ∏
i+j=m

(Ai,n+j+1 ⊕Ai,n+j)

whose value at the pair at i, j is the value at the pair at i, j′ = j +n transformed
by

( (−1)
i(n+1) 0

(−1)(i+1)ndl (−1)in
)

It extends to unbounded complexes in the j-direction and has an inverse there,
given by

( (−1)i(n+1) 0

(−1)(i+1)(n+1)dl (−1)in
)

and letting j = j′ − n.
Now let

κ ∶∆○q ⊗̃B → C

be a morphism determined up to degeneracies by κ({0, . . . , q} ⊗ bi) = κ̃(bi).
We have κdl({0, . . . , q}⊗ bi) = ∂(κ̃)(bi) where ∂ is the differential in the Hom-
complex. dec∗ κ is the diagonal

∏
i+j′=n+m+1

(∆○q)i ⊗Bj′ ⊕ ∏
i+j′=n+m

(∆○q)i ⊗Bj′ → Cn+m+1 ⊕Cn+m

and the composition

∏
i+j=m

(∆○q)i⊗(Bn+j+1⊕Bn+j)→ ∏
i+j′=n+m+1

(∆○q)i⊗Bj′⊕ ∏
i+j′=n+m

(∆○q)i⊗Bj′ → Cn+m+1⊕Cn+m

maps {0, . . . , q}⊗ (bm+j+1, bm+j) for i = q to

( (−1)q(n+1)κ̃ 0

(−1)(q+1)(n+1)∂(κ̃) (−1)qnκ̃)(
bm+j+1
bm+j

)

This gives the formula stated in the Proposition.

Notice that this enrichment does not work properly in the bounded case.
However, see (C.6) for a workaround.
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C.3 Compatibility with ⊗

dec∗ is canonically monoidal for ⊗ because the latter is computed point-wise
interpreting source and destination as (bi)simplicial diagrams. We denote the
corresponding functor as

dec∗ ∶ (C∆
op

,⊗)→ (C∆
op×∆op

,⊗)

(the notation dec∗⊗ being reserved for its composition with the Alexander-Whitney
map in the second variable).

Since this functor cannot be extended to the unbounded case, we cannot
easily extend it to a simplicially enriched functor. However, we can do the
following:

C.6. Let’s call τ≥1 the truncation with 0 in degree 0 and the grading of dec∗X
is — as always — w.r.t. the second variable.

Denote τ dec∗⊗ ∶= τ≥1Aw2 dec
∗. We will enhance this functor to a functor of

weakly simplicially enriched operads: We define a morphism

τ dec∗⊗ ∶ Hom⊗̃,t(C∆op
,⊗)○,∨(X;Y1, . . . , Yk)→ Hom⊗̃,t(C∆op×∆op

,⊗̃)○,∨(τ≥1 dec
∗X; τ≥1 dec

∗ Y1, . . . , τ≥1 dec
∗ Yk)

(94)
(cf. Definition 5.36) as follows:

The morphism
dec∗ dec∗ → dec2,13,∗ dec

∗
1,23

gives a comparison map

Ξ ∶ dec∗(∆n ⊗̃X)→∆n ⊗̃ (dec∗X)

which is an isomorphism in degree ≥ n as follows from Lemma C.3, 2.
Given a morphism

α ∶∆n ⊗̃X → Y1 ⊗⋯⊗ Yk
Apply dec∗, Aw2 and τ≥1 to get

∆n ⊗̃ dec∗X dec∗(∆n ⊗̃X)Ξoo

dec∗ α
��

dec∗ Y1 ⊗⋯⊗ dec∗ Yk

Aw2

��
dec∗ Y1 ⊗̃ ⋅ ⋅ ⋅ ⊗̃ dec∗ Yk

��
τ≥1 dec

∗ Y1 ⊗̃ ⋅ ⋅ ⋅ ⊗̃ τ≥1 dec∗ Yk
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Since the comparison map c is an isomorphism in degree ≥ n, for n < k, we get
a unique extension:

∆n ⊗̃ dec∗X

��

dec∗(∆n ⊗̃X)oo

��
dec∗ Y1 ⊗⋯⊗ dec∗ Yk

��
dec∗ Y1 ⊗̃ ⋅ ⋅ ⋅ ⊗̃ dec∗ Yk

��
∆n ⊗̃ (τ≥1 dec∗X) // τ≥1 dec

∗ Y1 ⊗̃ ⋅ ⋅ ⋅ ⊗̃ τ≥1 dec∗ Yk

Proposition C.7. The morphisms (94)

τ dec∗⊗ ∶ Hom⊗̃,t(C∆op
,⊗)○,∨(X;Y1, . . . , Yk)→ Aw∗Hom⊗̃,t(C∆op×∆op

,⊗̃)○,∨(τ≥1 dec
∗X; τ≥1 dec

∗ Y1, . . . , τ≥1 dec
∗ Yk)

assemble to a functor between weakly (Ab∆
op

,⊗)-enriched cooperads.

