Dr. Juan Diego Caycedo — Mathematik II für Informatiker — Sommer 2015 Übungsblatt 5

Verantwortlich für die Übungen:

Dr. Fritz Hörmann (fritz.hoermann@math.uni-freiburg.de)

1. **Spiegelungen.** Sei $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ ein fest gewählter Vektor, und sei $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ die Spiegelung mit Spiegelungsachse

$$\left\{ \alpha \cdot \begin{pmatrix} x \\ y \end{pmatrix} \middle| \alpha \in \mathbb{R} \right\}.$$

Geben Sie die Matrix für φ (bzgl. der Standardbasis) an.

Hinweis: Berechnen Sie zuerst die Projektion der Standardbasisvektoren auf die Spiegelungsachse. Sie können annehmen, dass $\binom{x}{y}$ die Länge 1 hat, also dass $x^2 + y^2 = 1$ gilt.

2. Komplexe Zahlen als \mathbb{R} -Vektorraum. Die komplexen Zahlen \mathbb{C} lassen sich als \mathbb{R} -Vektorraum auffassen: Wir können \mathbb{C} mit \mathbb{R}^2 identifizieren, indem wir eine komplexe Zahl c+di $(c,d\in\mathbb{R})$ als Vektor $\begin{pmatrix}c\\d\end{pmatrix}$ schreiben.

Beweisen Sie, dass die Multiplikation mit einer komplexen Zahl $z=a+bi\ (a,b\in\mathbb{R})$ eine \mathbb{R} -lineare Abbildung $\varphi_z:\mathbb{C}\to\mathbb{C}$ ist. Durch welche Matrix wird φ_z beschrieben, wenn man \mathbb{C} wie oben mit \mathbb{R}^2 identifiziert?

Bitte wenden!

3. Lineare Abbildungen der Ebene (8 Punkte). Sei $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ eine beliebige *invertierbare* lineare Abbildung. Beweisen Sie, dass sich φ als Hintereinanderausführung einer Drehung, einer Scherung an der x-Achse und einer Streckung an den Achsen beschreiben lässt. Berechnen Sie dies explizit.

Hinweis: Gehen Sie wie folgt vor:

(a) Sei $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ die Matrix, die die Abbildung φ beschreibt. Die Matrix

$$A^{-1} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix}$$

erfüllt die Eigenschaft $A \cdot A^{-1} = A^{-1} \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Rechnen Sie dies nach. Bezeichnen Sie die Spaltenvektoren von A^{-1} mit v_1 und v_2 .

- (b) Bestimmen Sie die Matrix $D = \begin{pmatrix} e & f \\ -f & e \end{pmatrix}$ (mit $e^2 + f^2 = 1$) einer Drehung, die v_1 auf die x-Achse dreht. Seien $w_1 := D \cdot v_1$ und $w_2 := D \cdot v_2$. Das heisst also: w_1 liegt auf der x-Achse!
- (c) Bestimmen Sie die Matrix $C = \begin{pmatrix} 1 & g \\ 0 & 1 \end{pmatrix}$ einer Scherung entlang der x-Achse, die w_2 auf die y-Achse schert. Seien $x_1 := C \cdot w_1$ und $x_2 := C \cdot w_2$.
- (d) Bestimmen Sie die Matrix $B = \begin{pmatrix} h & 0 \\ 0 & j \end{pmatrix}$ einer Streckung an den Achsen, die x_1 auf $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und x_2 auf $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ abbildet.
- (e) Begründen Sie, dass $A = B \cdot C \cdot D$ gilt.