Proof. We will show only the essential non-trivial case. Given morphisms X →
Y1 ⊗ Y2, ∆n ⊗̃ Y1 → Z⊗k1

1 , and ∆n ⊗̃ Y2 → Z⊗k2

2 , recall that their composition is
defined as

∆n ⊗̃X → (∆n ⊗∆n) ⊗̃ (Y1 ⊗ Y2)→ (∆n ⊗̃ Y1)⊗ (∆n ⊗̃ Y2)→ Z⊗k1

1 ⊗Z⊗k2

2

where the second map is the switch map (Definition 5.33). In the following
diagram

dec∗(∆n ⊗̃X) //

��

pr∗2 ∆n ⊗̃ dec∗X

��

pr∗2 ∆n ⊗̃ dec∗X

��
dec∗((∆n ⊗∆n) ⊗̃ (Y1 ⊗Y2))

//

dec∗ switch

��

pr∗2(∆n ⊗∆n) ⊗̃ dec∗(Y1 ⊗Y2)

switch

��

//
pr∗2 ∆n ⊗̃ pr∗2 ∆n ⊗̃ dec∗ Y1 ⊗̃ dec∗ Y2

��
dec∗(∆n ⊗̃Y1)⊗ dec∗(∆n ⊗̃Y2)

//

��

(pr∗2 ∆n ⊗̃ dec∗ Y1)⊗ (pr∗2 ∆n ⊗̃ dec∗ Y2)

��

//
pr∗2 ∆n ⊗̃ dec∗ Y1 ⊗̃ pr∗2 ∆n ⊗̃ dec∗ Y2

��
dec∗ Z

⊗k1
1

⊗ dec∗ Z
⊗k1
2

// (τ≥1 dec∗ Z1)
⊗̃k1 ⊗ (τ≥1 dec∗ Z1)

⊗̃k1 // (τ≥1 dec∗ Z1)
⊗̃k1 ⊗̃ (τ≥1 dec∗ Z1)

⊗̃k1

the middle left square commutes by Lemma C.8 below and the others in the
left column obviously. The right column is essentially the same as in Proposi-
tion 5.31, 2. The statement follows (suitably applying τ≥1).
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Lemma C.8. We have a commutative diagram in which the switch map is
defined in Definition 5.33:

dec∗(Y1 ⊗ Y2) ⊗̃ pr∗2(∆n ⊗∆n)OO

Ξ

switch // ((dec∗ Y1) ⊗̃ (pr∗2 ∆n))⊗ ((dec∗ Y2)) ⊗̃ (pr∗2 ∆n))OO

Ξ⊗Ξ

dec∗((Y1 ⊗ Y2) ⊗̃ (∆n ⊗∆n))
dec∗(switch)

// dec∗(Y1 ⊗̃∆n)⊗ dec∗(Y2 ⊗̃∆n)

Proof. By definition of the switch morphism this boils down to see the commu-
tativity of the three squares: 1.

dec∗(A ⊗̃B)
dec∗(Ez) //

Ξ

��

dec∗(A⊗B)

pr

��
dec∗B ⊗̃ pr∗2(A) Ez

// dec∗(B)⊗ pr∗2(A)

This would follow from the commutativity of:

dec∗ dec∗
dec∗ Ez //

Ξ

��

dec∗ δ∗

pr

��
dec23,∗ dec

∗
12

Ezdec∗12

// δ∗23 dec
∗
12

which is adjoint to

dec∗
Ez //

Ξ

��

δ∗

pr

��
dec∗ dec23,∗ dec

∗
12 Ez

// dec∗ δ∗23 dec
∗
12

This is in standard form (2.14) such that it suffices to show that

dec∗
‘cop’ //

‘cop’

��

dec∗ δ∗ dec∗

pr

��
δ∗12 dec

∗
12 dec

∗
Ξ
// δ∗12 dec

∗
23 dec

∗

is commutative. Since C commutes with dec∗ (cf. Lemma 5.17) it suffices to see
that the diagram of functors FinSet2 → FinSet

decs oo
c

OO

c

decs δs decsOO
pr

decs decs,12 δs,12 oo
Ξ

decs decs,23 δs,12
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commutes. This is a straightforward check.
2. The commutativity of

dec∗(∆n ⊗∆n ⊗X ⊗ Y )
dec∗(σ) //

pr

��

dec∗(∆n ⊗X ⊗∆n ⊗ Y )

pr

��
pr∗2(∆n)⊗ pr∗2(∆n)⊗ dec∗(X)⊗ dec∗(Y )

σ
// pr∗2(∆n)⊗ dec∗(X)⊗ pr∗2(∆n)⊗ dec∗(Y )

is trivial.
3. The commutativity of

dec∗(X ⊗∆n)
dec∗(Aw) //

pr

��

dec∗(X ⊗̃∆n)

Ξ

��
dec∗(X)⊗ pr∗2(∆n)

Aw
// dec∗(X) ⊗̃ pr∗2(∆n)

would follow from the commutativity of

dec∗ dec∗ oo
Aw

Ξ

��

dec∗ δ∗

pr

��
dec23,∗ dec

∗
12
oo
Aw

δ∗23 dec
∗
12

which is adjoint to

dec∗ oo
Aw

Ξ

��

δ∗

pr

��
dec∗ dec23,∗ dec

∗
12
oo Aw

dec∗ δ
∗
23 dec

∗
12

This is in standard form (2.14) such that it suffices to show that

dec∗23 dec
∗ δ∗

Ξ //

pr

��

dec∗12 dec
∗ δ∗

dec∗12 uop

��
dec∗23 δ

∗
23 dec

∗
12

uop dec∗12

// dec∗12

is commutative, which follows from the commutativity (straighforward check)
of the diagram of functors ∆3 →∆2 (no FinSet-symmetry involved):

δ decdec23 oo
Ξ

OO
pr

δ decdec12

udec12

��
dec12 δ23 dec23 oo

dec12 u
dec12
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C.4 Compatibility with ⊗̃

Recall the adjunction

C∆op dec∗ // C∆op×∆op

dec∗
oo

where dec∗ ≅ tot interpreting the objects as complexes, and double complexes,
respectively (cf. Proposition 5.39, 1.). It actually induces an adjunction between
cooperads

(C∆op

, ⊗̃)∨
dec∗⊗̃ // (C∆op×∆op

, ⊗̃)∨
dec⊗̃,∗

oo

as follows, where the monoidal product ⊗̃ on the right hand side is given by

dec13,24,∗ − ⊠ −

which can also be seen with the interpretation C∆op×∆op = (C∆op)∆op

as the
usual ⊗̃-product

A ⊗̃B = dec∗A ⊠B
where ⊠ is the exterior product (C∆op)∆op×(C∆op)∆op → (C∆op)∆op×∆op

applying
(the internal) ⊗̃ point-wise.

The functor dec∗ is actually monoidal by means of the isomorphism:

dec∗(A⊗̃B) = dec∗ dec13,24,∗A⊠B ≅ dec∗ dec12,34,∗A⊠B = (dec∗A)⊗̃(dec∗B)

where the middle isomorphism is induced by the isomorphism

decdec13,24 ≅ C decdec13,24 ι ≅ C decdec12,34 ι ≅ decdec12,34

of Ab-enriched pro-functors. It follows from Lemma C.2, that explicitly, for a
double complexes A, B:

tot(A ⊗̃B) = ⊕
i,j,k,l

Ai,j ⊗Bk,l ≅ (totA) ⊗̃ (totB) = ⊕
i,j,k,l

Ai,j ⊗Bk,l

ai,j ⊗ bk,l ↦ (−1)jkai,j ⊗ bk,l

The left adjoint dec∗ is automatically lax monoidal (hence a functor of cooper-
ads) via the mate

dec∗(A ⊗̃B) = dec∗ dec∗A ⊠B → dec13,24,∗ dec
∗
12,34A ⊠B = dec∗A ⊗̃ dec∗B

and induces an adjunction between the categories of coalgebras. An explicit
formula of the mate is given in Lemma C.3, 3. We denote the corresponding
functors of cooperads (and of coalgebras) by dec∗⊗̃, and dec⊗̃,∗, respectively.

Finally, in the corresponding adjunction

C∆op

/1
dec∗ // C∆op×∆op

/1
dec∗
oo

207



between augmented objects, both functors commute with the forgetful functors
forgetting the augmentation. For dec∗ this is clear, and for dec∗ it follows
because the latter is computed by a connected finite limit (Proposition 4.89).
Hence we will use them on augmented objects without further distinction.

C.5 More adjoints

We also have the formula

dec∗ = ∫
n

Z[∆n] ⊗̃Xn,●

which comes from the tautological formula (Yoneda):

X = ∫
n

∆n ⊠Xn,●

and the fact that dec∗ obviously commutes with colimits (as one can see from
the explicit formula dec∗ ≅ tot, cf. Proposition 5.39). This implies that dec∗ has
a further right adjoint given by

(dec?X)[n],● =HOM(Z[∆n],X)●,

or also (modulo degeneracies)

(dec?X)n,● =HOM(Dn,X)●,

which is similar to dec∗ except in low degrees:

⋱ ⋮

��

⋮

��

⋮

��
⋯ // X4 ⊕X3

��

// X3 ⊕X2
//

��

X2

��
⋯ // X3 ⊕X2

��

// X2 ⊕X1
//

��

X1

��
⋯ // X2

// X1
// X0

Lemma C.9. There is a natural transformation

pr∗2 ⇒ dec?

(adjoint of dec∗ pr
∗
2 ≅ id whose inverse is induced by dec∗ ⇒ pr∗2. ) which is a

row-wise quasi-isomorphism.

Proof. This can be seen directly by inspection or by the argument of Lemma 4.49
using that ∆1 ⊗̃ X → X is a quasi-isomorphism and hence by associativity

HOM⊗̃ maps the homotopy equivalence (w.r.t. ⊗ and hence also w.r.t. ⊗̃)
Z[∆n]→ Z[∆0] to a quasi-isomorphism.
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We have a functor of cooperads

pr∗2,⊗̃ ∶ (C
∆op

, ⊗̃)∨ → ((C∆
op

, ⊗̃)∨)(∆,∗)op ≅ (C∆
op×∆op

, ⊗̃)∨

which comes from the functoriality of the Day-convolution w.r.t. the projection
(∆,∗)op → Oop. Unraveling the definition it boils down to the obvious morphism

pr∗2(X ⊗̃ Y )→ pr∗2X ⊗̃ pr∗2 Y

noticing that, in the complexes viewpoint, pr∗2X places X in horizontal degree
0 and is zero other-wise. Since this is an isomorphism, we also have a morphism
between the corresponding operads:

pr∗2,⊗̃ ∶ (C
∆op

, ⊗̃)→ (C∆
op×∆op

, ⊗̃).

On the other hand, in C.4, we have enhanced dec∗ to a morphism of coop-
erads:

dec⊗̃,∗ ∶ (C∆
op×∆op

, ⊗̃)∨ → (C∆
op

, ⊗̃)∨

Being monoidal, it is actually also a morphism of the corresponding operads,
and induces a right adjoint

dec?⊗̃ ∶ (C
∆op

, ⊗̃)→ (C∆
op×∆op

, ⊗̃)

Lemma C.10. The natural transformation from Lemma C.9 is actually a nat-
ural transformation between functors of operads:

pr∗2,⊗̃ ⇒ dec?⊗̃

Proof. This boils down to the commutativity of

pr∗2(X ⊗̃ Y ) oo

��

pr∗2X ⊗̃ pr∗2 Y

��
dec?(X ⊗̃ Y ) oo dec?X ⊗̃ dec? Y

or equivalently to the commutativity of

dec∗ pr
∗
2(X ⊗̃ Y ) ooOO
∼

dec∗(pr∗2X ⊗̃ pr∗2 Y )OO

σ̃

X ⊗̃ Y ∼ // dec∗ pr∗2X ⊗̃ dec∗ pr
∗
2 Y

which we leave to the reader to verify.
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C.6 Further compatibilities

Recall the enhancements of dec∗ to a functor of cooperads (which is monoidal,
cf. also 4.29)

dec∗ ∶ (C∆
op

,⊗)∨ → (C∆
op×∆op

,⊗)∨

and (cf. C.4)

dec∗⊗̃ ∶ (C
∆op

, ⊗̃)∨ → (C∆
op×∆op

, ⊗̃)∨

Lemma C.11. The following is commutative:

(C∆op

, ⊗̃)∨
dec∗⊗̃ //

EZ

��

(C∆op×∆op

, ⊗̃)∨

(EZ,EZ)
��

(C∆op

,⊗)∨
dec∗
// (C∆op×∆op

,⊗)∨

Remark C.12. The corresponding square with the Alexander-Whitney-maps is
not commutative!

Proof. Need to show the commutativity of

dec∗ dec∗

Ez

��

// dec13,24,∗ dec
∗
12,34

(Ez,Ez)
��

dec∗ δ∗ // δ∗13,24 dec
∗
12,34

which is adjoint to

dec∗

unit○Ez

��

// dec∗ dec13,24,∗ dec
∗
12,34

(Ez,Ez)
��

dec∗ dec
∗ δ∗ // dec∗ δ∗13,24 dec

∗
12,34

which is in standard form (2.14) and thus it suffices to see that

dec∗
(‘cop’,‘cop’)dec∗ //

dec∗ ‘cop’

��

δ∗13,24 dec
∗
13,24 dec

∗

σ

��
dec∗ δ∗ dec∗ δ∗13,24 dec

∗
12,34 dec

∗

commutes. Using the commutativity of C with dec∗ (Lemma 5.17), this boils
down to the (trivial) commutativity of the following diagram of functors FinSet2 →
FinSet:

decs oo
decs(c,c)

OO

cdecs

decs decs,13,24 δs,13,24OO
σ

decs δs decs decs decs,12,34 δs,13,24
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